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Today, it is well-known that in eukaryotic cells the complex interplay of transcription

factors (TFs) bound to the DNA of promoters and enhancers is the basis for precise

and specific control of transcription. Computational methods have been developed

for the identification of potentially cooperating TFs through the co-occurrence of their

binding sites (TFBSs). One challenge of these methods is the differentiation of TFBS pairs

that are specific for a given sequence set from those that are ubiquitously appearing,

rendering the results highly dependent on the choice of a proper background set.

Here, we present an extension of our previous PC-TraFF approach that estimates

the background co-occurrence of any TF pair by preserving the (oligo-) nucleotide

composition and, thus, the core of TFBSs in the sequences of interest. Applying our

approach to a simulated data set with implanted TFBS pairs, we could successfully

identify them as sequence-set specific under a variety of conditions. When we analyzed

the gene expression data sets of five breast cancer associated subtypes, the number of

overlapping pairs could be dramatically reduced in comparison to our previous approach.

As a result, we could identify potentially cooperating transcriptional regulators that

are characteristic for each of the five breast cancer subtypes. This indicates that our

approach is able to discriminate specific potential TF cooperations against ubiquitously

occurring combinations. The results obtained with our method may help to understand

the genetic programs governing specific biological processes such as the development

of different tumor types.

Keywords: transcription factor (TF), TF cooperations, sequence-set specific TF cooperations, background

correction, TF co-occurrences

1. INTRODUCTION

Transcription factors (TFs) are a special class of cellular proteins that are essential for controlling
different genetic programs such as adaption to the environment, immune response, organogenesis
or embryonic development by regulating gene expression. The human genome encodes roughly
1500–2000 different TFs which bind to short degenerate DNAmotifs, known as transcription factor
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binding sites (TFBSs). In higher organisms, the binding of TFs
occurs in a specific combination within DNA regulatory regions
(promoters as well as distal elements, such as enhancers) to
form purposive dimers or higher order complexes to activate
or repress their target genes. Due to the fact that eukaryotic
DNA is packed in chromatin, TFs show additionally competing
or cooperative DNA binding with chromatin associated proteins
(Teif and Rippe, 2010). Besides this, based on the co-occurence
of their TFBSs TFs exert functional cooperations which play an
important role in the regulation of the different genetic programs
in mammals (Boyer et al., 2005; Hu and Gallo, 2010; Neph et al.,
2012). Today, it is well-known that the selection of cooperation
partners for TFs depends on their biological functions, e.g.,
cell cycle control, cell homeostasis, or cell differentiation in
different cell types. As a result of these properties, TFs change
their partners to specify their functions according to the cellular
context.

In the last decade, a various number of computational
methods for the identification of cooperating TFs has been
proposed (Hu et al., 2007; Van Loo and Marynen, 2009; Girgis
and Ovcharenko, 2012; Ha et al., 2012; Sun et al., 2012; Deyneko
et al., 2013; Nandi et al., 2013; Jankowski et al., 2014; Navarro
et al., 2014; Meckbach et al., 2015; Wu and Lai, 2016; Spadafore
et al., 2017). Among these methods, predicting the putative
TFBSs in the sequences under study and building a meaningful
quantification measure of the cooperation between two TFs
are two essential steps to make the predictions successful.
Based on these steps, different strategies/ideas have been used
for the identification of cooperating TF pairs such as the
TFBS co-occurrences of cooperative pairs are more often than
expected by chance and have significantly closer distances.
In this context, several methods such as statistical methods
like the hypergeometric test, clustering approaches, randomized
occurrence frequency model (OFr) or Markov models have been
developed (Hu et al., 2007; Chuang et al., 2009; Girgis and
Ovcharenko, 2012; Ha et al., 2012; Mysickova and Vingron, 2012;
Sun et al., 2012; Nandi et al., 2013; Jankowski et al., 2014; Lai et al.,
2014; Navarro et al., 2014; Spadafore et al., 2017).

