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Abstract

Background: Fenofibrate (Fb) is a known treatment for elevated triglyceride (TG) levels. The Genetics of Lipid Lowering
Drugs and Diet Network (GOLDN) study was designed to investigate potential contributors to the effects of Fb on TG
levels. Here, we summarize the analyses of 8 papers whose authors had access to the GOLDN data and were grouped
together because they pursued investigations into Fb treatment responses as part of GAW20. These papers report
explorations of a variety of genetics, epigenetics, and study design questions. Data regarding treatment with 160 mg
of micronized Fb per day for 3 weeks included pretreatment and posttreatment TG and methylation levels (ML) at
approximately 450,000 epigenetic markers (cytosine-phosphate-guanine [CpG] sites). In addition, approximately 1
million single-nucleotide polymorphisms (SNPs) were genotyped or imputed in each of the study participants, drawn
from 188 pedigrees.

Results: The analyses of a variety of subsets of the GOLDN data used a number of analytic approaches such as linear
mixed models, a kernel score test, penalized regression, and artificial neural networks.

Conclusions: Results indicate that (a) CpG ML are responsive to Fb; (b) CpG ML should be included in models predicting
the TG level responses to Fb; (c) common and rare variants are associated with TG responses to Fb; (d) the interactions of
common variants and CpG ML should be included in models predicting the TG response; and (e) sample size is a critical
factor in the successful construction of predictive models representing the response to Fb.
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Background
The Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study was designed to investigate potential con-
tributors to the effects of fenofibrate (Fb) on triglyceride
(TG) levels [1]. Because of the variety of genetic, genomic,
and trait measures, the longitudinal nature of the data
encompassing a drug treatment, and the challenges
provided by the nonindependence of family members,
this rich GAW20 data set led to a broad spectrum of
analyses. In addition to the real GOLDN data, simu-
lated data provided the opportunity to formally evaluate

statistical approaches. Here we summarize the research
questions, study designs, and analytic approaches used
by the members of the Genetics of Treatment Response
group of 8 papers focused on association and prediction
analyses of treatment response. We provide a brief
summary of their findings; for a more complete under-
standing of these investigations, we suggest reading the
published manuscripts [2–9].
Fb is a treatment for elevated TG levels. There are

well-known outcomes, although individual responses are
highly heterogeneous. Binding of Fb activates peroxisome
proliferator-activated receptor-α, starting a cascade that
leads to the modulation of genes that regulate lipoprotein
metabolism and inflammation. Reduced levels of lipids
and lipoproteins, including TGs, are observed after
fasting, and even stronger effects are observed after a
fatty meal. There are also many nonlipid effects, such
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as improvements in biomarkers of inflammation. Treat-
ment is often administered to individuals with high lipid
levels when changes to diet and exercise either cannot be
followed or do not show the desired results [10]. There
are many genes involved in the variation in lipids and
inflammation, and DNA methylation may play a central
role in baseline TG levels, as well as in posttreatment TG
levels, by affecting chromatin structure and altering the
availability of coding regions in the transcription process
[11]. In the GOLDN study, treatment with micronized Fb
consisted of 160 mg per day for 3 weeks.
A number of well-established statistical approaches are

available for modeling and/or predicting the treatment
response, depending on the goals of the study. These
include full longitudinal data analysis, pretreatment and
posttreatment analysis, summary statistics, and end-point
analyses, including survival analysis. For longitudinal ana-
lyses we use full information of the course of the considered
outcome, and for the others we can use aggregated or par-
tial information. Often linear mixed models (LMMs) or
generalized estimating equations (GEEs) are incorporated to
address the correlations within the data. There are several
ways regression models can be applied to analyze pretreat-
ment and posttreatment data. Three common models
are (a) a follow-up model, (b) a change analysis, and (c)
an analysis of covariance (ANCOVA) model. They are:

