

Supplement of

Diffusion limitations and Michaelis–Menten kinetics as drivers of combined temperature and moisture effects on carbon fluxes of mineral soils

Fernando Esteban Moyano et al.

Correspondence to: Fernando Esteban Moyano (fmoyano@uni-goettingen.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Model M2-dif steady state equations

The equilibrium solutions to the C pools of model M2-dif are given by:

$$C_{P} = K_{D}r_{ed}z(-2gI_{ml}f_{ge}f_{ug}r_{md} + 2gI_{m}f_{ug}r_{md} - 2gI_{sl}f_{ge}r_{mr}f_{ug} - 2gI_{sl}f_{ge}f_{ug}r_{md} + 2gI_{sl}r_{mr} + 2gI_{sl}r_{md} - I_{ml}f_{ge}f_{ug}r_{ed}r_{md} + I_{ml}f_{ug}r_{ed}r_{md} - I_{sl}f_{ge}r_{mr}f_{ug}r_{ed} - I_{sl}f_{ge}f_{ug}r_{ed}r_{md} + I_{sl}r_{mr}r_{ed} + I_{sl}r_{ed}r_{md})/(gI_{ml}V_{D}f_{ge}r_{mr}f_{ug} + gI_{ml}V_{D}f_{ge}f_{ug}r_{md} + 2gI_{ml}f_{ge}f_{ug}r_{ed}r_{md} - 2gI_{ml}f_{ug}r_{ed}r_{md} + gI_{sl}r_{ed}r_{md} + gI_{sl}V_{D}f_{ge}f_{ug}r_{md} + 2gI_{sl}f_{ge}r_{mr}f_{ug}r_{ed} + 2gI_{sl}f_{ge}f_{ug}r_{ed}r_{md} - 2gI_{sl}r_{mr}r_{ed} - 2gI_{sl}r_{mr}f_{ug} + gI_{sl}V_{D}f_{ge}f_{ug}r_{md} + 2gI_{sl}f_{ge}r_{mr}f_{ug}r_{ed} + 2gI_{sl}f_{ge}f_{ug}r_{ed}r_{md} - 2gI_{sl}r_{mr}r_{ed} - 2gI_{sl}r_{mr}r_{ed} - 2gI_{sl}r_{ed}r_{md} - I_{ml}f_{ug}r_{ed}^{2}r_{md} + I_{sl}f_{ge}r_{mr}f_{ug}r_{ed}^{2} + I_{sl}f_{ge}f_{ug}r_{ed}^{2}r_{md} - I_{sl}r_{mr}r_{ed}^{2} - I_{sl}r_{ed}^{2}r_{md} - I_{ml}f_{ug}r_{ed}^{2}r_{md} + I_{sl}f_{ge}r_{mr}f_{ug}r_{ed}^{2} + I_{sl}f_{ge}f_{ug}r_{ed}^{2}r_{md} - I_{sl}r_{mr}r_{ed}^{2} - I_{sl}r_{ed}^{2}r_{md} - I_{sl}r_{ed}^{2}r_{ed}^{2}r_{md} - I_{sl}r_{ed}^{2}r_{ed}^{2}r_{md} - I_{sl}r_{ed}^{2}r_{ed}^{2}r_{md} - I_{sl}r_{ed}^{2}r_{ed}^$$

$$C_D = -z(r_{mr} + r_{md})/(gV_U f_{ug}(f_{ge} - 1))$$
(S2)

$$C_M = f_{ug}(I_{ml}f_{ge} - I_{ml} + I_{sl}f_{ge} - I_{sl}) / (f_{ge}r_{mr}f_{ug} - r_{mr} + f_{ug}r_{md} - r_{md})$$
(S3)

$$C_{ED} = -gf_{ge}f_{ug}(I_{ml}r_{mr} + I_{ml}r_{md} + I_{sl}r_{mr} + I_{sl}r_{md})/(r_{ed}(2gf_{ge}r_{mr}f_{ug} - 2gr_{mr} + 2gf_{ug}r_{md} - 2gr_{md} + f_{ge}r_{mr}f_{ug}r_{ed} - r_{mr}r_{ed} + f_{ug}r_{ed}r_{md} - r_{ed}r_{md}))$$
(S4)

$$C_{EM} = -f_{ge}f_{ug}(gI_{ml}r_{mr} + gI_{ml}r_{md} + gI_{sl}r_{mr} + gI_{sl}r_{md} + I_{ml}r_{mr}r_{ed} + I_{ml}r_{ed}r_{md} + I_{sl}r_{mr}r_{ed} + I_{sl}r_{mr}r_{ed} + I_{sl}r_{ed}r_{md})/(r_{ed}(2gf_{ge}r_{mr}f_{ug} - 2gr_{mr} + 2gf_{ug}r_{md} - 2gr_{md} + f_{ge}r_{mr}f_{ug}r_{ed} - r_{mr}r_{ed} + f_{ug}r_{ed}r_{md} - r_{ed}r_{md}))$$
(S5)

In these equations, I_{ml} and I_{sl} are metabolic and structural litter input, which represent litter additions to the C_D and C_P pools, respectively.

