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Abstract

Background: Single nucleotide polymorphism (SNP) panels have been widely used to study genomic variations
within and between populations. Methods of SNP discovery have been a matter of debate for their potential of
introducing ascertainment bias, and genetic diversity results obtained from the SNP genotype data can be
misleading. We used a total of 42 chicken populations where both individual genotyped array data and pool
whole genome resequencing (WGS) data were available. We compared allele frequency distributions and
genetic diversity measures (expected heterozygosity (He), fixation index (FST) values, genetic distances and
principal components analysis (PCA)) between the two data types. With the array data, we applied different
filtering options (SNPs polymorphic in samples of two Gallus gallus wild populations, linkage disequilibrium
(LD) based pruning and minor allele frequency (MAF) filtering, and combinations thereof) to assess their
potential to mitigate the ascertainment bias.

Results: Rare SNPs were underrepresented in the array data. Array data consistently overestimated He

compared to WGS data, however, with a similar ranking of the breeds, as demonstrated by Spearman’s rank
correlations ranging between 0.956 and 0.985. LD based pruning resulted in a reduced overestimation of He

compared to the other filters and slightly improved the relationship with the WGS results. The raw array data
and those with polymorphic SNPs in the wild samples underestimated pairwise FST values between breeds
which had low FST (<0.15) in the WGS, and overestimated this parameter for high WGS FST (>0.15). LD based
pruned data underestimated FST in a consistent manner. The genetic distance matrix from LD pruned data
was more closely related to that of WGS than the other array versions. PCA was rather robust in all array
versions, since the population structure on the PCA plot was generally well captured in comparison to the
WGS data.

Conclusions: Among the tested filtering strategies, LD based pruning was found to account for the effects of
ascertainment bias in the relatively best way, producing results which are most comparable to those obtained
from WGS data and therefore is recommended for practical use.
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Background
Following the process of animal domestication, evolution-
ary forces such as selection and genetic drift have played a
critical role in animal diversification. Such forces led to
genomic alterations such as fixation of favorable alleles
within a breed or species and differentiation from the
ancestral state due to successful selection programs or
adaptation. This concept of domestication and its subse-
quent impact on diversity of animal species, breeds or
strains was well explored by Darwin [1, 2]. So, phylogen-
etic studies aim to assess these variations.
The wild, unselected native and village chicken popula-

tions retain a reservoir of and exhibit more genetic variabil-
ity [3–5]. Commercial breeds are known for being intensely
selected for economic purposes, i.e. meat and egg type pro-
duction. Successful egg type selection programs within the
commercial layers have resulted in a reduced genetic vari-
ability within these lines. In Europe, an organized and sys-
tematic breeding in chickens was developed during the
nineteenth century. Selection programs in this case were
based on producing attractive features (for entertainment)
in line with the breed standards; because of this, many
fancy breeds were heavily selected for their attractiveness.
To date such heavily selected breeds exhibit reduced gen-
etic diversity and high average genetic distances to other
breeds [3–5]. Major components for the reduced variability
within both the commercial and the fancy breeds are due
to the fact that the selection was certainly based on small
number of founders, small effective population size and/or
high degree of inbreeding.
Using whole genome resequencing (WGS) data is con-

sidered as the best way of doing association or diversity
studies [6, 7]. It provides a high resolution of the gen-
ome information capturing most (and even the finer)
details underlying genomic variations. However the cost
of whole genome sequencing still is high for application
in larger sample sets. Additionally, limitations such as
infrastructure (e.g. WGS requires good reference ge-
nomes), work effort and time poses further constraints.
So, generating WGS data for the required sample size in
such studies is challenging [6].
Genotyping tools have been developed to overcome

these constraints and have made genotype data available
in sufficient numbers. Single nucleotide polymorphism
(SNP) panels have been widely used in studies of genomic
variation within species [8, 9]. For the construction of
such SNP sets, a limited number of individuals selected
from populations of interest (the so-called ascertainment
group) are used as discovery panels. These individuals are
sequenced and provide the basis to select polymorphic
loci targeted for further genotyping in a larger set of indi-
viduals [9, 10]. SNPs are often selected based on quality,
with predefined spacing (e.g. equally spaced) and desired
frequency distribution [10], among other criteria.

These methods of SNP discovery may introduce ascertain-
ment bias, hindering classical population genetic methods to
provide correct results when applied with SNP genotype
data [11, 12]. Ascertainment bias is a systematic deviation of
population genetic statistics from a theoretical ‘true’ value,
which arises from a non-random selection of set of individ-
uals or biased marker discovery protocols [6, 13].
If the level of ascertainment bias is high, results of popu-

lation genetic studies could be widely misinterpreted [14].
Thus, exploring the potential systematic effects that the
ascertained genotype data can have on the results of diver-
sity studies and finding a way to minimize these effects is
crucial.
Differences in the allele frequency distribution between

SNP genotype data and WGS data have been commonly
used to assess ascertainment bias [6, 11, 15]. An easily
verifiable indicator of a potential ascertainment bias is a
complete absence of SNPs or an underrepresentation of
rare SNPs. Discovery of SNPs is driven by the allele fre-
quency, and with an often small size of the discovery
panel, discovering rare SNPs is mostly limited [14]. With
the missing rare SNPs, the SNP data may not be an ad-
equate representation of the WGS data. Gorlov et al. [16]
argue that missing rare SNPs can lead to loss of valuable
information and lessen the ability to detect those rare
SNPs in association studies, which may be critical e.g. in
the context of rare causal SNPs for rare diseases.
Effects of ascertainment bias on genetic diversity analysis