Follow-up: postTG = a + b × covariates + error
Change: postTG − preTG = a + b × covariates + error
ANCOVA: postTG = a + b × covariates + c × preTG +
error

where postTG is posttreatment TG level and preTG is
pretreatment TG level. The definition of Change can be
based either on a difference or a ratio, depending on
whether a log-transformation is applied. A Percent Change
model can also be applied, where an appropriate value is
between 30 and 50%, depending on ln preTG [10]. A
binary cutoff such as 30% change, indicating that the
responders and nonresponders to treatment can also be
applied. An example of a summary analysis is provided
by Irvin et al. [12], who used these same GOLDN data
to consider the area under the curve of TG at several
points in time before and after the high-fat meal.
The focus of most of the 8 manuscripts in this group

was predicting the TG level response to Fb treatment.
There were several complexities in these data, including
the nonindependence of subjects in the pedigrees and
the large number of single-nucleotide polymorphism
(SNP) markers, genome-wide. The analytic approaches
were fairly broad, and the most common was LMM,
which tests for associations between the markers and
the trait, while adjusting for the statistical nonindepen-
dence of members of the same pedigree. An alternative

approach, the kernel score test (KST), used by Yasmeen
et al. [9] allows one to test a set of markers for overall
association with a trait, using a semiparametric procedure.
LASSO (least absolute shrinkage and selection operator)
regression used by Cherlin et al. [3] predicts the treatment
response from markers based on shrinking regression
coefficient toward zero through a penalty on the coeffi-
cients. Xia et al. [6] applied an artificial neural network
(ANN), a semiparametric modeling technique that does
not require linearity.
TG and methylation levels (ML) at approximately

450,000 epigenetic markers were measured pretreatment
and posttreatment in the study participants, allowing a
wide variety to the analyses. In addition, approximately 1
million SNPs were genotyped or imputed in each of the
study participants drawn from 188 pedigrees, permitting
the integration of clinical, genetic, and genomic data.
Each paper used the SNPs to inform their analyses, how-
ever only some used the TG data [3, 4, 6–9] or epigenetic
data [2, 5, 6, 9]. Most used the full family data, while one
paper selected independent individuals from each pedigree
[9], and another investigated the impact of approaches to
correcting for family structure [4].
Two contributions analyzed the simulated data [3, 9].

Both knew the answers prior to the analysis and both
used the suggested simulated replicate (84). The GAW20
simulated data used the same family structure, genotypes,
and pretreatment TG and ML as the real data, with post-
treatment TG levels simulated using a model with 5 causal
SNPs influencing posttreatment TG levels fully, only when
they were unmethylated. These cytosine-phosphate-gua-
nine (CpG) markers, along with another 5, increased post-
treatment TG level variability.
Although SNP and TG level data were analyzed to

identify predictors of TG level response by most of the
investigators, the inclusion of longitudinal epigenetic
and TG level data pretreatment and posttreatment pro-
vided an opportunity for interesting research questions,
along with some analytic challenges, regarding ML under
drug treatment. Research on epigenetic responses to Fb or
other drugs has not been extensive, and the GOLDN
study is exceptional in providing these longitudinal treat-
ment response data. ML are highly variable and depend
on factors such as age, smoking, treatment, and labora-
tory/batch/probe effects and cell type used. Here, they
were assayed from the CD4+ T cells extracted from whole
blood. Because of the widespread effects of lipids and
inflammation, it is hypothesized that this cell type should
be sufficient in the GOLDN study.
Beta scores, which correspond to the methylated pro-

portion of total signal from the population-specific
probe, were provided. Two different probes were used
for pretreatment and posttreatment, which had serious
implications, producing a confounding batch effect that
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presented analytic challenges for detecting Fb-responsive
CpG sites [2] and interpreting methylation quantitative
trait loci (meQTL) analyses [5]. To account for the batch
effect, Cantor et al. [2] compared the ranks of posttreat-
ment and pretreatment ML familial and variability distribu-
tions to detect those CpG sites exhibiting a likely genetic
change in response to treatment with Fb. This was followed
by a meQTL analysis of a filtered number of candidate
responsive CpG sites. Wu et al. [5] conducted a full
genome cis-meQTL analysis identifying many more
such sites, while accounting for 2 different probes.
The most common considerations of all contributions

were adjusting for family structure and use of covariates
in the analyses. LMM were used by most to adjust for
family structure [2, 5–7]. Other approaches included
principal components (PCs) [3] or GEE [6], while Yasmeen
et al. [9] included only unrelated individuals in the
analysis. Hsu et al. [4] investigated different approaches
of adjusting for family structure using kinship matrices.
In most analyses, the covariates included nongenetic
effects such as age, sex, center, smoking status, and a
variable number of PCs.
In the subsequent sections, we provide greater detail

regarding (a) the primary research questions posed by the
8 studies; (b) the analytic approaches used to investigate
them; (c) the data used in the analyses; (d) the primary
findings of each study; (e) a discussion of the factors that
help us interpret the primary findings; and (f) the conclu-
sions that can be drawn from this collective work. Greater
detail on the individual studies can be gleaned from the
original manuscripts [2–9].

