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Abstract

Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial–marine bound-

ary habitats characterized by frequent natural disturbances. Salt marshes represent such

boundary habitats, characterized by frequent inundations increasing from the terrestrial

upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt

marshes and their important function by facilitating energy and carbon flows, the structure,

trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh

habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance

(inundation frequency) on community structure, food web complexity and resource use of

soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this

intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and

upper salt marshes are less frequently inundated based on shore height. The mesofauna

comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts

in environmental disturbances influenced the structure of food webs, diversity and density

declined strongly from the land to the sea pointing to the importance of increasing levels of

inundation frequency. Accordingly, the reduced diversity and density was associated by a

simplification of the food web in the pioneer zone as compared to the less inundated lower

and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signa-

tures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary

decomposers were low and most mesofauna species functioned as secondary decompos-

ers or predators including second order predators or scavengers. The results document that

major decomposer taxa, such as Collembola and Oribatida, are more diverse than previ-

ously assumed and predominantly dwell on autochthonous resources of the respective salt

marsh zone. The results further suggest that Mesostigmata mostly adopt an intraguild pre-

dation lifestyle. The high trophic position of a large number of predators suggests that intra-

guild predation is of significant importance in salt marsh food webs. Presumably, intraguild

predation contributes to stabilizing the salt marsh food web against disturbances.
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Introduction

Salt marshes are widespread along the European coasts and cover 20% of the area of the North

Atlantic Wadden Sea [1]. The exposure to frequent inundations and the clear elevational gra-

dient with the upper salt marsh, lower salt marsh and pioneer zone make them to ideal model

systems to study, how physical and biological disturbance factors interact to create pattern in

natural communities [2]. Although salt marshes provide important ecosystem services such as

biomass production, supply of food sources, nitrogen and carbon cycling, they are also hetero-

geneous habitats, and plants and animals must cope with increasing abiotic disturbance due to

increasing frequency of inundations towards the pioneer zone [3–7]. Depending on shore

height, the pioneer zone is exposed to inundations twice a day [8], which are less frequent in

the lower salt marsh with 150–250 times a year and the upper salt marsh with 35–70 times a

year [9, 10]. The consequences of the harsh and dynamic abiotic environmental conditions

results in typical vegetation zonation [10–13], which corresponds to a shift from terrestrial C3

to marine C4 plants/algae along the land sea gradient [14, 15]. Similar to the plant based zona-

tion, the organic material of the soil differs between zones, depending on decomposition rates,

the amount of deposition, and its origin from either marine or terrestrial resources. C3 and C4

material differ in their photosynthetic pathway resulting in distinct stable carbon isotopic sig-

nals allowing identification of their contribution as basal resources of food webs [16–19].

Intertidal communities historically played an important role in the development of com-

munity ecology since they occur across pronounced abiotic and biotic disturbed conditions

along the land-sea gradient [20], encompassing a large number of microhabitats with varying

niches on small spatial scales [21]. Disturbance is known to strongly determine ecological pat-

terns and processes, affecting diversity and dynamics, as well as the food web structure of com-

munities [6, 20, 22, 23]. Consequently, ecological settings are complex and largely control the

isotopic structure of salt marsh soil food webs [10, 14, 24–26]. However, despite the central

role of terrestrial soil mesofauna in facilitating energy and carbon flows between trophic levels,

their structure, trophic ecology and habitat-related diet shifts in salt marsh food webs is virtu-

ally unknown.

The salt marsh soil community is strongly size structured and previous studies investigated

distribution patterns [27–29], food web structure and feeding preferences of macro-inverte-

brates [14, 30–32] as well as the influence of autochthonous and allochthonous resource mate-

rial on community structure [5, 33–35]. Macro-invertebrates comprise different feeding types

allowing to utilize diverse food resources, accordingly their diet changes along the environ-

mental gradient [32, 36, 37]. However, previous studies mostly focused on higher trophic levels

and neglected the complexity and functional role of small mesofauna species such as Collem-

bola, Oribatida and Mesostigmata.