within and between populations have been reported in
several studies [9, 13, 17]. One of the assertions is that
selection of subpopulations for discovery panels tends to
over-represent variability of that ascertainment group.
Consequently, effects of ascertainment bias on het-
erozygosity estimates [18, 19], fixation index (FST)
values and phylogenetic relationships [9] have been
reported. Herrero-Medrano et al. [18] and Albrechtsen et
al. [15] observed that ascertainment bias affected some
populations more than others when studying their genetic
diversity with SNP chip data. McTavish & Hillis [9] con-
cluded that both the FST and principal components ana-
lysis (PCA) estimated from SNP chip data were distorted
when ascertainment bias was not accounted for. Prin-
cipal components analysis is a statistical technique
that captures patterns of high dimensional data and
projects them into a lower dimensional space, allow-
ing to determine key variables that explain the obser-
vations [20, 21]. PCA has been used in many studies
to capture genetic structures of populations [22–26].
In contrary to McTavish & Hillis [9], McVean [27] re-
ported that the PCA is less affected by ascertainment
bias. He claims that effects of ascertainment bias on
PCA are easy to predict and only have little impact
on the structuring of populations unless the bias is
very severe.

Malomane et al. BMC Genomics  (2018) 19:22 Page 2 of 16



Despite the available proposed schemes and several
suggestions made on how to address the issue of ascer-
tainment bias in population genetic analysis [6, 12, 15],
there are still challenges on the definite measures to deal
with this issue [17]. Clark et al. [14] concluded that it is
not always easy to correct for ascertainment bias, suc-
cess is not guaranteed, and mostly the suggested correc-
tions are not applicable to every study [15]. Most of the
suggestions were also tested using simulated data, which
may miss out some of the complexities encountered
when using real data.
In this study, we tried to assess the impact of ascer-

tainment bias and the efficiency of various strategies to
account for it in a chicken diversity panel, which is
based on a diverse set of chicken populations for which
both pooled WGS data and individual SNP genotype
data obtained with a high density SNP array were avail-
able. For most of the studied populations, there is no
sufficient documentation on the breed history and/or
background and we are skeptic that the material used al-
lows to identify the mechanisms causing ascertainment
bias. Therefore, we based our primary focus on identify-
ing strategies to mitigate ascertainment bias rather than
to do a full analytical (or empirical) study to understand
the causes of ascertainment bias. With the SNP genotyping
array [10] that was used, the SNP panel was established by
selecting a few populations (for details please see the
“Methods” section) which are not representative for all the
other populations used in our study. In addition, the SNP
selection criterion included discarding low minor allele fre-
quency (MAF) SNPs which potentially causes an underrep-
resentation of SNPs under selection [28]. Criteria used in
our study to assess the impact of ascertainment bias and
the various strategies to mitigate its effects were similarity
of allele frequency spectra, expected heterozygosity, FST,
PCA, distance measures and topologies of phylogenetic
trees. In general, the results obtained from the WGS data
were considered as the ‘reference standard’ and strategies to
correct for ascertainment bias were considered based on
how good the WGS-based results were met.

Methods
Animals
A total of 42 chicken populations were used in this study.
For each of the populations, both whole genome rese-
quencing data based on pooled samples and individual
genotype data obtained with a 600 K SNP Affymetrix®
Axiom® High Density Chicken Genotyping Array were
available. A list of the 42 populations with their ab-
breviations and population sizes as used in the study
is provided in Table 1. Samples used in this study
were collected under the umbrella of the SYNBREED
project (www.synbreed.tum.de) from chicken fancy
breeds in Germany between 2010 and 2012. The

collection was completed by samples of two Red Jun-
gle fowl populations, Gallus gallus gallus (GGg) and
Gallus gallus spadiceus (GGsc) taken from previous
EU project AVIANDIV (see [29]).
For the WGS pooled data, equal amounts of DNA of

the individuals of each population were pooled using
PicoGreen® quantitation assay except for the WL_A. In
the case of WL_A, 10 birds were sequenced individually
and virtual pooling was performed. Thirty nine of the 42
populations in the WGS consisted of 385 individuals of
which 383 were also genotyped individually. The other 3
populations (WL_A, BL_A and BL_D) were commercial
lines (see Table 1) and consisted of different individuals
in the two data sets. In the array data set, in addition to
the 383 individuals, 461 more individuals were added
and their distribution is also shown in Table 1. So, when
comparisons were made between array and WGS data
with commercial breeds included, the 383 plus 461
individuals’ version of array data was used. For the
commercial breeds, each breed contained 20 individ-
uals in the array data. In the WGS data, each breed
contained 9–10 individuals for the non-commercials
and 10–15 individuals for the commercial breeds. The
commercial breeds were among the breeds used in
the discovery panel for the development of the 600K
Affymetrix genotyping array.
Collection of blood samples for this study was per-

formed in accordance with the German Animal Protec-
tion Law and was submitted to and approved by the
Committee of Animal Welfare at the Institute of Farm
Animal Genetics (Friedrich-Loeffler-Institut) and the
Lower Saxony State Office for Consumer Protection and
Food Safety (No. 33.9-42502-05-10A064).

WGS data and preparation
Pools of the 42 populations comprising in total 425 indi-
viduals were resequenced with 20X target coverage. The
sequence reads were aligned to the chicken reference
genome (galGal4) [30] using Burrows-wheeler alignment
algorithm implemented in BWA [31] and sorted using
Samtools [32]. Picard tools were used to mark duplicates
and GATK was used for calling the SNPs [33, 34]. For
more details on the preparation pipeline see Reimer et
al. [35].

Genotype (array) data and filtering
The initial array data set contained 918 animals and
580, 588 SNPs. SNPs misplaced at wrong chromo-
somes were removed. The data was then filtered for
SNP call rates of >99% and animal call rate of >95%
using the SNP & Variation Suite Version (SVS) 8.1
[36] which retained 904 animals and 450, 082 SNPs.
From this point, the following SNP filtering pipeline
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was applied, with number of SNPs left at each step
shown in brackets:

1. SNPs with missing positions were discarded
(445,428).

2. SNPs that shared the same position on the same
chromosome were discarded (e.g. if there were two
SNPs sharing the same position, both of them were
discarded (445,388).