Employing a comprehensive performance evaluation study on
the prediction results of those methods, Lai et al. (2014) have
shown that the success rates of different approaches strongly
depend on the corresponding evaluation criteria. This finding
is also supported by our results, which we have presented in
Meckbach et al. (2015). However, the predictions of almost
all of these methods suffer from many types of obstacles that
might occur as a result of high background like common
regulatory programs between cell types and the environmental
components in their regulatory sequences like GC content or
nucleotide composition - indicating the ratio of the constituent
monomer units/bases- as well as the noise effect of false positive
putative TFBSs. Hence, such obstacles lead into background co-
occurrence of TFBSs and consequently the results of a certain
method are often highly overlapping for different sequence sets.
Zeidler et al. (2016) have clearly demonstrated this problem in
their study for detection of stage-specific TF pairs in a time
series data set during heart development. To overcome this
problem, they have further applied Markov clustering algorithm

(MCL) (Dongen, 2000) to the pairs predicted by MatrixCatch
methodology (Deyneko et al., 2013). Although several negligible
TF cooperations could be eliminated, the application of MCL
algorithm in this context is only based on the observed
frequencies of TFBSs and does not consider the sequence specific
environmental components. Consequently, the results of this
approach seem to be conservative and not sequence set specific,
yet.

To deal with this problem to some extent, we applied in our
previous study the average product correction (APC) theorem
(Dunn et al., 2008) in order to determine for each TFBS pair their
background co-occurrence resulting from their possibly false
positive TFBS predictions in the entire sequence set under study.
Although, with respect to APC theorem, the background noise
effect of false positive TFBSs could be successfully eliminated in
the detection of significant TF pairs, the power and functionality
of APC theorem appears to be insufficient to handle the
remaining obstacles for the identification of sequence-set specific
TF cooperations. In order to overcome the missing point of
PC-TraFF workflow (Meckbach et al., 2015), we propose in this
study an efficient approach that accurately quantifies the level of
background co-occurrence of two TFBSs considering different
types of obstacles (mentioned above) in the sequences under
study. For this purpose, by preserving the (oligo-) nucleotide
composition of the sequences of interest, we create a sufficient
number of new shuffled sequence sets and based on these sets
the background co-occurrence of a TFBS pair is measured.
This process ensures that TF cooperations, which are very
sensitive regarding the context of nucleotides and the distance of
their binding sites, will become remarkable small background-
values in comparison to common (ubiquitously occurring) TF
pairs. These ubiquitously occurring TF pairs are often found as
significant for different sequence sets and are less susceptible
to the behavior of their binding sites in the set of sequences.
Consequently, removal of this background leads to the separation
of sequence set-specific TF pairs from the common ones.

To demonstrate the performance and functionality of our
proposed approach, we analyzed a simulation data set as well as
five breast cancer subtype-associated gene sets, and present the
results step by step by providing comparative analysis. These data
sets have been chosen because the importance of cooperating TF
pairs have been well-studied in Meckbach et al. (2015).

Terminology
For the sake of simplicity, we adapt the terminology of our
previous paper (Meckbach et al., 2015). In doing so, each match
of a position weight matrix (PWM) with a segment of genomic
DNA is called a (potential) transcription factor binding site
(TFBS). TFBSs are represented by names of their corresponding
PWMs. The PWMs of TRANSFAC (Wingender, 2008) used
in this report are denoted with their TRANSFAC identifiers,
the structure of which is: V$factorname_version, where “V$“
indicates that the PWM is representing a TFBS of a vertebrate TF.
factorname refers to the TF name, while there are more than one
PWM representing the bindingmotif of a certain factor, version is
required for the unambiguous identification of the PWM. TFBS
pairs refer to co-occurring TFBSs. It is important to note that we
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cannot make any statement about the kind of interaction such
co-occurrence may be associated with (cooperativity, synergistic
or antagonistic interaction etc.). The term cooperation refers to
any kind of functional cooperation and/or physical interaction
between the constituents of the predicted TFBS pairs.

2. RESULTS AND DISCUSSION

In this study, we introduce an extension of our previous
methodological approach PC-TraFF for the separation of
sequence-set specific cooperating transcription factors based
on the co-occurrence of their binding sites from common
ones. The overall workflow of our approach comprises two
parts. First, the original PC-TraFF algorithm is used in order
to predict significant TFBS pairs in a set of sequence where
PC-TraFF provides for each significant TFBS pair ta and tb a
pointwise mutual information score PMI

APC
pc (ta; tb). Thereby,

the minimal and maximal distance threshold for two TFBSs
to form a pair is set to 5 and 20 bp, respectively, in order
to provide a proper comparison to the original PC-TraFF-
results.