Collembola and Oribatida are diverse and abundant and play multiple roles in salt marsh

food webs [38, 39]. They may significantly affect bacterial density and biomass [40], are impor-

tant decomposers and microbivores, thereby functioning as primary and secondary decom-

posers as well as predators and scavengers. Small predators such as Mesostigmata are among

the most effective predators in soils and sediments [41], but knowledge of their trophic ecology

is based primarily on laboratory observations with only few species studied in detail [42]. Fur-

ther, mesofauna taxa are major food sources for macro-invertebrates [43–45]. The few studies

existing suggest that mesofauna abundance and diversity differ substantially between salt

marsh zones with the diversity being low in the lower salt marsh and increasing with plant

cover at higher salt marsh zones [46–48]. Increased abundance and diversity is likely to affect

food web structure with the number of trophic levels increasing with habitat productivity and

resource availability [49].

Salt marsh soil mesofauna food webs
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In order to understand the effect of disturbances on mesofauna ecology in salt marshes, we

investigated the mesofauna community structure, trophic levels and resource use of abundant

species along a small-scale salt marsh gradient of the German North Sea using stable isotopes.

The analysis of natural variations in stable isotope ratios is a powerful tool to study the trophic

structure of soil animal communities [19, 50–52], and the flux of carbon from terrestrial and

marine realms into animal food webs [53, 54]. We expected (1) soil mesofauna diversity and

density to decrease from the upper salt marsh to the pioneer zone correlated with more fre-

quent flooding and associated abiotic variations, (2) the reduced density and diversity to be

associated with a simplification of the mesofauna food web in the pioneer zone as compared to

the less disturbed lower and upper salt marsh with a higher number of trophic levels, and (3)

dominant mesofauna species such as Collembola, Oribatida and Mesostigmata feeding at mul-

tiple trophic levels functioned as secondary decomposers or predators including second order

predators or scavengers.

Materials and methods

Study site

The study was performed in the salt marshes of the North Sea dune island Spiekeroog (53˚

45’2”- 53˚47’1”N, 7˚40’0”- 7˚49’1”E), which belongs to the East Frisian Islands, forming part of

the Wadden Sea National Park of Lower Saxony, Germany (Fig 1A). The Wadden Sea National

Park of Lower Saxony gave the permission to conduct the study on this site, the current study

did not involve endangered or protected species. Unlike many salt marshes along the German

coastline, the salt marsh on Spiekeroog is not affected by extensive agricultural activities or

urban development. Thereby, the island provides the opportunity to study the distribution

and trophic structure of soil invertebrates under natural settings. Salt marshes are located in

the southern part of the island, which is sheltered from northerly winds and incoming tides

ranging 1 to 3 m. The boundary between terrestrial and marine habitats is characterized by

halophytic plants close to the mean high water line (MHWL) and consists of three vegetation

zones: upper salt marsh, lower salt marsh and pioneer zone (Fig 1B). The sampling plots were

selected according to these vegetation zones depending on shore height (upper salt marsh:

>35 cm above MHWL, lower salt marsh: 0–35 cm above MHWL, pioneer zone: below MHWL)

and frequency of inundation (upper salt marsh: 35–70 times a year, lower salt marsh: 150–250

times a year, pioneer zone: inundations twice a day; Fig 1B). The dominant C3 plant of the

upper salt marsh is Elytrigia atherica, whereas the lower salt marsh predominantly is colonized

by two specialized C3 plant species, Atriplex portulacoides and Puccinellia maritima. Vegetation

in the pioneer zone is dominated by the C3 plant Salicornia stricta and the C4 plant Spartina
anglica (Fig A and Table D in S1 File). Furthermore, C4 macroalgae species such as Enteromor-
pha sp. and Ulva lactuca are widespread in the pioneer zone (Fig A and Table D in S1 File).

Experimental design and sampling

Six sampling plots of 1.80 x 1.80 m (3.24 m2) were established in each of the three salt marsh

zones (upper salt marsh, lower salt marsh and pioneer zone) in the frame of the BEFmate-proj-

ect [55]. On 24th September 2014, soil samples were collected from the upper 5 cm of each

sampling plot using a soil corer (Ø 5 cm). Each sampling plot consisted of four subplots 90 x

90 cm (0.81 m2), two samples were taken in two of the four subplots resulting in four pooled

samples per plot per vegetation zone (72 samples overall). To avoid pseudoreplication, the

mean of these four samples was used for statistical analysis resulting in a total number of 18

samples. Soil cores were placed in plastic containers and transported to the laboratory for

extracting the animals. Furthermore, at each of the three vegetation zones, vascular plants,
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macroalgae and organic matter were sampled by hand or with a spatula for analysis of poten-

tial food resources, resulting in 21 samples with three replicates each, in total 63 samples. The

samples were stored in plastic bags at -10˚C until drying and further processing.