3. SNPs had to be present in both array and WGS data
(21,759 of array SNPs were not found in the WGS
data) and only SNPs from chromosome 1–28 were
considered (401,420).

4. SNPs were discarded if the reference (and/or
alternative) allele of genotype (array) data didn’t
match the reference (and/or alternative) allele from
the sequence data (401,125).

After the above filtering, a total of 401,125 SNPs remained
for further analysis. This set of data was used in assessing
allele frequency calling in the pooled sequence data, com-
paring allele frequencies between the array and WGS data,
and assessing how this uncorrected ascertained data
affect genetic diversity analysis by being compared to
results analyzed from WGS. The array data SNP was
converted so that allele A resembled the respective
reference allele.
Different filtering schemes were applied to the array

dataset (Array_all in Table 2) to be tested for their po-
tential to account for ascertainment bias. More specific-
ally, we applied three different basic filtering principles:

1. LD based SNP pruning, which has been described to
partially account for the effects of ascertainment
bias. In our study, SNP pruning for LD was done in
PLINK v1.9 [37, 38]. The parameters: indep 50 5 2
were used, whereby 50 is the window size in SNPs, 5
is the window size step (in SNPs) after LD
calculation (after LD has been calculated from the
50 SNPs window, and from a pair of SNPs in LD the
SNP with lower MAF is removed, the window is
shifted 5 SNPs forward and the procedure is

Table 1 List of breeds, their abbreviations and sample sizes as
used in the study

Breed and abbreviation Array data (n) WGS data (n)

Commercial breeds:

WL_A – White Leghorn line A 20a 10a

BL_A – Rhode Island Red line A 20a 15a

BL_D – White Rock line D 20a 15a

Wild populations:

GGg – Gallus Gallus Gallus 10 (10) 10

GGsc – Gallus Gallus spadiceus 9 (10) 9

European populations:

ABwa – Barbue d’Anvers quail 10 (10) 10

ARsch – Rumpless Araucana black 9 (11) 9

BAsch – Rosecomb Bantam black 10 (10) 10

BKschg – Bergische Crower 10 (22) 10

DZgh – German Bantam gold partridge 10 (10) 10

FZgpo – Booted Bantam millefleur 10 (10) 10

HOxx – Dutch White Crested 10 (7) 10

ITrh – Leghorn brown 10 (10) 10

KAsch – Castilians black 9 (11) 9

KRsch – Creeper black 10 (20) 10

KRw – Creeper white 10 (20) 10

LER11- White Leghorn line R11 9 (13) 9 (1)

OMsschg - East Friesian Gulls silver
penciled

10 (10) 10

PAxx - Poland any colour 11 (12) 11

SBsschs - Sebright Bantam silver 10 (10) 10

WTs - Westphalian Chicken silver 10 (10) 10

Asian populations:

ASrb – Aseel red mottled 10 (10) 10

BHrg – Brahma gold 10 (10) 10

CHgesch – Japanese Bantam black
tailed buff

10 (12) 10

CHschw – Japanese Bantam black
mottled

10 (19) 10

COsch – Cochin black 10 (11) 10

DLIa – German Faverolles salmon 10 (10) 10

KSgw – Ko Shamo black-red 9 (13) 9

MAxx – Malay black red 10 (21) 10

MRschk – Marans copper black 10 (10) 10

NHL68 – New Hampshire line 68 9 (14) 9 (1)

OFrbx – Orloff red spangled 10 (15) 10

OHsh - Ohiki silver duckwing 10 (10) 10

ORge - Orpington buff 10 (10) 10

SAsch - Sumatra black 9 (11) 9

SEw - Silkies white 10 (10) 10

SHsch - Shamo black 9 (11) 9

Table 1 List of breeds, their abbreviations and sample sizes as
used in the study (Continued)

Breed and abbreviation Array data (n) WGS data (n)

SNwsch - Sundheimer light 10 (10) 10

TOgh - Toutenkou black breasted red 10 (11) 10

WYw - Wyandotte white 10 (9) 10

YOwr - Yokohama red saddled white 10 (10) 10

ZCw - Pekin Bantam white 10 (10) 10

n is number, in brackets () are additional individuals added to the population
(not present in the other data type)
acompletely different individuals in the two data sets
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repeated), and 2 is the variance inflation factor
VIF = 1/(1-r2) [39].

2. A second filter applied was to restrict the analysis to
SNPs that were found to be polymorphic in the wild
chicken populations, which were represented in our
study with two populations (GGsc and GGg
subspecies).

3. A third filter excluded SNPs with less than 5% MAF.
This MAF filtering was done in PLINK v1.9 [37, 38]
using the command –maf 0.05.

These filters were applied alone and in combination,
the corresponding filters and resulting data sets are pre-
sented in Table 2.

Allele frequency calling in the pooled sequence data
To investigate the reliability of allele frequency calling in
our WGS pooled data, we estimated and compared allele
frequencies between array (using all 401,125 SNPs) and
WGS pooled data for corresponding loci. To avoid issues
relating to sample size [40], only 39 of the 42 popula-
tions (with 383 individuals for array data and 385 indi-
viduals for WGS data) were used for this comparison,
the 3 commercial populations which contained different
individuals in the two data sets were excluded. Then we
also compared the allele frequencies for each breed be-
tween the two sets, this time including also the 3 com-
mercial breeds. We used Pearson’s correlations between
estimated allele frequencies of WGS and array data to
assess the accuracy of allele frequency calling in the pool
WGS data. All allele frequency calculations were based
on the alternative allele at each locus. Allele frequencies
for the pooled sequences were calculated as the propor-
tion of reads’ counts for the alternative allele at each
locus.