Second, in order to separate PC-TraFF significant TFBS
pairs into the two groups of sequence-set specific and common
(generally important) combinations, we apply our extension
approach. For this purpose, out of the sequences of interest,
a sufficiently large number of background sets is created by
shuffling the original sequences, whereby the general nucleotide
composition of the sequences as well as the core of the putative
TFBSs are maintained. For all these background sets, the
original PC-TraFF algorithm is applied to calculate PMI

APC
pc -

values between all TFBS pairs. Afterwards, using these values
the level of average background cooperation, which is defined
as AVG

(

PMI(ta; tb)
)

-value, between two TFs based on their
binding sites over all sets of background sequences is calculated.
The subtraction ofAVG (PMI)-values from their initial PMI

APC
pc -

values results in the separation of sequence-set specific pairs
from the common co-occurrences. To this end, we additionally
introduced a factor α ∈ [−1, 1] to enlarge/reduce the effect
of the subtracted background level by linearly influencing the
subtracted average value AVG

(

PMI(ta; tb)
)

. If α = 1, the 2×

AVG
(

PMI(ta; tb)
)

-value is subtracted from the initiate PMI
APC
pc -

value, α = 0 results simply in the subtraction of the observed
AVG

(

PMI(ta; tb)
)

value, while an α-value of −1 results in the
original PC-TraFF predictions. Thus, α enlarges/reduces the level
of the subtracted background and is thereby influencing the
number of identified specific pairs. However, our results suggest
that the impact of α on the number of specific pairs strongly
depends on the individual sequence sets and appears not to be
linear (e.g., see Figure 1) although the factor itself has a linear
influence on the subtracted background level.

It is important to note that the Results section of this
study mainly considers the influence of our proposed extension
approach on the cooperating TFs identified by the PC-TraFF
algorithm. Researchers, who are interested in the biological
functions of individual TF cooperations, are kindly referred to
the original PC-TraFF paper (Meckbach et al., 2015).

FIGURE 1 | Number of specific TFBS pairs for the synthetic sequence set in

dependence on different α-values. The synthetic sequence set consists of 200

sequences of length 1000 bps, each of these sequences contains artificially

inserted binding site pairs (V$IRF1_01 - V$USF_01) for the cooperation

between transcription factors IRF1 and USF1 with a minimal distance of 5 bp

and a maximal distance of 20 bp. The α-value linearly influences the

subtracted background level (e.g., α = 0 results in the subtraction of the

AVG
(

PMI(ta; tb)
)

value, α = 1 indicates the subtraction of the 2×

AVG
(

PMI(ta; tb)
)

-value) .

TABLE 1 | Total number of specific TFBS pairs for the simulation data set using

different α-values.

α-value Rank of artificially inserted pair Total number of pairs found

α = −1 18 58

α = 0 16 55

α = 0.1 15 47

α = 0.15 14 43

α = 0.2 12 40

α = 0.25 11 37

α = 0.5 6 28

α = 0.75 6 25

α = 1 5 21

The rank according to z-score indicates the position of the inserted pair. The scaling factor

α = −1 indicates the significant TFBS pairs identified by the originalPC-TraFF algorithm.

2.1. Analysis of Simulation Data
Analyzing the sequences in the simulation data set, the original
PC-TraFF algorithm identified 58 TFBS pairs as significant
(α = −1), where the artificially inserted binding site pair
of the cooperating transcription factors IRF1 and USF1 is on
position 18 according to z-score ranking. However, applying our
extension approach to the results of PC-TraFF, only three of
the 58 significant pairs were determined as common ones (see
Table 1) based on the calculated background co-occurence of
TFBSs (α = 0). This rather low number of common pairs
indicates that in a unspecific sequence set, the quantification

Frontiers in Genetics | www.frontiersin.org 3 May 2018 | Volume 9 | Article 189

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Meckbach et al. Prediction of Cooperating Transcription Factors

of correct background could be difficult which, in the worst
case, may cause that sequence-set specific cooperations cannot
be separated from common ones. To overcome this problem,
the consideration of the scaling factor α is important. Figure 1
shows the influence of α on the results. Although a variety of pairs
are eliminated by means of different scaling factors, the inserted
pair has been identified as sequence-set specific for each α-value.
Considering the z-score ranking of TFBS pairs, the position of the
inserted pair is rising with an increasing α-value (see Table 1). It
has to be noted that the inserted binding sites are also matched by
other PWMs, resulting in a variety of additional artificially arising
TFBS pairs that consequently appear to be specific for the given
sequence set.

2.2. Analysis of Breast Cancer Subtype
Associated Promoter Sequences
Applying the original PC-TraFF algorithm to each BRC-subtype
associated promoter sequences, we observed: (i) 62 TFBS pairs
for Luminal A; (ii) 63 pairs for Luminal B; (iii) 68 pairs for Basal-
like; (iv) 49 pairs for Normal-like; and (v) 62 pairs for ErbB2
over-expressing data set as significant. A comparison between
these pairs shows that there are several pairs found as significant

for more than one BRC-subtype (see Figure 2A), although the
promoter sequences in all subtypes are unique (not overlapping).
The reason of these overlapping pairs could be due to the same
origin of the data and common regulatory programs which
interfere with the identification of BRC-subtype specific TF
cooperations.