Sample processing

In the laboratory, living soil invertebrates were extracted using a high gradient heat extractor

[56]. This extraction method is not suitable to extract nematodes, therefore nematodes were

excluded from soil invertebrate analysis. Soil invertebrates were fixed in 70% ethanol and stored

at -10˚C until identification. Preservation in 70% ethanol little affects 13C signatures of animals

[57], but 13C signatures vary with e.g., body size and cuticle thickness as well as life stage associ-

ated with changes in the proportion of fat reserves. To exclude these variations in δ13C signa-

tures, we used specimens of similar body size and focused mainly on adult individuals.

For identification individuals were placed on glass-slides, analyzed to species or genus level

and counted under a binocular eyepiece or microscope. Following identification and depend-

ing on the number of individuals, a minimum of two replicates for each dominant mesofauna

species (Collembola, Oribatida and Mesofauna) was prepared for stable isotope measurements,

in total 27 species. Soil invertebrates were dried at 40˚C for 24 to 48 h and placed in a desicca-

tor. Samples >10 µg dry mass were weighed on a fine scale (Cubis, Sartorius, Göttingen, Ger-

many) and transferred into tin capsules. Large species (>400 µm) were fragmented and

homogenized using mortar and pestle, whereas smaller mesofauna species (<400 µm) were

bulked with a maximum of five specimens per sample (the final weight of the samples is given

in supporting information Table B in S1 File). Food resources (vascular plants and macroal-

gae) were washed with tap water to remove sediment and smaller algae before drying at 40˚C

for 24 to 48 h. After drying, organic matter samples were passed through 250–2000 μm screen

in order to remove larger organic debris, shells and stones. Resources were homogenized

using a mortar and the fine powder was transferred into tin capsules. The capsules filled with

soil invertebrates and food resources were closed and wrapped into pellets, placed into well

plates and stored in a desiccator until stable isotope analysis.

Stable isotope analysis

To estimate the trophic position of animals in the salt marsh food web, natural variations in

stable isotope ratios (15N/14N and 13C/12C) were analyzed [50, 58]. δ15N values were used to

delineate the trophic position of the species and to ascribe species to trophic levels we assumed

a consistent enrichment of 3.4 δ units per trophic level [50, 59]. In contrast to 15N, trophic

level fractionation of 13C is low and varies between -0.5‰ [60] and 1 ‰ [61]. Therefore, δ13C

signatures of consumers resemble that of their diet and can be used to evaluate the sources of

carbon of consumers if the isotopic signatures of the sources are different [50], i.e. organisms

feeding on C3 plants can be distinguished from those feeding on C4 plants [62].

Stable isotope ratios were analyzed using a coupled system consisting of an elemental ana-

lyzer (for mesofauna: Euro EA 3000, EuroVector S.p.A, Milan, Italy; for plants: NA 1500, 2500,

Carlo Erba, Milan, Italy) and a gas mass spectrometer (Finnigan Delta V Plus, Thermo Elec-

tron, Bremen, Germany). The mean standard deviation ranged between<0.1 and 0.2 ‰ [63].

Signatures of stable isotopes were expressed using the δ notation with δX (‰) = [(Rsample—

Fig 1. (A) Map of study area: Spiekeroog, East Frisian Islands, Germany, North Sea. (B) Salt marsh zonation:

upper salt marsh (USM, >35 cm above MHWL), lower salt marsh (LSM, 0–35 cm above MHWL) and pioneer

zone (PZ, below MHWL) from the land to the sea in relation to shore height and frequency of inundations

(USM: 35–70 times a year, LSM: 150–250 times a year, PZ: inundations twice a day).

https://doi.org/10.1371/journal.pone.0189645.g001
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Rstandard)/Rstandard] x 1000. X represents the target isotope of δ13C or δ15N (‰), R the heavy-to-

light isotope ratios (13C/12C and 15N/14N) of samples and standard, respectively. Vienna Pee

Dee River Belemnite (PDB) and atmospheric nitrogen served as primary standards for δ13C

and δ15N, respectively. Acetanilide was used for internal calibration. Deviation of stable iso-

tope ratios of animals and potential resources were expressed using the Δ notation represent-

ing the differences between the soil animal stable isotope ratio and the respective ratio of salt

marsh resources.