Assessing ascertainment bias in the array data
We randomly sampled 401,125 SNPs in 100 repetitions
from the WGS data, computed the average allele fre-
quency spectrum (AFS) and compared it with the AFS
of the 401,125 SNPs in the array data.
Genic SNPs of Gallus gallus were annotated with

Ensembl genes 85 [41] and the proportions of SNPs in
genic and non-genic regions were calculated and compared
between the two sets. The genic region was defined ac-
cording to the Ensembl gene definition, comprised of any
spliced transcripts with overlapping coding sequence [42].
It was further determined if there are differences in MAF
distributions from the genic and non-genic regions in the
two data types.

Assessing the potential effects of ascertainment bias in
genetic variation analysis
Within breeds diversity analyses, population differenti-
ation and phylogenetic structure analyses were performed
and compared between the WGS data and different ver-
sions of the array data. For within breed variation, the ex-
pected heterozygosity (He) was estimated as: He= 2p(1-p),
where p represented the allele frequency of the alternative
allele [43]. We could not use the observed heterozygosity
for comparison since this one was not available for the
pooled sequence data.
As a measure of population differentiation, the pair-

wise fixation index (FST) between breeds for each locus

was estimated as: FST ¼ s2
p 1−pð Þ [44]. For the same sample

sizes s2 was calculated as
P

i pi
�−pð Þ2=r where pi

� is the al-
lele frequency of the ith population, p is the average al-
lele frequency across populations and r is the number of
populations the FST is calculated for. For different sam-

ple sizes the s2 was calculated as
P

ini pi
�−pð Þ2=rn and p

calculated as
P

inip
�
i=rn where ni is the sample size of

the ith population and n is the mean sample size. The
FST values were averaged across loci.
Phylogenetic variation between populations in the

different data sets was evaluated by means of phylo-
genetic trees and principal components analysis
(PCA). Pairwise genetic distances were estimated
using Nei’s standard genetic distance [45]. The pair-
wise genetic distance matrices of the different array
data versions were compared with that of WGS
using Frobenius (F) distances, which was calculated

as FA;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace A−Bð Þ � A−Bð Þ0� �q

[46], where A and

B are the two distance matrices to be compared.
Since it couldn’t be ruled out that there is a scale effect of
the number of SNPs used in the construction of the dis-
tance matrix, we sampled 100 replicates from the WGS
data with the same number of SNPs as was used in the
construction of the array-based matrix in the respective

Table 2 Array data set versions with different filtering strategies
applied

Given name for
data set

Filter/s applied No of
SNPs

Array_all 401, 125

Array_MAF5 Filtered out SNPs with less than 5% MAF 379, 342

GG Retained only SNPs that are polymorphic
in the two Gallus gallus wild populations
(GGg and GGsc)

289, 390

GG_MAF5 GG and filtered out SNPs with MAF less
than 5%

284, 748

Pruned SNPs were pruned based on LD 122, 006

Pruned_MAF5 Pruned and filtered out SNPs with MAF
less than 5%

107, 604

Pruned_GG Pruned and GG 86, 404

Pruned_GG_MAF5 Pruned_GG and filtered out SNPs with
MAF less than 5%

82, 975
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comparison. We then calculated the genetic distances and
compared the respective array-based matrix to the 100
replicates of the WGS-based matrices.
The phylogenetic trees were derived from the pairwise

distance matrices between the breeds. The ‘Ape’ package
in R v3.2.2 was used to compute and construct neighbor
joining (NJ) trees [47, 48]. The NJ trees were then com-
pared using their topological distances obtained from
two methods:

1. Penny & Hendy [49] consider the topological
distance as twice the number of internal branches
defining different bipartitions of the tips.
Comparisons here are made by counting the
number of different partitions resulting from cutting
the interior branches of the two trees. Differences in
partitions are determined by having one or more
different objects (in our case different populations)
when the trees are cut at a branch. The topological
difference is then calculated by how many partitions
need to be changed in order for the two trees to be
similar. This method determines how similar objects
are grouped together in the two trees based on the
partitions. A value of 0 means that cutting the trees
at any similar branch point results in similar objects
on the partitions of the two trees; therefore, the two
trees are considered to have a similar topology. The
lower the value, the more similar the two trees are.

2. Billera et al. [50] consider the topological distance
as the sum of the branch lengths that need to
be erased to have two similar trees calculated as
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Xi−Y ið Þ2

q
, where X and Y are two NJ

trees, and i is the ith population in X and Y.
Xiand Yi are the branch lengths of the ith population
in trees X and Y respectively. The branch length is
described as the amount of evolutionary change
[51], and the distance between two populations in

one tree is the sum of the branch lengths
connecting them. Therefore, if population i = 1 in
tree X and Y has the same branch lengths but
population i = 2 in tree X and Y has different
length, the distance between population 1 and 2
in the two trees will be different. This method
estimates the difference between the two trees
for the ith population and sums all the differences
for every population. A value of 0 means that all
pairs of populations have the same branch lengths
connecting them in the two trees.

Again these comparisons were made between the dif-
ferent versions of the array data set and the randomly
sampled 100 replicates of WGS data and with the same
number of SNPs, respectively.
The “ade4” and “stats” packages in R were used to

compute the PCA and the packages “factoextra” and
“scatterplot3d” for visualizing the results in two di-
mensional (2D) and three dimensional (3D) respect-
ively [48, 52, 53].