To reveal the BRC-subtype specific TF cooperations, we
additionally applied our extension approach using different α-
values to these significant pairs. The results of this analysis
indicate that the scaling factor α dramatically influences the
number of sequence-set specific TFBS pairs. For example, on
average 90% of the significant pairs have been determined as
sequence-set specific by setting α = 0, and 66% or 35% of
significant pairs are assigned as sequence-set specific by setting
α = 0.2 or α = 0.5, respectively (Figure 3). Further, Figure 3
shows that, the influence of the scaling factor α is not consistent
between the different sequence sets. While the number of specific
TFBS pairs detected for Luminal A promoter sequences is
dramatically decreasing and finally, 1% of all significant pairs
have been determined as specific, the number of specific pairs
for ErbB2 over-expressing promoter sequences has only slightly
decreased in accordance with the increment of α-value and in

FIGURE 2 | Number of significant TFBS pairs of five BRC-subtypes and their overlap represented in Venn diagrams and in matrix layouts using UpSet technique

(Conway et al., 2017). Dark circles in the matrix layout indicate subtypes that are part on the intersection. Orange lines highlight the intersection between all

BRC-subtypes. (A) Pairs identified by the original PC-TraFF version. (B) Sequence-set specific pairs determined by our extension approach using a scaling factor

α = 0.2.
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FIGURE 3 | Number of sequence-set specific pairs found in the promoter

sequences of differentially expressed genes of five BRC-subtypes depending

on the α-value. The α-value linearly influences the subtracted background level

(e.g., α = 0 results in the subtraction of the mean, α = 1 indicates the

subtraction of the 2× AVG
(

PMI(ta; tb)
)

-value).

an extreme case (α = 1) 47% of significant pairs in this subtype
are assigned as specific. In addition, Figure 2 depicts in detail for
α = 0.2 the differences between significant and specific pairs
for any BRC-subtype. By considering the sequence-set specific
pairs, it is remarkable that like in the original PC-TraFF analysis,
the Luminal A promoter sequence set has the lowest number
of unique pairs (eight), and ErbB2 over-expressing promoter
sequences have the largest number of unique TFBS pairs. The
intersection of all BRC-subtypes specific pairs is zero.

Interestingly, after applying our extension approach, there
are more sequence-set specific unique pairs for Normal-like and
Luminal B subtypes (Figure 2B) than significant unique pairs
(Figure 2A). For Normal-like data set, there are 11 significant
and 17 specific unique pairs. In particular, six pairs that were
identified in the original PC-TraFF analysis for several subtypes
are determined to be solely sequence-set specific for Normal-like
subtype. For example, the pairs (V$CEBP_02 – V$HMGIY_Q6)
and (V$ELK1_02 – V$CETS1P54_01) are significant for four
different breast cancer subtypes or the pair (V$CEBPB_02 –
V$CEBP_Q2) is significant in the originial PC-TraFF version for
three BRC-subtypes, but they are sequence-set specific only for
Normal-like subtype (for details see Table 2).

For Luminal B subtype, 13 pairs were uniquely identified
as significant by the original PC-TraFF algorithm and 17
pairs were uniquely assigned as specific. In this case, seven
pairs that were common in the original PC-TraFF analysis
have been determined to be sequence-set specific only for
Luminal B subtype. Further, three of the unique significant pairs
(V$MYB_Q5_01 – V$MAF_Q6_01, V$NFKB_Q6 – V$CP2_02,
V$HMGIY_Q6 – V$MAF_Q6_01) were assigned as common
co-occurences according their negative PMI

specific-values.

TABLE 2 | Pairs that were identified as significant by PC-TraFF algorithm

(α = −1) for different BRC-subtypes but are specific solely for a certain subtype

using an α-value of 0.2 for the background correction.