Stable isotope signatures of the organic matter varied considerably at the three salt marsh

zones (δ13C values of -25.9 ± 0.76‰, -29.9 ± 0.26‰ and -13.5 ± 0.06‰ for the upper salt

marsh, lower salt marsh and pioneer zone, respectively; respective δ15N values of 4.6 ± 0.50‰,

10.2 ± 0.45‰ and 12.0 ± 0.04‰). To determine the trophic positions of soil invertebrates, sta-

ble isotope signatures were normalized to the mean of the organic matter signature of the

respective salt marsh zone (calibration factors for δ13C of +2.8‰, +6.8‰ and -9.6‰ for the

upper salt marsh, lower salt marsh and pioneer zone, respectively; respective calibration factors

for δ15N of +4.3‰, -1.3‰, -3.0‰). Although normalizing stable isotope values to that of soil

organic matter may inadequately reflect the baseline of the animal community, normalization

to dead organic matter has been shown to considerably improve comparison of trophic posi-

tions of soil invertebrates across different habitats [42].

Statistical analysis

Community structure of the three salt marsh zones were analyzed by canonical correspon-

dence analysis (CCA) and non-metric multidimensional scaling (NMDS) using CANOCO 5

(Microcomputer Power, Ithaca, USA, 2012). The data set of the NMDS was subsequently used

for discriminant function analysis (DFA) in STATISTICA 7.0. For the CCA and the NMDS,

non-identified individuals were excluded and the data were log-transformed.

In case of significant DFA, analysis of variance (ANOVA) and Tukey’s HSD (honestly sig-

nificant difference) test were performed for soil mesofauna density and diversity along the salt

marsh gradient. Further, to inspect differences in the number of trophic levels between salt

marsh zones and the relationship between the δ13C values of basal resources from the land to

the sea ANOVA was conducted using R statistical programming environment version 2.4.0 (R

Development Core Team 2007). Prior to ANOVAs data were inspected for normality using

Shapiro-Wilks test using STATISTICA 7.0 (StatSoft, Inc., Tulsa, OK, 2004); the test generally

was not significant (p> 0.05).

To estimate the relative intake of potential food sources of consumers (Collembola and Ori-

batida), the Bayesian mixing model FRUITS 2.1.1 Beta (Food Reconstruction Using Isotopic

Transferred Signals) was used [64]. Mean values for the stable isotopes of three food groups

(C3 plants/algae, C4 plants/algae and organic material, which contained C3 and/or C4 plants/

algae) were used to determine the relative contributions of basal resources to Collembola and

Oribatida nutrition in the salt marsh.

Results

Community structure

The salt marsh soil community comprised 86 taxa, of which 61 were identified to species level:

1 Amphipoda, 5 Araneae, 1 Astigmata, 9 Coleoptera, 24 Collembola, 5 Diptera, 2 Gastropoda,

2 Hemiptera, 1 Hymenoptera, 1 Isopoda, 19 Mesostigmata, 14 Oribatida and 2 Prostigmata

(see Table A in S1 File for full species list). Canonical correspondence analysis (CCA) sepa-

rated the community of the upper salt marsh from that of the lower salt marsh and pioneer

zone, reflecting the variations in distribution patterns of soil mesofauna between the vegetation

Salt marsh soil mesofauna food webs
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zones (Fig 2A). Discriminant function analysis (DFA) indicated that soil animal community

structure of the upper salt marsh significantly differenced between and that of the lower salt

marsh and the pioneer zone (Fig 2B; Tukey’s HSD: p < 0.0001).

Density of the soil mesofauna significantly declined from the upper salt marsh to the lower

salt marsh and pioneer zone (F2,15 = 13.26, p< 0.001; Fig 3A). Similarly, species diversity var-

ied significantly between the three salt marsh zones (F2,15 = 61.18, p< 0.001; Fig 3B), but

declined more continuously from the upper salt marsh to the lower salt marsh to the pioneer

zone. The mesofauna was dominated by species of Collembola, Oribatida and Mesostigmata,

which mainly occurred in the upper and lower salt marsh (see Table A in S1 File for species

list). In contrast, the pioneer zone was dominated by species connected to littoral habitats with

high frequency of inundation, e.g. the two Collembola species Archisotoma besselsi and Thalas-
saphorura debilis, the three Oribatida species Ameronothrus schneideri, Hermannia pulchella
and Zachvatkinibates quadrivertex, and the Mesostigmata species Cheiroseius necorniger and

Dendrolaelaps halophilus.