Results
Assessing allele frequency calling in pool whole
resequencing data
We compared the estimated allele frequency for all SNPs
in the ‘Array_all’ data set with the estimates from the pool
WGS data at each corresponding locus. The allele fre-
quency spectra of the two data sets were found to be
mostly identical (Fig. 1). The proportion of SNPs in the
frequency bin 0.025–0.125 was slightly higher in the WGS
than the array data while the proportions of SNPs in the
bins 0.150–0.3 were slightly higher in the array than the
WGS data. A high correlation was obtained between the
allele frequencies of the two sets (r = 0.983), as well as
within the different breeds (ranging from r = 0.94 to 0.99).

Fig. 1 Allele frequency spectrum of array data and corresponding WGS loci for 39 populations

Malomane et al. BMC Genomics  (2018) 19:22 Page 6 of 16



Assessing the potential of ascertainment bias in the array
genotype data
The allele frequency spectra showed remarkable differ-
ences for the two data types (Fig. 2). The array data had
very low but increasing numbers of SNPs at allele fre-
quencies between 0 and 0.175 while the WGS had a very
high number of rare variants between 0 and 0.025 and
SNP numbers decreased with increasing frequencies,
with the exception of the last window (which includes
the fixation of the derived allele) which was found to be
slightly over-represented.
For the individual populations (refer to Additional file 1),

the most affected in terms of missing rare SNPs were the
Marans copper black (MRschk), Araucana black (ARsch)
and the wild GGsc; and the least affected were the European
fancy bantam (SBsschs, BAsch, FZgpo and ABwa) breeds,
the White Leghorn line R11 (LER11), the Asian long tailed
(TOgh and OHsh) breeds and the commercial white
layers (WL_A). In the latter, these results have shown
to be related to the genetic diversity within these breeds
(see He estimates below and the discussion thereof ).
The proportion of SNPs was 39.6% and 39.9% in genes

and was 0.044% and 0.012% in exons for array and WGS
data, respectively (see in Additional file 2: Table S1). Differ-
ences in (minor) allele frequencies (in genic and non-genic
regions) followed a similar pattern to that observed in Fig. 2
whereby rare variants were underrepresented in the array
data. The correlations between MAF proportions in genic
and non-genic regions were 0.956 and 0.999 in the array
and WGS data, respectively. The minor allele frequency of
SNPs differed very little between the genic and non-genic
regions with the array and sequence data (Additional file 3:
Figure S1). From this we concluded that the selection of
SNPs in the array was not biased based on their positions
in genic or non-genic region, although, differences between

the two sets were found to be in the exonic regions
whereby the array set had an overrepresentation of SNPs.
Within breed variation was assessed by comparing the

expected heterozygosity estimates between the two sets,
and the results for the WGS vs. Array_all, GG and
Pruned versions of array data are shown in Fig. 3. The
versions with MAF filtering barely showed any difference
and are therefore not shown. In Fig. 3, we ranked the
breeds in ascending order of the estimated He in WGS
and fitted (for each same breed) the array estimated He

to observe if it also appears in the same ranking order as
the WGS data. The red jungle fowls, which are believed
to be the ancestors of domestic chickens are expected to
carry more genetic information than found in most of
the other populations. When using the WGS data, the
highest genetic diversity was observed in the two red
jungle fowls (wild: GGsc and GGg) which was not the
case with the Array_all data. There was also considerable
random fluctuations in the ranking of the breeds in the
Array_all data. Tying up these He back to the allele fre-
quency spectra of each population, the highly affected
breeds in terms of AFS were also more affected in terms
of the He ranking (estimated with Array_all) and vice
versa for the less affected once. The He ranking of
MRschk and ARsch in the array data was very high com-
pared to the other breeds. Given the allele frequency
and He estimates, we observed that the breeds which
were least affected by ascertainment bias are mainly
those with less genetic variability. After filtering the data
for SNPs being polymophic in the wild populations
(GG) or pruning the SNPs based on LD (Pruned), the
maximum diversity in the wild populations was captured
and less fluctuations appeared in the ranking order.
In agreement with e.g. [3], (based on microsatellite data)

both the commercial brown (BL_A and BL_D) and white

Fig. 2 Allele frequency spectrum of array data (left) and WGS data (right) for 39 populations
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(WL_A) layers displayed reduced genetic diversity within
the breed (Additional file 3: Figure S2, estimated using the
data with 42 populations). The commercial white egg
layers, which emerged from a single parental origin, the
White Leghorn breed [5, 54], had very low genetic diver-
sity. The brown layers (BL_A and BL_D) with multi-
parental origins of Asian and European background had
more genetic diversity compared to white layers. Noting
that these commercial breeds were part of the discovery
panel, we investigated whether the He results behaved dif-
ferently than in other populations when using array data.
Unlike the two brown layer lines with elevated He ranking
when using any of the array data, the white layers didn’t
deviate from the WGS He ranking when using the array
data (Additional file 3: Figure S2). So this makes it difficult
to tie the effects of ascertainment bias on He estimation to
the relatedness of the breeds to the discovery panel breeds.
Furthermore, the fact that the commercial lines’ individ-
uals used in the array data are different to those used in
the WGS could also be of impact in this context.
When fitting a linear regression of the WGS-based He

values on array-based He values the slope is >2 with all
considered data sets (smallest with 2.150 for the LD pruned

data, see Table 3 and in Additional file 3: Figure S3) reflect-
ing not only a systematic overestimation of expected hetero-
zygosity from array data, but also a scale effect resulting in
an even more severe overestimation for highly heterozygous
breeds. While the underrepresentation of low MAF SNPs in
the array data compared to WGS data (cf. Fig. 2) provides a

Fig. 3 Comparisons of expected heterozygosity (He) estimates between WGS (boxplot of 100 replicates) and array (Array_all, GG and Pruned) data