Specific for

subtype

TFBS pairs Significant in subtypes

Normal-like V$CEBPB_02 - V$HMGIY_Q6 Basal-like, Luminal A,

Luminal B, Normal-like

V$ELK1_02 - V$CETS1P54_01 Basal-like, Luminal A,

Luminal B, Normal-like

V$CEBPB_02 - V$CEBP_Q2 ErbB2 over-expressing,

Luminal B, Normal-like

V$NFKB_Q6 - V$SP1_Q4_01 Luminal A, Normal-like

V$EGR_Q6 - V$AHRHIF_Q6 Basal-like, Normal-like

V$GR_Q6_01 - V$PR_Q2 ErbB2 over-expressing,

Normal-like

Luminal B V$CETS1P54_01 - V$AHRHIF_Q6 Luminal A, Luminal B,

Normal-like

V$E2F_Q3_01 - V$PEBP_Q6 Luminal A, Luminal B

V$MYCMAX_B - V$AHRHIF_Q6 Basal-like, Luminal A,

Luminal B

V$NFKB_Q6 -V$E2F_Q3_01 Luminal A, Luminal B

V$NFKB_Q6 -V$AHRHIF_Q6 Luminal A, Luminal B

V$CETS1P54_01- V$CP2_02 Luminal A, Luminal B

V$CETS1P54_01 -V$MYCMAX_B Basal-like, Luminal A,

Luminal B, Normal-like

Besides this, there are further six pairs identified by the
original PC-TraFF algorithm as significant for all five BRC-
subtypes, but they are assigned to be specific only for some
of these subtypes (for details see Figure 2 and Table 3). For
example the TFBS pair (V$CEBPB_02 –V$STAT6_01) indicating
the cooperation between the transcription factors CEBPB and
STAT6 can still be found in the sequence-set specific pairs of
Luminal A, Luminal B and Basal-like subtypes. In contrast, the
pairs (V$MYCMAX_B – V$E2F_Q3_01) and (V$STAT6_01 –
V$HMGIY_Q6) have been determined as specific only for Basal-
like and Normal-like promoter sequence sets, respectively.

Finally, we built up cooperation networks based on the
significant TFBS pairs, where the nodes refer to TFBSs and
edges to predicted co-occurrences and thus, to cooperations
between them, in order to demonstrate in an exemplary way
the comparative analysis between the results of our extension
approach and those of the original PC-TraFF algorithm. The
cooperation network based on PC-TraFF significant TFBS pairs
for Luminal A subtype (see Figure 4) consists of 33 nodes and
62 edges. Reducing the network by only considering sequence-
set TFBS pairs results in the elimination of 7 nodes and 35 edges.
Consequently, the remaining part of the network is built up of 26
nodes with their 27 sequence-set specific cooperations (edges). It
is remarkable that some TFBSs that serve as hubs in the original
network are still hub nodes in the reduced network but show
a lower number of neighboring nodes (e.g., V$CETS1P54_01,
V$MYB_Q5_01, and V$HMGIY_Q6). On the other side, there
are some highly connected nodes of the original network that
are missing in the specific pair network. For example the degree
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TABLE 3 | TFBS pairs, which were identified as significant by original PC-TraFF algorithm for all five BRC-subtypes but were determined as specific only in certain

subtypes.

TFBS pair Specific for subtype(s) Pairs documentation

V$CETS1P54_01 - V$ETS_Q4 ErbB2 over-expressing, Luminal A BioGRID, TransCompelr

V$MYCMAX_B - V$E2F_Q3_01 Basal-like TransCompelr

V$CEBPB_02 - V$STAT6_01 Luminal A, Luminal B, Basal-like TransCompelr

V$STAT6_01 - V$HMGIY_Q6 Normal-like -

V$CETS1P54_01 - V$NFKB_Q6 Luminal A, Normal-like, Basal-like TransCompelr

V$AP1_Q2_01 - V$AP1_Q4_01 Luminal A, Luminal B, ErbB2 over-expressing BioGRID, TransCompelr

The last column indicates the databases that document the evidence for these pairs. For this purpose, we used TRANSCompelr (Kel-Margoulis et al., 2002) and BioGRID interaction

database (Chatr-aryamontri et al., 2014), which contain experimentally proven pairs.

of V$NFKB_Q6 or V$AHRIF_Q6 decreases from six neighbors
to one neighbor and V$SP1_Q4_01 is totally missing in the
network of specific pairs. The node representing the binding site
V$SMAD_Q6_01 lost just one of its neighbors in this network
and thereby, it is among the 25% nodes of highest degree.