Trophic structure

As indicated by δ15N signatures, the complete mesofauna food web consisted of four trophic

levels: (I) primary decomposers (6.1–9.5‰), (II) secondary decomposers (9.5–12.9‰), (III)

first order predators (12.9–16.3‰) and (IV) second order predators (16.3–19.7‰). However,

the trophic structure of the mesofauna food web changed significantly along the land sea tran-

sect (F2,50 = 9.08, p< 0.000). On average, δ15N values of the upper salt marsh (14.4 ± 3.14‰)

exceeded those of the lower salt marsh (11.4 ± 4.23‰) and pioneer zone (9.1 ± 3.24‰) sug-

gesting shorter food chains in the latter two zones, with the food web in the upper salt marsh

comprising four trophic levels whereas that in the pioneer zone comprising only two trophic

levels (Fig 4A, Table B in S1 File).

δ15N signatures of mesofauna species spanned from 6.1 ± 0.72‰ in A. schneideri (Oriba-

tida) to 19.2 ± 2.01‰ in Hypoaspis praesternalis (Mesostigmata) reflecting the four trophic

levels the upper salt marsh (Fig 4B, Table C in S1 File). In general, the number of primary

decomposers, i.e., animals that feed mainly on organic matter, was low. Only the Oribatida

species A. schneideri had 15N signatures close to that of organic matter. Collembola species

were positioned in trophic levels I to III with δ15N values ranging between 8.6 ± 0.38‰ and

14.4 ± 0.07‰ (see Table C in S1 File). Most of the Collembola species were ascribed to primary

or secondary decomposers with the exception of Archisotoma theae, which was positioned in

trophic level III indicating first order predator lifestyle (Fig 4B). Similarly, Oribatida spanned

from trophic level I to III with δ15N values ranging between 6.1 ± 0.72 and 15.0 ± 0.46‰ (see

Table C in S1 File). Contrasting Collembola, however, most Oribatida species (Banksinoma
lanceolata, Dissorhina ornata, Microppia minus, Ramusella clavipectinata and Scheloribates
laevigatus) were ascribed to trophic level III, i.e. first order predators (Fig 4B). As expected,

Mesostigmata species had the highest δ15N values ranging from 14.9 ± 0.50 to 19.2 ± 2.01‰

(see Table C in S1 File). Accordingly, the Mesostigmata community was composed of first and

second order predators, i.e. trophic level III and IV (Fig 4B). High δ15N signatures of Mesostig-

mata species indicate that beside secondary decomposers, first order predators such as certain

Oribatida and Collembola species as well as other Mesostigmata species significantly contrib-

ute to their diet.

Linkage of basal resources to consumers

The composition of basal food resources changed significantly along the land-sea vegetation

zonation (F1,18 = 7.25, p = 0.0049). δ13C values of basal food resources of the pioneer zone
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differed significantly from those of the upper and lower salt marsh (Fig 5A). δ13C values of

basal food resources increased from -27.0 ± 1.7‰ and -26.9 ± 1.9‰ in the upper and lower

salt marsh, respectively, to -19.7 ± 5.6‰ in the pioneer zone (Table D in S1 File).

Mixing models suggested that Collembola and Oribatida species prefer different resources

within the salt marsh zones. The upper and lower salt marsh was dominated by C3 plants and

soil organic matter (containing C3 plant carbon), whereas the pioneer zone was characterized

by C3 and C4 plants/algae and soil organic matter containing C3 and C4 plants/algae carbon

(Fig A and Table D in S1 File). In the upper salt marsh, Collembola predominantly rely on C3

plants with 52% of their body carbon originating from this source, whereas Oribatida rely on

soil organic matter with 68% of their body carbon originating from this source (Fig 5B,

Table E in S1 File). In contrast, resource use of Collembola and Oribatida in the lower salt

marsh strongly shifted towards C3 plants with 82% and 93% of their body carbon originating

from this source and only 18% of Collembola and 7% of Oribatida body carbon originating

from soil organic matter (Fig 5B, Table E in S1 File). In the pioneer zone, Collembola predomi-

nantly rely on C3 plants with a contribution of 41% and in addition use C4 plants/algae as well

as organic material to a similar extent, i.e. 30% each. In comparison, Oribatida species pre-

dominantly rely on C3 plants with 72% of their body carbon originating from this source and

only 13% and 15% originating from C4 plants/algae and organic material, respectively.