Table 3 Relationship between the He estimates between WGS
and the array data sets

rs Slope

Array_all 0.956 2.233

Array_MAF5 0.957 2.321

GG 0.985a 2.770

GG_MAF5 0.984 2.790

Pruned 0.973 2.150a

Pruned_MAF5 0.974 2.340

Pruned_GG 0.983 2.675

Pruned_GG_MAF5 0.983 2.717

rs – Spearman’s rank correlation. Slope – the slope of regression line when the
He estimates of array data are regressed against those of WGS data
aNumbers in bold face represent the best value in the column. These results
are based on 39 populations
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good explanation for the observed difference in the average
He, the reason for the scale effect remains to be understood.
A comparison between the estimated pairwise FST values

of WGS and the different filtered versions of the array
data is shown in Fig. 4. The black regression line shows
the expected linear relationship between the FST of WGS
and array where the pairwise FST values estimated from
the two sets are equal. The Array_all, Array_MAF5 and
the versions filtered for being polymorphic in the Gallus
gallus populations (GG and GG_MAF5) underestimated
the FST where WGS FST was low (0.09 to <0.15) and
overestimated the FST where WGS FST was high (>0.15).
The LD pruned versions (Pruned and Pruned_MAF5) and
the LD pruned plus polymorphic to Gallus gallus popula-
tions’ (Pruned_GG and Pruned_GG_MAF5) data sets
consistently underestimated the pairwise FST values. The
regression lines for comparing WGS FST and FST esti-
mated from the LD pruned versions didn’t cross through
the expected regression line, while for versions without
LD pruning the regression lines crossed each other. The
slopes and regression coefficients (R2) of these linear rela-
tionships are presented in Table 4. The WGS vs. Pruned

data had the lowest R2 (0.887), however, with a slope
(1.027) closer to 1 compared to the rest of the other array
sets. The WGS vs. GG and GG_MAF5 had the highest R2

(0.919 for both of them) and yet the highest slope too
(1.208 and 1.209 respectively), whereas in this case a bet-
ter slope (close to 1) is preferred (it justifies the signifi-
cance of the linear relationship between the pairwise FST
values estimated from WGS and array data). A combin-
ation of filtering SNPs based on LD and retaining SNPs
that are polymorphic in the wild populations (GG) im-
proved the R2 but compromised the slope.
Table 5 shows the Frobenius (F) distances between the

distance matrices of WGS and array (on the diagonal),
and the different array sets among themselves. The mean
F distance between WGS and Pruned data was the lowest
(3.152) and highest between WGS and GG_MAF5 data
(6.700). A lower F distance means two compared distant
matrices are more similar. Therefore the pairwise distance
matrix of Pruned data is more related to the WGS than
the rest of the sets. Among the array versions, the most
distant matrices were found between the Pruned version
and the GG and GG_MAF5 versions (these GG and

Fig. 4 Regressions through the pairwise FST values between WGS and array data. Black lines represent the expected identity relationship between
the two data sets (with a slope of 1)
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GG_MAF5 versions had the highest distances to the
matrix of WGS data).
The neighbor joining trees of the WGS, Array_all,

Pruned and GG data sets are shown in Fig. 5. Four clus-
ters were identified and circled with different colors and
in Additional file 2: Table S2 shows the breeds and their
cluster affiliations. Three breeds were outside the clus-
ters and are noted in Additional file 2: Table S2 with an
n (not assigned). All the array data sets were able to cap-
ture the same clusters as the WGS data in exception of
the MAxx population which was not assigned to any
cluster when using the GG set while assigned to cluster
2 when using the other sets. Cluster 1 and 2 represent
breeds from Asian origin, with cluster 1 grouping the
normal sized breeds together and cluster 2 showing a
cluster of dwarf birds. Similarly cluster 3 and 4 repre-
sents breeds from European origin with normal sized
and dwarf birds’ clusters, respectively. From visual in-
spection, the trees shown displayed many similarities, es-
pecially the way breeds were clustered together. To
quantify the similarities statistically, we used two differ-
ent methods [49, 50] to access the topological distances
(Figs. 6 and 7) between trees of the WGS and array data
sets. Based on the Billera method, the topological dis-
tance between the WGS and the Pruned data was the

lowest (with distance of 0.027) while it was highest with
the GG_MAF5 data (with a distance of 0.052) (detailed
in Additional file 2: Table S3). For the WGS and GG
data, the distance was 0.050 and for WGS and Array_all
data it was 0.043. All the mean topological distances be-
tween WGS and the various array sets didn’t fall within
the same ranges as the distances between the 100 repli-
cates of WGS (see Fig. 6 and Additional file 2: Table S3).
Nonetheless the results show that there is a better rela-
tionship between the trees of WGS and the Pruned data
than of WGS with any of the other array versions.
Using the Penny and Hendy method, the mean dis-

tances between WGS and all the array sets fell within the
distance ranges between 100 WGS replicates (see Fig. 7
and in Additional file 2: Table S4). However, the standard
errors for the mean distances for all sets’ comparisons
were also high. The distances between the WGS and GG,
Array_all and their MAF filtered versions were much
closer to the median of the 100 replicates. These compari-
sons of the array and WGS trees based on trees’ partitions
using the Penny and Hendy method yielded closer rela-
tionships between the two data types. These distances
confirmed the visual observation whereby the trees show
a relative similar clustering of breeds (Fig. 5). Compari-
sons across the different array versions showed that

Table 5 Frobenius (F) distances between distance matrices of WGS and array data

Array_all Array_MAF5 GG GG_MAF5 Pruned Pruned_MAF5 Pruned_GG Pruned_GG_MAF5

Array_all 5.312 ± 0.001

Array_MAF5 0.591 5.889 ± 0.001

GG 1.239 0.685 6.501 ± 0.001

GG_MAF5 1.434 0.868 0.200 6.700 ± 0.001

Pruned 2.230 2.810 3.397 3.596 3.152a ± 0.001

Pruned_MAF5 1.332 1.886 2.447 2.644 0.971 4.115 ± 0.001

Pruned_GG 1.034 1.530 2.038 2.232 1.417 0.462 4.548 ± 0.002

Pruned_GG_MAF5 0.811 1.216 1.676 1.867 1.800 0.836 0.329 4.931 ± 0.002

The diagonal is a mean of the F distance between the array data set and 100 WGS replicates with the standard errors (SE)
aNumbers in bold face represent the best value in the column