A closer look at the cooperation network of significant TFBS
pairs identified for the Basal-like data set discloses that 43
out of 68 significant pairs have been assigned to be sequence-
set specific based on our extension approach with a scaling
factor α = 0.2 (see Figure 5A). Setting α = 0.5 for this
analysis leads to elimination of the vast majority of the pairs
and consequently 16 pairs have been determined to be specific
in the promoter sequences of Basal-like subtype (see Figure 5B).
A comparison between cooperation networks of Luminal A
and Basal-like subtypes suggests that by considering the same
scaling factor our extension approach has more influence on
significant pairs found for Luminal A data set than those found
for Basal-like data set. The reason for this finding might be
that Basal-like data set is more specific than Luminal A data
set regarding to transcriptional regulation. Thus, the level of
background co-occurrence of TFBSs resulting from common
regulatory programs seems to be remarkable higher in Luminal
A data set than those of Basal-like data set.

3. METHODS

3.1. Data Sets
In order to assess the effectiveness of our approach and to
present a detailed comparison with the results of original
PC-TraFF algorithm, we analyzed in this study the data
sets that have already been reported in Meckbach et al.
(2015). The first data set is a simulation data set consisting
of 200 sequences with the length of 1000 bps. Each of
these sequences contains artificially inserted binding site
pairs (V$IRF1_01 - V$USF_01) for the cooperation between
transcription factors IRF1 and USF1 with a minimal distance
of 5 bp and a maximal distance of 20 bp. For the two
inserted binding sites we used the consensus sequences given
by the position weight matrices V$IRF1_01 and V$USF_01,
respectively.

The second data set is a breast cancer (BRC) gene set
determined by Sorlie et al. (2003) and taken from Joshi
et al. (2012). The genes have been identified based on their

differential mRNA expression behavior in cancer cells and
are grouped according to their expression pattern into the
five molecular breast cancer-associated subtypes: Luminal A,
Luminal B, Normal-like, ErbB2 over-expressing and Basal-like
using hierarchical clustering (Sorlie et al., 2003). Our analysis
is based on the promoter sequences of the associated genes.
The number of genes as well as their corresponding promoter
sequences (−500 bp to +100 bp relative to the transcription
start site defined by Joshi et al. (2012) in each subtype are
given in Table 4. It can be seen that the BRC-subtype data
sets differ in the number of genes and consequently in the
number of promoter sequences. For example, Luminal A gene
set appears to be the largest set by consisting of 86 promoter
sequences and in turn, the set ErbB2 over-expressing is the
smallest sequence set by owning 15 promoter sequences (see
Table 4). Such differences are important and make it possible
to demonstrate the functionality of our extension approach for
different sequence-set sizes.

The Methods section of this study comprises two main parts.
First, we review our previous work PC-TraFF (Meckbach et al.,
2015) so that the readers have sufficient background information
to understand the proposed extension in the PC-TraFF workflow.
After that, we present our proposed extension approach for
the separation of sequence-set specific TF cooperations from
common (generally important) ones.

Previous Work: Introduction to PC-TraFF
PC-TraFF is an information theory based method that uses the
pointwise mutual information (PMI) for the identification of
potentially cooperating transcription factors according to their
binding site pattern in a set of sequences. The algorithm of
PC-TraFF comprises six phases and provides for each TFBS-
pair ta and tb a PMIpc(ta, tb)-value based on their distances and
frequencies in the sequences, under study.

The overall workflow of PC-TraFF can be briefly given as:

3.1.1. Phase 1: Construction and Filtering of the

TFBS-Sequence Matrix
In the first step we predict all transcription factor binding sites
(TFBSs) in a set of sequences by applying MatchTM program (Kel
et al., 2003) using the profile parameters and the position weight
matrix (PWM) library specified in Deyneko et al. (2013). The
PWMs are taken from TRANSFAC database (Wingender, 2008).
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FIGURE 4 | Cooperation network according to PC-TraFF significant TFBS pairs for Luminal A gene set. The nodes represent TFBSs identified by the indicated

PWMs. Edges represent their potential cooperation based on observed co-occurrences. After applying our extension approach: while blue edges correspond to the

sequence-set specific cooperations (α = 0.2), the common cooperations are shown by dashed lines. The nodes with light yellow color indicate TFBSs that are

involved in common TF cooperations, but not in the specific pairs.

FIGURE 5 | Cooperation network according to PC-TraFF significant TFBS pairs for Basal-like gene set. The nodes represent TFBSs identified by the indicated

PWMs. Edges represent their potential cooperation based on observed co-occurrences. After applying our extension approach: while blue edges correspond to the

sequence-set specific cooperations for (A) α = 0.2 and (B) α = 0.5, the common (generally important) cooperations are shown by dashed lines. The nodes with light

yellow color indicate TFBSs that are involved in common TF cooperations, but not in the specific pairs.