As indicated by the Collembola species T. debilis, which inhabited all three salt marsh zones

(see Table A in S1 File), resource use of species changed along the salt marsh gradient. Based

on mixing models this species predominantly incorporated C3 plant carbon in the upper and

lower salt marsh (74% and 90%, respectively) whereas in the pioneer zone it predominantly

fed on marine C4 plants/algae (37%; Table E in S1 File).

Discussion

Disturbance and community structure

Density and diversity of soil mesofauna decreased significantly with increasing levels of inun-

dation frequency from the land towards the sea. This indicates that the observed community

shift correlated with changes in flooding from the upper salt marsh to the pioneer zone [22, 23,

65]. An increasing level of inundation frequency to the sea induces increasing stress for meso-

fauna species due to variable but generally high salinity (salinity of 5–20, 20–26 and 26–32 for

the upper salt marsh, lower salt marsh and pioneer zone, respectively; D. Meier, pers. comm.).

The upper salt marsh is less disturbed by inundations as those are restricted to occasional

storm events, therefore species with low salt tolerance can thrive in this habitat. Accordingly,

the soil fauna was dominated by species typical for terrestrial meadows i.e., Entomobrya lanugi-
nosa, species of Folsomia, Isotoma and Lepidocyrtus (Collembola), Liebstadia similis, Multiop-
pia neglecta, R. clavipectinata, S. laevigatus and Tectocepheus velatus sarekensis (Oribatida),

Rhodacarus salaries and Uropoda repleta (Mesostigmata). Abiotic disturbances become more

frequent in the lower salt marsh and in particular in the pioneer zone. Therefore, the lower salt

marsh was inhabited by salt and desiccation tolerant species, such as Halisotoma maritima and

Mesaphorura krausbaueri (Collembola), H. pulchella (Oribatida), and Pseudoparasitus german-
icus (Mesostigmata). The pioneer zone is the most extreme habitat of the salt marsh with

Fig 2. (A) Soil mesofauna community structure: canonical correspondence analysis (CCA) based on the density of 86 soil

animal taxa (log-transformed) along the studied salt marsh gradient: upper salt marsh (USM), lower salt marsh (LSM) and

pioneer zones (PZ). For full species names see Table A in S1 File. Eigenvalues of axis 1 = 0.6610 and axis 2 = 0.3214. (B)

Discriminant function analysis (DFA) of soil invertebrate community of the three salt marsh zones: USM, LSM and PZ; ellipses

represent confidence ranges at p < 0.05.

https://doi.org/10.1371/journal.pone.0189645.g002
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highest frequency of inundations and abiotic variations. Therefore, specialist species preferen-

tially colonize this salty marine habitat, such as A. besselsi and T. debilis (Collembola), A.

schneideri, H. pulchella and Z. quadrivertex (Oribatida), and C. necorniger and D. halophilus
(Mesostigmata). Colonization of the lower salt marsh and pioneer zone is associated with

physiological and behavioral adaptations enabling the species to cope with frequent inunda-

tions and variations in salinity.

Certain Collembola species are osmoconform even at high salinity, whereas others are drift-

ing on the seawater surface allowing aerial respiration [66–68], whereas non-haloric Oribatida

species developed plastron structures allowing them to respire under water [69]. Halobiont

Oribatida, such as A. schneideri, H. pulchella and Z. quadrivertex, are well adapted to saline

conditions and are able to withstand frequent inundation and to survive in submersion [38,

46, 70, 71]. In contrast, nothing is known about the mechanisms which enable Mesostigmata,

such as the C. necorniger and D. halophilus, to inhabit frequently inundated salt marsh zones.

However, widespread occurrence in the lower salt marsh and the pioneer zone suggests that

they are well adapted to harsh environmental conditions and frequent inundation.

Declining diversity of mesofauna in salt marsh zones closer to the sea is in line with the

“Intermediate Disturbance Hypothesis” stating that species diversity is maximized when eco-

logical disturbance is neither too rare nor too frequent [72]. Terrestrial species not well

adapted to abiotic disturbances are likely to be excluded from the semi-marine lower salt

marsh zones resulting in lower species density and diversity. As a consequence, specialized

taxa are most affected by disturbances, but able to tolerate the abiotic fluctuations and survive

under extreme environmental conditions close to the sea due to physiological and behavioral

adaptations [73, 74].

Disturbance and food web structure

Salt marsh soils provide a wide range of food resources for soil fauna communities. The δ15N

signatures suggest that mesofauna species of salt marshes occupy very different trophic niches.