Table 4 The relationship between the FST estimates of the WGS and array data

WGS

Slope R2 Regression constant Standard error (SE) Residual variance

Array_all 1.179 0.954 −0.028 0.009 0.0001

Array_MAF5 1.183 0.954 −0.027 0.010 0.0001

GG 1.197 0.959a −0.028 0.009 0.0001

GG_MAF5 1.197 0.959a −0.028 0.009 0.0001

Pruned 1.023a 0.937 −0.017 0.010 0.0001

Pruned_MAF5 1.033 0.939 −0.016 0.010 0.0001

Pruned_GG 1.055 0.940 −0.018 0.010 0.0001

Pruned _GG_MAF5 1.057 0.941 −0.017 0.010 0.0001
aNumbers in bold face represent the best value in the column. R2 – regression coefficient. These results are based on 39 populations
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Array_all is more related to the GG and both of them are
distant to the Pruned data (in Additional file 2: Table S5).
We computed the PCA to see how population struc-

tures are captured by the array data compared to the
WGS, and visualize the results in 2D and 3D plots. The

2 dimensional PCA plots showed only a very little and
hardly noticeable difference between the array sets and
the WGS data. Overall all the array versions were able to
capture almost similar structures as that of WGS in the
two-dimensional PCA. Figure 8 shows the PCA plots of

Fig. 5 Neighbour joining trees of WGS, Array_all, GG and Pruned data sets

Fig. 6 Topological distances between the NJ trees of array and 100 replicates of WGS data based on the Billera method. The boxplots reflect
distances between the 100 replicates of WGS and the blue dots are mean distance between the array set and the 100 WGS replicates

Malomane et al. BMC Genomics  (2018) 19:22 Page 11 of 16



Fig. 7 Topological distances between NJ trees of array and 100 replicates of WGS data based on the Penny and Hendy method. The boxplots
reflect distances between the 100 replicates of WGS and the blue dots are mean distance between the array set and the 100 WGS replicates

Fig. 8 Two dimensional PCA plots of WGS and array (Array_all, GG and Pruned) data
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WGS, Array_all, GG and Pruned data sets. In general,
the first PC discriminates Asian (left) from European
(right) breed types. The first two PCs accounted for
16.9, 20.2, 19.5 and 14% variation in the WGS, Array_all,
GG and Pruned data respectively. So, the amount of
variation explained by the first two PCs was overesti-
mated with Array_all and GG data, and underestimated
with Pruned data. The 3rd PC in these sets still seemed
to capture a reasonable amount of variation very close
to the same amount captured by the 2nd PC (see in
Additional file 3: Figure S4). Visually, the 3D plots
showed at least some noticeable, but still small differ-
ences in the population structuring compared to the
2D plots.

Discussion
When assessing allele frequency calling in the pooled
WGS data, high correlations were obtained between the
allele frequencies estimated with the Array_all’ data set
and pool WGS data set at each corresponding locus and
very slight differences between the allele frequency spectra,
we conclude that the estimation of allele frequencies from
pooled sequences is sufficiently reliable. When comparing
the AFS from the two datasets (not based on corresponding
loci), the array dataset severely underrepresented the rare
SNPs (Fig. 2). This confirmed the already known findings
of other studies on ascertained SNP data e.g. [9, 14, 15] and
therefore suggests a risk for an ascertainment bias in array-
based analysis of the chicken biodiversity panel.
To investigate the effects of ascertainment bias and

strategies to mitigate its effects, we performed further
genetic diversity analyses using the different filtered (LD
based pruned, SNPs polymorphic to the GGsc and GGg
populations and MAF filtering) versions of the array data
and the results were compared with that obtained from
the WGS data. LD based pruning of SNPs has been used
in several studies presumed to produce reasonable gen-
etic diversity comparisons between breeds [25, 55, 56].
The basic idea of LD based pruning is to remove
markers which are highly correlated with other markers
within a given window, leaving markers in the set with
low LD to each other. This is efficient to remove the
multicollinearity effects, which may result in overesti-
mation of effects of SNPs due to highly correlated SNPs.
For example, pairwise relatedness can be overestimated
if the SNPs are highly correlated. LD based pruning is
believed to be very effective when estimating differenti-
ation measures between populations e.g. genetic dis-
tances, inbreeding coefficient, kinships and PCA [57].
Filtering of SNPs based on being polymorphic in wild

populations not used in the SNP discovering process
was discussed as a possibility to reduce ascertainment
bias effects in the European Union project (supported
from the European Commission) “GLOBALDIV” (http://

www.globaldiv.eu/) (not published). The idea was to use
most original population within the same species or even
a closely related species for selecting markers to be used
in diversity studies in order to reduce the possible over-
estimation of diversity in the discovery panel populations.
Filtering of SNPs with less than 5% MAF is a common

practice in quality control of SNP data because of con-
cerns about lower genotyping rates, accuracy of genotype
calling or perception about statistical conclusions that
comes from analyzing such SNPs [58]. This filtering
however will have consequences, there might be sig-
nificant information behind these rare SNPs and re-
moving them might hinder the chance of discovering
such information [16].
Herrero-Medrano et al. [18] found that SNP chip data