Based on the observed frequencies of TFBSs in the sequences
under study a TFBS-sequence matrix M is constructed (see
Figure 6). In M, the row-names are presented by the IDs of
the sequences and columns refer to the names of PWMs used
in MatchTM algorithm for the prediction of putative TFBSs. An

entry xi,j in M is the frequency of a putative TFBS tj (j =

1, .., n, where n is the number of PWMs) identified by PWM j
in sequence si (i = 1, ...,m, where m is the number of sequences
under study). After that, columns of M are filtered in order to
reduce the effect of highly over- or underrepresented TFBSs.
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TABLE 4 | The number of genes and promoter sequences for the

BRC-associated subtypes.

BRC subtypes Number of genes Number of promoter sequences

Luminal A 78 86

Luminal B 55 57

Normal-like 23 27

Basal-like 28 31

ErbB2 over-expressing 13 15

FIGURE 6 | TFBSs are identified for each sequence in the set (left).

Afterwards, the TFBS frequencies are stored in a TFBS-sequence matrix M

where an entry xi,j is the number of occurrences of TFBS tj in sequence si .

(TSS stands for “transcription start site”).

3.1.2. Phase 2: Identification of Important TFBSs in

Each Sequence
In order to identify important TFBSs for each sequence, we
calculate the pointwise mutual information PMI(si; tj) for each
sequence si and TFBS tj pair based on the frequencies of observed
TFBSs in each sequence.

PMI(si; tj) = log2
p(si, tj)

p(si)p(tj)
,

where p(si, tj) is the probability of a TFBS tj to occur in sequence
si. It is calculated as

p(si, tj) =
fij

∑m
i = 1

∑n
j = 1 fij

(1)

where fij is the frequency of TFBS tj in sequence si. p(si) and p(tj)
are the marginal probabilities and are calculated as

p(si) =

∑n
j=1 fij

∑m
i = 1

∑n
j = 1 fij

(2)

A TFBS tj is regarded to be important for sequence si if the
corresponding PMI(si, tj) > 0. In the following analysis steps,
for each sequence only the important TFBSs are considered.

3.1.3. Phase 3: Filter to Avoid Overlaps
Overlapping TFBSs of the same type are filtered in a way that
the TFBS survives which is closer to TSS in order to avoid the
overestimation of these repetitive binding sites (see Figure 7A)
and thereby to consider only these TFBSs that appear to be more
functional (Whitfield et al., 2012).

3.1.4. Phase 4: Construction of TFBS Pairs
TFBS pairs are identified according to the distance of their centers
(see Figure 7B). Two TFBSs can form a pair if their distance
satisfies the pre-defined minimal and maximal thresholds.

3.1.5. Phase 5: Weighted Cumulative Pointwise

Mutual Information
The weighted cumulative pointwise mutual information
PMIpc(ta; tb) of two putative TFBSs ta and tb is calculated as
follows:

PMIpc(ta; tb) =
∑

s∈S

ws · p(ta, tb) · log2
p(ta, tb)

p(ta) · p(tb)
, (3)

where p(ta, tb), p(ta) and p(tb) are the joint and marginal
probabilities of TFBSs ta and tb, respectively. Further, ws refers to
the weight of a sequence s and is calculated based on the number
of TFBS pairs Ns in s divided by the total number of TFBS pairs
in the entire set of sequences S.

ws =
Ns

∑

si∈S
Nsi

(4)

3.1.6. Phase 6: Background Noise Reduction of

TFBSs Using Average Product Correction
To this end, using the average product correction (APC) theorem
proposed by Dunn et al. (2008), the PMIpc(ta; tb) scores have
been adjusted:

PMI
APC
pc (ta; tb) = PMIpc(ta; tb)−

PMIpc(ta; tx) · PMIpc(tb; tx)

PMIpc

(5)

where PMIpc(ta; tx) is the mean PMIpc of ta to all other TFBSs in

the sequences, and PMIpc is the mean PMIpc value over all TFBS
pairs.

The resulting PMI
APC
pc values are transformed into z-scores

and only those pairs are considered to be significant that have
a z-score ≥ 3.

Separation of Sequence Set Specific TF
Cooperations From the Common Ones
According to their TFBS motifs, some TF cooperations are
noticeable sensitive to the context of nucleotides - regarding the
order and positions of nucleotides in sequences - in comparison
to common TF cooperations, which are often found as significant
for different sequence sets.