The food web spans over four trophic levels including primary and secondary decomposers, as

well as first and second order predators, suggesting that intra-guild predation is widespread

and plays an important role. The broad range of δ13C signatures of salt marsh mesofauna spe-

cies supports the hypothesis, that the utilization of diverse food resources along the salt marsh

gradient fundamentally structures the entire food web.

Supporting the predominant role of disturbance in structuring the soil mesofauna food

web, the number of trophic levels was higher in the less disturbed upper salt marsh zone and

decreased to the pioneer zone. Notably, the structure of the food web at the higher salt marsh

zones closely resembled that of forest ecosystems characterized by more opportunistic links

and long food chains, which typically span over four trophic levels [75, 76]. Previous studies in

forest ecosystems also showed Oribatida to span three to four trophic levels including primary

and secondary decomposers as well as predators and/or scavengers [77]. Similar results have

been obtained for Collembola with again most species functioning as secondary rather than

primary decomposers [78, 79]. This suggests that similar to forest ecosystems, most decom-

poser taxa of salt marsh habitats do not feed on dead organic matter but occupy higher trophic

levels including secondary decomposers (feeding predominantly on microorganisms), preda-

tors and/or scavengers. Presumably, similar to forests and arable systems [80, 81], rhizosphere

Fig 3. (A) Density and (B) diversity of soil mesofauna species at the upper salt marsh (USM), lower salt marsh (LSM) and pioneer zone

(PZ). Boxplots represent mean (red line) and median (black line) of density and diversity. Different letters represent significant

differences between zones (Tukey’s HSD test, p < 0.05).

https://doi.org/10.1371/journal.pone.0189645.g003
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microorganisms relying on root derived resources play an important role as food resource for

decomposer species in higher salt marsh zones. In contrast, in the pioneer zone bacteria rely-

ing on marine detritus as well as algae play a major role as food resource for Collembola and

Oribatida. Supporting this view the generalist Collembola species T. debilis predominantly fed

on marine C4 plants/algae in the pioneer zone but predominantly on C3 plant carbon in the

upper salt marsh. Similarly, other studies showed that the Collembola species Archisotoma pul-
chella prefers to feed on diatoms [82] and the Oribatida species Ameronothrus lineatus pre-

dominantly feeds on green algae [83, 84]. Previous studies suggested that marine resources

provide most energy and resources for coastal communities and their importance extends con-

siderably into the terrestrial realm [5]. In contrast to these findings, the use of marine-based

Fig 4. (A) δ15N signatures of all soil mesofauna species in the upper salt marsh (USM), lower salt marsh (LSM) and

pioneer zone (PZ). Boxplots represent mean (red line) and median (black line) of δ15N signatures; different letters

represent significant differences between zones (Tukey’s HSD; p < 0.05). (B) δ13C and δ15N stable isotope values

(means with standard deviation) of dominant mesofauna species: Collembola (orange squares), Mesostigmata (blue

squares) and Oribatida (green squares). Black dashed horizontal lines represent estimated trophic level boundaries with

each trophic level spanning 3.4‰ δ15N: I = primary decomposers, II = secondary decomposers, III = first order predators,

and IV = second order predators. Number of replicates are included in parentheses; see Table C in S1 File for full species

names.

https://doi.org/10.1371/journal.pone.0189645.g004

Fig 5. (A) δ13C signatures of basal food resources in the three salt marsh zones: upper salt marsh (USM), lower salt marsh (LSM) and pioneer zones (PZ).

Boxplots represent mean (red line) and median (black line) of δ13C signatures; different letters represent significant differences between vegetation zones

(Tukey’s HSD, p < 0.05). (B) Pie charts represent mean percentages of potential food resources [C3 plants/algae, C4 plants/algae and organic material (OM)

containing C3 and/or C4 plants/algae] of Collembola and Oribatida species along the salt marsh gradient.

https://doi.org/10.1371/journal.pone.0189645.g005
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food sources by soil invertebrates was limited to the pioneer zone, whereas invertebrates at

higher salt marsh zones predominantly relied on terrestrial resources of these habitats. This

points to the importance of marine resources for soil food webs of frequently inundated salt

marsh habitats, whereas higher salt marsh zones, colonized by terrestrial plants, provide most

of the resources for the mesofauna decomposer system. On the other hand, the results indicate

that soil mesofauna species do not migrate between the salt marsh zones thereby integrating

resources of different habitats.