underestimated heterozygosity (both observed and ex-
pected) compared to next generation sequencing data.
While Clark et al. [14] obtained higher heterozygosity
estimates with ascertained HapMap data, the heterozy-
gosity estimates were lowered after correcting for the
bias. In our study, using the array data led to a systematic
overestimation of the expected heterozygosity compared
to WGS data. However, array data provided a very similar
ranking of the breeds, as demonstrated by Spearman’s
rank correlations between 0.956 (for Array_all) and 0.985
(for GG, see Table 3). Pruning SNPs based on LD resulted
in a reduced overestimation of He compared to the other
filters and improved the relationship with the WGS results
slightly.
Estimating FST from the raw array data or with filter-

ing for SNPs found in the wild populations resulted in
inconsistence (i.e. underestimation of FST where WGS
FST was low and overestimation the FST where WGS FST
was high) estimates. These inconsistencies may cause
misinformed conclusions on the actual differentiation
among the populations. In a related study, ascertainment
bias has shown to result in higher FST values from ascer-
tained SNP data when compared with WGS data [6].
Albrechtsen et al. [15] observed only a small difference
in FST estimates between SNP chip and resequencing
data. But when populations were less related to the
ascertained panel, the FST estimates increased due to as-
certainment bias. They therefore concluded that the bias
is dependent on how the investigated populations are
related to the ascertainment sample. The array used in
our study was developed using several experimental and
commercial broiler and layer lines [10]. Due to the
multi-breed background of this discovery panel, it is
challenging to relate each population to all of these dis-
covery panel populations (including the ones that we
didn’t use in this study) in order to come up with a con-
clusion of whether the relatedness of these populations
to the discovery populations affect their FST estimates.
Additionally, similar to what we have observed with the
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He comparisons, the two commercial layers which we
used in our study, were also affected differently (results
not shown). This suggests that the effects of ascertain-
ment bias on FST estimation in these data sets were very
similar independent of whether the populations are
more or less related to the discovery panel populations.
The LD based pruned SNP data underestimated pair-
wise FST values between breeds, however in a consistent
manner and thus should still be preferred over the other
filtering strategies.
The clustering of populations by using both PCA and

NJ trees is less affected by ascertainment bias. Even thou
quantifiable measures such as Frobenius distances (for
comparing the distance matrices of the two data types)
and topological distances (for comparing the NJ trees)
showed that the LD pruned data versions had a better
relationship with the WGS data, the NJ trees computed
from all array sets displayed similar clusters to the one
computed with the WGS data. Ascertainment bias is ex-
pected to have limited and predictable effects on PCA.
This is according to the in-depth explanation of the
underlying processes, including migration, geographical
isolation, and admixture in interpreting PCA projections
explained by Mcvean [27]. Projections of PCA from SNP
genotype data are expected to be similar to PCA projec-
tions from WGS data unless the SNP discovery panel is
very strongly biased [27]. This expectation was proven
truthful in our study where all array data versions (even
the Array_all) were found to exhibit structures which were
visually very close to the ones obtained from WGS data.
In general, MAF filtering had very little or no effect in

all comparisons done, and when its effect was noticeable
it actually tended to worsen the results. Tabangin et al.
[58] oppose discarding low MAF SNPs with the concep-
tion that it will inflate false positives results. Our results
also discourage the MAF filtering to consequently study
diversity.
Quite a number of studies ([6, 8, 9, 11, 12, 59], among

others) on ascertainment bias in genetic studies provide a
very good background and insight on the topic. However
in most of these studies, the conclusions made on ascer-
tainment bias and its effects on genetic analysis were
based on simulated or limited real data. When investigat-
ing genome-wide genetic diversity in cattle breeds with
SNP data, Edea et al. [60] also investigated the effects of
ascertainment bias and most of our results are in agree-
ment with their findings. Furthermore we overcame the
shortfalls that were not looked into in their study (i.e. we
looked at more possible filtering options, we used WGS as
a reference standard and our results discourages the MAF
filtering). To the best of our knowledge this paper pre-
sents so far the largest study on how different filtering
strategies accounts for the effects of ascertainment bias in
diversity studies, using real SNP genotype and WGS data.

Some of our results (e.g. the only marginal difference be-
tween PCA from SNP genotype and WGS data) differ
from what was claimed based on simulated (ascertained
and non-ascertained) data (e.g. [12]).
Limitations of this study are due to the use of pooled

WGS data with a limited number of individuals (9–15
per population) and with 20X coverage only. Due to this,
low MAF SNPs may still be missed and some measures,
like observed heterozygosity and other inbreeding-related
metrics, are not available for the WGS data. Nonetheless,
the comparisons between the AFS of WGS and array data
based on corresponding loci (Fig. 1) has shown that esti-
mated rare SNPs were a bit higher in the pooled sequence
data than in array data therefore, implying a better detec-
tion of rare SNPs by sequence pooling (which are missed
by the array data). Given these limitations, the pooled
WGS data may not completely reflect all aspects of the
true diversity of the studied breeds in a comprehensive
way, but still our results allow a fair assessment of ascer-
tainment bias and potential mitigation strategies for a
number of relevant quantities.

Conclusions
Using the array genotype data as it is to study genetic
diversity of different populations without any account-
ability measure for ascertainment bias runs the risk of
getting misleading results. This study provides insights
of how the effects of ascertainment bias can be mini-
mized through appropriate SNP filtering strategies. A
variety of populations were represented in our data,
comprising both possibly close and distant to the popu-
lations in the discovery panel. The LD based pruning of
SNPs has proven to yield consistent results which are
highly comparable to those obtained from whole gen-
ome sequence data for the various populations used in
this study in all the results. So, even though it doesn’t
fully account for ascertainment bias, the effects remain
rather limited and are systematic and, by this, predict-
able. The other filtering strategies showed to be affected
differently with some of the criteria (e.g. FST values be-
tween populations) and therefore may lead to inconsist-
ent conclusions. Overall pruning of SNPs based on LD
outperformed the other filtering strategies and is recom-
mended for practical applications.
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