In order to separate such sequence-set specific significant
TFBS pairs from the common (general important) significant
pairs, we propose the following approach: The uShuffle algorithm
(Jiang et al., 2008) is used to shuffle the nucleotides within each
sequence by setting k-mers’ size= 3. Thereby, not only the single
nucleotide counts of each sequence are maintained but also the
triplet counts and thus, the core of TFBSs. By repeating this
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FIGURE 7 | In Phase 3 overlapping TFBSs of the same type are filtered by removing that TFBS having a larger distance to TSS (A). In Phase 4 TFBS pairs are formed

according to the distance of their centers (B).

shuffling process several times, a sufficient number of randomly
generated sequence sets (e.g., 1000) is created.

Second, employing the MatchTM algorithm for each set of
shuffled sequences, the putative binding sites of TFs in these
sequences are predicted. Third, applying PC-TraFF algorithm,
new PMIpc-values for every TFBS pair in each randomly
generated sequence set are calculated. Fourth, based on these
PMIpc-values of each pair ta and tb, we define the average
PMI-value, AVG

(

PMI(ta; tb)
)

as

AVG
(

PMI(ta; tb)
)

=
1

l

l
∑

i=1

PMI
APC
pc (ta; tb)i, (6)

where l is the number of randomly generated sequence sets.
After that, the AVG

(

PMI(ta; tb)
)

-value of binding sites ta
and tb is subtracted from their initial significant PMI

APC
pc (ta; tb)

-value as

PMI
specific(ta; tb) = PMI

APC
pc (ta; tb)−

[

(1+α)×AVG
(

PMI(ta; tb)
)

]

,

(7)
where α ∈ [−1,+1] is a preassigned real number for monitoring
the influcene of this process on the significant TFBS pairs. It can
easily be seen that α = −1 results in the original PC-TraFF
analysis. By setting α =0 the average AVG

(

PMI(ta; tb)
)

is

subtracted from the original PMI
APC
pc (ta; tb) value whereas an

α ≥ 0 leads to a stronger effect of the subtraction and
thus, a more strict selection process. However, for the proper
application of this process the determination of an upper bound

for α is crucial in order to avoid the overestimation of the
efficacy of AVG

(

PMI(ta; tb)
)

-values (background level) on the
separation of sequence-set specific pairs from common ones. By
systematically analyzing different values, we established that +1
is the most convenient upper bound for α.

A positive PMI
specific(ta; tb)-value of binding sites ta and tb

identified in the promoter sequences of a certain sequence set
suggests that the binding of the related TF pair is strongly
sequence context dependent. In contrast, a PMI

specific(ta; tb)-
value ≤ 0 indicates that the cooperations of corresponding TFs
could have a general importance for the controlling of genetic
programs.

4. CONCLUSIONS

Depending on their biological functions as well as cellular
context, TFs specify the selection of cooperation partners in
many ways for different cell types. However, the existing
algorithms often focus on the identification of all predictable
TF cooperations without distinguishing between sequence-
set specific and common, i.e., ubiquitously occurring TF
cooperations. To address this limitation, we propose in this
study an approach that extends our previous method PC-TraFF
in order to assign its predictions into two main categories:
sequence-set specific and common (generally important) ones.
For this aim, we estimated the background co-occurrence of
any TF pair by preserving the nucleotide composition and the
core of TFBS motifs in the sequences of interest. To maintain
the core of TFBS motifs, we set the k-mers’size = 3 in the
randomly shuffled new sets of sequences. It can be seen that,
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while an increase in k-mers’size could lead to increment of
background co-occurrence of TFBSs, a decrease in k-mers’size
could in turn result in the reduction of background level of
TF pairs. In order to assess the effectiveness of our extension
approach, we analyzed promoter sequences of five different
breast cancer-associated subtypes. The results show that the
cooperating pairs identified by original PC-TraFF algorithmwere
considerably overlapping between the subtypes. Applying our
extension approach, we could successfully separate sequence-
set specific pairs from common ones and thereby reducing the
number of overlapping pairs. Further, when we applied our
extension approach of the original PC-TraFF algorithm to a
simulation data set with varying α-values and, thus, different
background levels, we could demonstrate that the cooperating
TF pair was consistently identified as a sequence-set specific pair.
The scaling parameter α is useful to extend or reduce the level
of the subtracted background. Thereby, the influence of α itself
is not linear but highly depending on the sequence set and thus
on the respective background. Starting with an α-value of 0.2 we
recommend to slightly increase α in order to assess the effect of
α on the given data set and in doing so, to get the desired ratio
between sensitivity and specificity. In summary, the proposed
extension approach can successfully be applied for the distinction
of sequence-set specific TF cooperations from common ones
which are identified as generally important for different data sets.
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