Methods
GOLDN study design
The GOLDN study used a longitudinal design [13, 14]
to study the TG level response to Fb. Participants were
middle-aged, self-reported white individuals, likely to be
genetically homogenous, who were recruited through a
previous family study [12] from 2 centers in the United
States. Individuals with extreme TG measures and/or a
recent history of severe cardiovascular disease were
excluded. Participants were asked to fast and abstain from
alcohol, and not take lipid-lowering drugs for at least
4 weeks prior to the inception of the study. A high-fat
meal challenge was given twice, 3 weeks apart, during
which time Fb treatment was given to lower lipids.
Lipid levels, including TGs, were measured approxi-

mately 1 day prior to the drug intervention, with times 1
and 2 corresponding to measurements taken prior to treat-
ment and times 3 and 4 corresponding to measurements
taken after the treatment, within each pair (TG1 and TG2,
TG3 and TG4) only 1 or 2 days apart. One can assume
that TG1 and TG2 as well as TG3 and TG4 measure the
same levels, except for random variation. The 8 papers in

this group focused on treatment effects by using either T2
or T4, or the means of T1 and T2 or T3 and T4. These are
denoted as preTG and postTG, respectively. Because TG
levels have a skewed distribution, some authors used
log-transformed triglyceride (lnTG).
Genetic markers were array-based SNPs. Epigenetic

marker ML were beta-scores of CpG markers using a
methylation array, based on CD4+ T cells and measured
only at time points 2 and 4. The GAW20 simulations
used the same data, except that posttreatment TG levels
were simulated based on linear models.

Analytic approaches used in the 8 genetics of treatment
response contributions
Our Genetics of Treatment Response groups investigated
associations with and predictions of responses to Fb.
There is a marked distinction in the aims of association
and prediction analyses, although both can begin with the
same CpG ML and TG levels data in a single study sam-
ple. Association analysis tests each CpG ML to identify
those having a significant relationship with TG levels in
the population under analysis. The goal is to then use
bioinformatics and functional studies to reveal the biology
driving these associations. Prediction analysis focuses on
using the data in the study sample to develop an analytic
model composed of CpG ML in order to predict TG
levels. The ultimate goal is to use this prediction model
and CpG ML in individuals who have not had their TG
levels measured for prediction of their specific TG level.
As an example, regression models are widely used for
prediction.
Table 1 summarizes the aims of each project and the

analytic methods used, in alphabetical order of the first
named author. While most contributions concentrated
on SNPs and ML as predictors in association analyses
[2, 5–7, 9], Yang and Chen [8] used a homozygosity
intensity measure. Contributions that investigated the
association between the SNPs and the TG treatment
response used the full genome-wide data [3, 4, 6–9].
Wu et al. [5] searched for cis-meQTL around each CpG
site, genome-wide. Some did more targeted analyses.
Cantor et al. [2] tested specific CpG sites showing a
likely genetic response to treatment for meQTL. Yasmeen
et al. [9] tested TG with genomic regions chosen around
causal and noncausal CpG sites, based on the simulated
data. Xia et al. [6] tested a subset of SNPs chosen by GEEs.
Most contributions used LMMs to perform association
tests [2, 5–7], whereas Yasmeen et al. [9] applied KST
and linear regression. Prediction analyses employed
penalized regression [3] and ANNs [6] with 10-fold
cross validation. Below, we provide details regarding
the primary analytic approaches used by the 8 papers in
our group.
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Linear mixed models
LMM approaches are widely used in genetic studies of
pedigrees. This method assumes that the expected value
of a trait is a linear combination of fixed and random
effect predictors. Although genetic and covariate effects
are modeled as fixed, family effects are considered random
effects. LMM can be described as follows:

y ¼ XβT þ uþ ϵ

where y is a vector of traits; X is the SNP data coded
according to the minor allele count; β is a vector of the
regression coefficients for fixed effects; u is a vector of
random effects, u � N ð0; 2σ2