Further, the results suggest that soil mesofauna food webs of salt marshes predominantly

dwell on autochthonous resources based in large on the plants (including algae) colonizing the

respective salt marsh zones. In the upper and lower salt marsh root derived resources are likely

to play an important role in fueling the decomposer system, thereby resembling truly terres-

trial systems such as forests but also arable systems [80, 81]. Consequently, the shift from a typ-

ical terrestrial plant system in the higher salt marsh zones to a more marine plant system in the

pioneer zone is associated with fundamental changes in the decomposer system, which in turn

affects the food web structure with a decreasing number of trophic levels to the sea (pioneer

zone).

As indicated by high δ15N values a number of Collembola and Oribatida species function as

predators and/or scavengers. Predator Collembola and Oribatida species likely are feeding at

least in part on nematodes, which are highly abundant in salt marshes, similar to terrestrial soil

food webs [85–87]. Notably, the results suggest predation to be more widespread in Oribatida

than in Collembola. Conform to our expectations and previous studies of forest soil food webs

[42], however, Mesostigmata formed the main predators in the studied salt marsh mesofauna

food webs. Their high δ15N values and variable hunting strategies [88] suggest complex preda-

tor-prey relationships including intraguild predation. Further, Mesostigmata themselves likely

function as prey of marine predators such as nematodes, copepods and polychaetes and this

potentially contributed to the lower number of trophic levels of the mesofauna food web in the

pioneer zone. By contrast, reduced predation by marine species may have contributed to the

higher abundance and diversity of mesofauna, and the longer food chains in the lower and

upper salt marsh [43]. However, in these habitats mesofauna likely forms important prey of

macrofauna predators such as Araneae. Therefore, the relative contribution of predation as

structuring force of mesofauna communities in the different salt marsh zones remains uncer-

tain and needs further investigation.

A large number of mesofauna species (60 taxa) only occurred in one of the three vegetation

zones, suggesting that habitat and / or trophic specialists are widespread. Trophic specialists

occupy a limited range of niches but more effectively exploit these resources than trophic gen-

eralists [27, 89]. In contrast, 22 taxa colonized two salt marsh zones underlining that salt

marsh communities are well structured with most species only being able to colonize a narrow

habitat range and use the respective resources of that habitat. Only two Collembola species (A.

besselsi and T. debilis) typically colonizing disturbed habitats, occurred in each of the three salt

marsh zones and therefore truly represent generalists. Food generalists opportunistically use

resources which are available [90] allowing them to colonize a wide range of habitats [6, 91].

However, even though habitat specialists predominated, these species presumably also used a

wider range of resources rather than only single prey taxa as reflected by the dominance of sec-

ondary decomposers as well as second order predators indicating that the use of resources of

different trophic levels [92] is widespread among salt marsh mesofauna species. Presumably,

feeding on multiple trophic levels is favored in the heterogeneous salt marsh habitats and this

likely contributes to food web stability [93].

Body mass is a major structuring factor of food webs [94], especially predator-prey interac-

tions strongly depend on body mass ratios, therefore we expected large species to
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predominante in higher trophic levels. Contrasting this expectation and other food webs [95],

the trophic position of mesofauna species was not significantly related to body mass (Fig B and

Table B in S1 File). Again, however, this resembles terrestrial Mesostigmata communities of

forests in Central Europe [42].

Conclusions

The study highlighted the complex trophic structure of mesofauna communities and their cen-

tral position within salt marsh habitats. Strong changes in community structure and food web

complexity along the studied salt marsh gradient suggest that the occurrence of the majority of

species in salt marshes is related to inundation frequency. Parallel to the strong turnover of

species, mesofauna food webs markedly changed along the salt marsh gradient from four tro-

phic levels in the upper salt marsh to only two in the pioneer zone. Similar to terrestrial soil

food webs, the number of primary decomposers was low and most species functioned as sec-

ondary decomposers or predators including second order predators or scavengers. In particu-

lar the high number of second order predator taxa suggests high incidence of intraguild

predation, again resembling terrestrial soil food webs. Notably, soil animal communities in

each of the three salt marsh zones predominantly relied on autochthonous resources, with

marine resources being restricted mainly to the pioneer zone, and indicating that terrestrial

food webs are intimately linked to rhizosphere resources. Overall, the high number of species

of soil microarthropods including Collembola, Oribatida and Mesostigmata suggests that, sim-

ilar to consolidated terrestrial systems, these taxa fill key trophic positions of soil food webs

even at the adverse environmental conditions of marine–terrestrial boundary habitats.
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