gΦÞ, in which Φ is a matrix
of pairwise kinship coefficients; and ϵ � N ð0; σ2ϵIÞ is a
vector of the residuals (I is the identity matrix). The
covariance matrix 2σ2gΦ is block-diagonal with 1 block

per family. The kinship matrix can be calculated from a
known pedigree structure, or from the genetic data when
the pedigree structure is not available. Different imple-
mentations allow the kinship matrix to be estimated
separately from the association testing, thus allowing
for the use of alternative packages for kinship matrix
estimation when performing association tests. Kinship
matrices calculated using different methods tend to differ
from each other. There is little difference, however, between
the results of the association or prediction analyses
obtained using different estimation methods [15].

Kernel score test
In KST, the trait y is expressed as:

y ¼ XβT þ h Zð Þ þ ϵ

where X is a matrix of known fixed covariates; β is a vector
of the regression coefficients; ϵ � N ð0; σ2ϵIÞ is a vector of
residuals; h(Z)=KaT is a nonparametric function that
depends on the kernel matrix K=ZZT; and a is a vector of
random effects, a~N(0, τK). The matrix Z is the matrix of

the markers, and τ is the genetic covariance component.
KST investigates whether the genetic covariance compo-
nent equals zero (ie, τ = 0) [16], which can be interpreted
as of test of whether there are aggregated genetic effects
contributing to the trait, y.

Least absolute shrinkage and selection operator
LASSO [17] is a penalized regression model.
The trait y is expressed as:

y ¼ XβT þ ϵ

where X is a matrix of known fixed covariates; β is a
vector of the regression coefficients; and ϵ � N ð0; σ2ϵIÞ
is a vector of residuals. LASSO allows shrinkage of the
estimators of the regression coefficients in a linear
model toward zero using a penalty. The estimators of
the regression coefficients β are found by minimising
the sum of the residual sum of squares and a penalty
function:

β̂o; β̂ ¼ argmin
Xn

i¼1

yi−βo−
Xp

j¼1

β jxij

 !2

þ λ‖β‖ ℓ1

" #

where λ is a regularization parameter that controls the
amount of shrinkage, and ‖β‖ ℓ1 is an ℓ1-norm penalty
which is a sum of the absolute values of the coefficients

(ie, ‖β‖ ℓ1 =
P
j¼1

p

j β j j [p is a number of markers]). One

important property of the LASSO penalty is that it
allows the coefficients to be set to exactly zero, thus
performing variable selection.

Artificial neural network
ANN is a computational model based on a collection of
nodes that are connected in layers, where the signal travels
from the input layer to the output layer, including possible
hidden layers. An ANN consists of the interconnections

Table 1 Primary aims and statistical modeling methods

First Named Author Aims of the Analysis Analytic Methods

Cantor Filter CpG sites for those exhibiting genetic contributions to ML;
targeted meQTL studies

Concordance of familiality and variability of CpG
distributional outliers, LMM

Cherlin Predicting TG response to Fb with SNPs LASSO penalized regression

Hsu Evaluating adjustments for family structure LMM

Wu Genome-wide cis-meQTL studies LMM

Xia Evaluate ML in predicting TG response to Fb ANN, GEE, and LMM

Xu Predicting TG response to Fb with SNPs LMM and KST

Yang Association between homozygosity intensity and TG response to Fb GEE

Yasmeen Predicting TG response to Fb with SNPs and CpG ML KST and linear regression

ANN Artificial neural networks, CpG Cytosine-phosphate-guanine, Fb Fenofibrate, GEE Generalized estimating equations, KST Kernel score test, LASSO Least
absolute shrinkage and selection operator, LMM Linear mixed models, meQTL Methylation quantitative trait locus, ML Methylation level, SNPs Single nucleotide
polymorphisms, TG Triglyceride levels
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between different layers of nodes, the weights of the inter-
connections, and of the activation function for converting
a node’s weighed input to its output.
Each layer of an ANN can be described by a neural

network function as follows:

f i xið Þ ¼ g
X

j

wijx j þ bj

 !

where index i represents the nodes of a layer; index j
represents input nodes; wij and bj are weights; and g is
an activation function [18]. Different layers can employ
different activation functions. In our group, Xia et al. [6]
used a 3-layer ANN with a hyperbolic tangent sigmoid
transfer function as an activation function for the hidden
layer, and a linear function as an activation function for
the output layer. Different algorithms are available for
training an ANN. For example, Xia et al. [6] used an
adaptive gradient descent with momentum as a training
method for ANN.

Study designs used in the genetics of treatment response
contributions
Table 2 summarizes the study designs employed by our
8 GAW20 contributions, in alphabetical order of the first
named author. The second column gives the outcomes
assessed for the treatment response of that study. For
example, in row 1, Cantor used the top 0.1% of the ranks
of posttreatment ML sibling correlations (sib corrs) and
SDs to select the CpG sites likely to be responsive to
treatment, followed by a meQTL analysis, while in row
2, Cherlin used the log of the posttreatment TG levels
as the predicted treatment response. The third column
indicates that both studies used SNPs as predictors,
and the fourth column indicates they used

pretreatment ML and pretreatment TG levels as baseline
measures, respectively. The next three columns indicate
whether PCs were used in the analysis, and if so, how many,
the covariates used, and how the study addressed family
structure. Most contributions adjusted for some covariates
as well as between 10 and 20 PCs for SNPs or 4 PCs for
ML, and adjusted for kinship via random effects in the
model. One contribution investigated sibling pairs to
identify likely heritable CpG ML [2], one used only in-
dependent individuals [9], and Hsu et al. [4] evaluated
the approaches for adjusting for nonindependence of
family members, including analyzing independent
individuals.

Results
The investigations we report here are focused on the
response to treatment with Fb. However, the study designs
and analytic approaches used are quite varied, and the
results are fairly broad. Table 3 presents the main results
of the studies in alphabetical order of the first named
author.

Support for CpG responses to treatment with fb
Four studies [2, 5, 6, 9] addressed the role of CpG sites
in response to Fb. Two provided support for a CpG ML
response to treatment with Fb. A third showed the im-
portance of CpG ML in predicting the TG response to Fb,
and a fourth showed that inclusion of SNP–CpG interac-
tions improves the prediction of posttreatment TG levels.
In the first study, Cantor et al. [2] addressed the very

fundamental question of whether any CpG sites are
responsive to Fb. Their study design used a novel approach
to address the confounding batch effect between pretreat-
ment and posttreatment ML. They searched for those ML
reflecting a posttreatment genetic contribution by filtering

Table 2 Design elements of studies addressing fenofibrate treatment effects

First Named
Author

Outcome Variable Genetic & Genomic
Predictors

Baseline Measures PCs Covariates Included Treatment of
Family Data

Cantor Post ML sib corrs & SDs,
meQTL

SNPs Pre ML sib corrs & SDs LMM

Cherlin Ln (postTG) SNPs Ln (preTG) 20 Age, center, smoking PCs

Hsu PreTG SNPs 4 Age, sex, center LMM Independents

Wu Ln (postML − preML) SNPs 10 Age, sex, batch, smoking LMM

Xia (PostTG − preTG)/preTG

Binary TG

PreTG 10 Age, sex, smoking, ML Empirical kinships

Xu PostTG − preTG SNPs 10 Age, center, ATP, smoking,
IDF

LMM

Yang PostTG − preTG SNPs 10 Age, sex, center, ATP,
smoking, IDF

GEE

Yasmeen Ln (postTG) ML, SNPs Ln (preTG) none Age Independents

ATP Adult Treatment Panel, IDF International Diabetes Federation, LMM linear mixed model, Ln natural logarithm, meQTL methylation quantitative trait locus, ML
Methylation levels, PCs Number of principal components; pre, pretreatment; post, posttreatment, SDs Standard deviations; sib corrs, sibling correlations, SNPs
Single-nucleotide polymorphisms, TG Triglyceride levels
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the posttreatment familiality and variability of ML distribu-
tions for outliers. Increased familiality and variability are
hallmarks of a genetic effect [19]. Two genes, ANAPC2
and KIAA1804, were selected, and both also had highly
significant meQTL, providing support for the existence
of Fb-responsive CpG sites. In the second, Wu et al. [5]
conducted a very broad genome-wide investigation of
cis-meQTL. By using LMM, they identified 229 SNPs
associated with ML changes at 610 CpG sites. Among
those, there were several consistent with what was reported
previously. The most significant, located upstream of
MGAT1, is known to be related to TG levels or lipid
accumulation [20]. Enrichment analysis using the National
Human Genome Research Institute genome-wide associ-
ation studies (GWAS) catalogue identified 6 SNPs colo-
calized with 8 previously documented disease loci. Site
cg09222892, located in gene RHCE, is associated with a
well-known lipid SNP, rs10903129, in the gene TMEM57.
These studies provide additional support for the existence
of Fb-responsive CpG sites.
In the third study, Xia et al. [6] evaluated the contribution

of ML in predicting a 30% reduction in TG levels using
stratified risk modeling and ANN. Including ML in their
models reduced the error rate by 4%, indicating that methy-
lation data contributes to prediction accuracy of the drug
response. The top predictors, rs10521308 (FTO), rs2206135
(CTNNBL1), cg13438334 (DGAT1), and cg22390041
(ALDH4A1) are located in genes known to be associated
with obesity risk. In the fourth study, Yasmeen et al. [9]
used simulated posttreatment TG levels to evaluate KST
models for identifying associated regions around 5 causal
and 5 noncausal CpG sites. Models without SNP–ML
interactions were nonsignificant; however, when these
interactions were included, significant p values were

observed. Their results support the importance of
considering the interactions of SNPs and ML when
modeling the effects of Fb on TG levels, and illustrate
that KST is appropriate for modeling treatment response
with epigenetic data.

Support for common variants in TG-level responses to fb
Two manuscripts provided support for the association of
common variants with the TG-level response to Fb. Xu
et al. [7] identify plausible SNP associations using LMM.
Their top SNP, rs964184, is associated with lipid-lowering
statin treatment [21]. Gene-based rare variant association
testing revealed 6 meeting false discovery rate criteria. In
addition, DNMT3L, which is known to regulate DNA
methylation activity and is associated with obesity [22],
was identified. Yang and Chen [8] conducted a more
complex analysis to identify SNPs associated with TG
levels. This study investigated homozygosity disequilib-
rium by identifying nonrandom patterns of homozygosity
using homozygous intensity scores, GEE, and a sliding
window. This phenomenon has been implicated in both
Mendelian and complex diseases. Three regions surround-
ing rs254239, rs7037978, and rs17704829 provide support
for the importance of MACROD2 in the response to Fb.

Analytic and study design considerations in predicting
the response to fb
Two papers focused on analytic questions regarding
sample size and correction for the nonindependence of
pedigree members. Cherlin et al. [3] explored the
predictive ability for drug response by penalized regres-
sion methods, providing evidence that a large sample
size is needed to achieve good predictions. GWAS using
LASSO regression on 680 individuals was conducted on

Table 3 Primary results for GAW20 treatment response group

First Named Author Results

Cantor Genetic screening of ML identifies ANAPC2 and KIAA1804 as Fb responsive; rs3087779 and rs1294198
are meQTL for those genes.

Cherlin LASSO regression on LD-pruned GWAS data provides low prediction power in simulated and real data;
increasing samples to 7 K provides detectable signals and reasonable prediction accuracy.

Hsu LMM is the preferable approach when adjusting for family structure.

Wu Genome-wide studies identify 229 cis-meQTL for 610 CpG sites using LMM; rs3733749 and cg00514575,
upstream of MGAT1 is strongest signal.

Xia Adding CpG ML to a neural network with SNPs and clinical traits improves prediction of TG response
to Fb by 4%.

Xu TG LMM identifies 4 significant SNPs, including rs964184 previously associated with lipid lowering statins.

Yang MACROD2 homozygosity intensity is associated with the TG response to Fb using genome-wide GEE.

Yasmeen Including CpG–SNP interactions improves a KST TG prediction model; previously reported CPT1A is
nominally replicated.

CpG Cytosine-phosphate-guanine, Fb Fenofibrate, GEE Generalized estimating equation, GWAS Genome-wide association study, KST Kernel score test, LASSO Least
absolute shrinkage and selection operator, LD Linkage disequilibrium, LMM Linear mixed models, meQTL Methylation quantitative trait locus, ML Methylation level,
SNP Single-nucleotide polymorphism, TG Triglyceride
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posttreatment TG levels in the simulated and real data with
pretreatment TG levels as the baseline, resulting in poor
prediction. An analysis of a much larger independent data
set showed a much better prediction with the same method,
suggesting that a sample size of a few thousand individuals
is needed to achieve good prediction with LASSO. In the
second paper, Hsu et al. [4] evaluated the effect of adjusting
for family structure. As expected, only analyzing unrelated
subjects, consisting of 1 representative from each family,
reduced power substantially, compared to using LMM or
treating the pedigree members as independent. These
manuscripts provide support for collecting a large sample
and using the full sample when analyzing pedigrees.

Discussion
This manuscript summarizes the aims, methods, study
designs and results of 8 GAW20 investigations that were
grouped together because they focused on the genetics
of responses to treatment with Fb and the methods to
examine it. The questions addressed and methods applied
were derived from the longitudinal TG and ML data
collected before and after Fb treatment in the GOLDN
study. SNP data permitted both targeted and genome-
wide assessments of genetic associations with TGs. ML
data on CpG sites permitted targeted and genome-wide
meQTL analyses. Genetics and genomics data on the
same individuals undergoing treatment allowed an ana-
lysis of their interactions in the prediction of response.
Analytic methods, where the number of genetic and
genomic predictors is larger than the sample size, were
applied, and findings indicate that an adequate sample
size is critical. The 8 manuscripts clearly illustrate that
correcting for the nonindependence of individuals
within pedigrees using LMM to identify SNP associations
with Fb response is straightforward, but correction when
developing more complex models is not. This suggests
that there is a need for the development of additional
methods to accommodate such data.
The variability among individuals in their responses to

drug treatment is often ignored, but as medicine moves
toward greater precision in caring for patients, this area
of investigation will grow. Currently, the complex influ-
ences on drug responses are understudied and often
unknown, although there are exceptions for those variants
exhibiting a Mendelian impact. The work summarized
here clearly indicates that the inclusion of genetics and
genomics data in a longitudinal drug treatment study is
feasible and that such study has the potential to affect the
precision of prediction.
The 8 summarized papers explore the genetic and

genomic influences on the differences in drug responses
among individuals and the appropriateness of study
design elements and analytic methods to detect them.
For example, the novelty of measuring pretreatment and

posttreatment epigenetic ML invited questions regarding
the responses of CpG sites to treatment with Fb, as well
as the predictive role of ML changes in the known TG
response to Fb. The former studies were hampered by a
batch effect between pretreatment and posttreatment
ML, and this confounding design element should
provide a note of caution to future studies. However,
these data and the analyses we report were successful
in providing support for the notion that the ML of
some CpG sites respond to Fb. Future studies can be
designed to ensure there is no confounding batch effect,
and the specific findings identified here can be studied for
replication. In addition, given an unforeseen batch effect,
a genetic approach to identify candidate CpG sites for
meQTL studies, like the one used here [2], may be
appropriate.
Study design remains an important issue for drug

response work, and a critical issue is the development of
adequate samples. As with other studies of complex
traits, effect sizes of individual SNPs and CpG sites are
likely to be small and difficult to detect. This is espe-
cially important when there is genome-wide multiple
testing of interactions, and rare variants. In addition to
sample size, the nonindependence of pedigree members
was a concern. One may posit that the number of samples
in the GOLDN pedigrees would provide more statistical
power if they were collected on independent individuals.
However, family data are likely to be more homogeneous,
which can increase statistical power. The studies reported
here corrected for the nonindependence of the pedigree
members rather than capitalizing on the genetic transmis-
sion of information among family members. Although
studying the transmission of the drug response in
pedigrees is a more attractive approach, having complete
data is unlikely because only some pedigree members take
the treatment drug.

Conclusions
Several conclusions are drawable from the 8 GAW20
manuscripts addressing responses to treatment with Fb
summarized here. Regarding genomics, we can conclude
that some CpG ML are responsive to Fb. In addition,
CpG ML should be included in models predicting the
TG responses to Fb. Regarding genetic contributions,
both common and rare variants are associated with TG
responses to Fb. Furthermore, genetics and genomics
should be combined to include the interactions of com-
mon variants and CpG ML in models predicting the TG
level response to Fb. Regarding study designs, multiple
classes of models and statistical analyses are appropriate
for these studies, and sample size is a critical factor in the
successful construction of predictive models representing
the response to Fb.
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