5

Supplementary figures

Figure S1: The relationship between respiration rates and soil moisture content shown for observations and diffusion based models with different reaction kinetics. Each plot compares the measurements with a different model. A: 11-dif, B: 22-dif, C: M1-dif, D: M2-dif, E: MM-dif, and F: Mr2-dif. The average relationship is depicted with smooth loess fits.

Figure S2: The relationship between apparent temperature sensitivities and soil moisture content shown for observations and M1dif (left), M2-dif (middle) and Mr2-dif (right).

5 Figure S3: Modelled growth respiration, maintenance respiration and decomposition against soil moisture (left plot) and soil temperature (right plot) using model M2-dif.

		-20 40		-40 0	-0	.14 -0.0	2 -	20 10	-	40 0	0	.00 0.2	0 -0.	.0020		-4 0 4	
								يببب				للبيب					4
-0.14 0.00 -40 20 -20	g_0				÷.			.		. 35			. #		2		Ē
	0.58	E_e	- ^ -	-	, 6 -7	÷.		.		مندم. م		ţ	• 🗚				
	0.11	0.053	E_m												F	4	- 02 50
	0.024	0.18	0.23	E_V	<u>ን</u>		.	K		A	×.					F	- 4
	0.15	0.25	0.48	0.21	f_CD				4			4	- 4	5		4	1 20
	-0.31	-0.083	0.049	0.24	0.03	f_CE	, h r.	A			•			,	, 4 ,		Ģ
	0.39	0.75	0.22	0.25	0.52	-0.1	f_CM				. 4	Æ	. 4		34	*	4
0 20	0.65	0.41	-0.067	-0.017	0.33	-0.26	0.41	f_ug			· 4.						
-40 20 -2	0.44	0.54	0.39	0.42	0.41	-0.16	0.66	0.63	f_ge				•			. * *	1.0
	0.58	0.58	0.061	0.42	0.15	-0.15	0.48	0.33	0.52	K_D_ref			, #	Ŧ			- -
	0.57	0.43	0.22	0.39	0.079	-0.085	0.5	0.27	0.51	0.54	n		. 4				20 44
00	0.32	0.3	0.15	0.013	0.47	-0.69	0.47	0.23	0.29	0.32	0.37	r_ed_ref		Ľ,	}		
0	0.41	0.25	0.52	0.29	0.32	-0.15	0.26	0.042	0.35	0.49	0.64	0.47	r_md_ref				110
-0.0020	-0.37	-0.092	0.069	0.33	-0.11	0.75	-0.32	-0.32	-0.097	-0.14	-0.22	-0.69	-0.072	r_mr_ref			ļ
	-0.19	0.15	0.32	0.45	0.11	0.29	0.24	-0.4	0.024	0.11	0.37	0.12	0.42	0.34	V_Dm_ref	• 5	102
4 2	0.56	0.68	0.38	0.34	0.59	-0.32	0.64	0.41	0.66	0.55	0.4	0.61	0.43	-0.31	0.03	V_U_ref]
	-20 40	-4	40 0 4	0 -0.	005		-4 2 8	8 -	2.0 0.0		-20 20	-	0.10 0.1	10	-10 0		-

Figure S4: Correlations between sensitivity functions of model parameters (from R function sensFun, package FME). Parameters resulting in 0 sensitivity (n, θ_{th}) are excluded.

Figure S5: Kernel density estimations for model 11-dif. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

5 Figure S6: Kernel density estimations for model 22-dif. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

Figure S7: Kernel density estimations for model M1-dif. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

5 Figure S8: Kernel density estimations for model M2-dif. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

Figure S9: Kernel density estimations for model MM-dif. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

5 Figure S10: Kernel density estimations for model M_r2-dif. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

Figure S11: Kernel density estimations for model M2-psi. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

5 Figure S12: Kernel density estimations for model M2-sat. Estimations are made with the 100 parameter sets resulting in the lowest model cost from 30000 (Latin Hypercube).

Supplementary tables

Symbol	Description	Units	Lower	Upper	References
E_V	Activation energy for VD_ref, VU_ref, rmr_ref, KD	kJ	30	100	(Price and Sowers, 2004; Tang and Riley, 2014; Wang et al., 2013)
fD	Initial CD fraction of SOC	kg kg ⁻¹	1.00E-05	0.001	-
f_E	Initial CEM, CED fraction of SOC	kg kg ⁻¹	1.00E-05	0.001	-
fм	Initial CM fraction of SOC	kg kg ⁻¹	0.01	0.1	-
f_{ge}	Fraction of growth going to CEM	kg kg ⁻¹	0.01	0.05	(Schimel and Weintraub, 2003)
<i>g</i> 0	Conductance for diffusion	h-1	0.1	10	(Hu and Wang, 2003; Jones et al., 2005; Manzoni et al., 2016; Vetter et al., 1998)
K _{D_ref}	Michaelis-Menten constant of decomposition Eq. (8)	kg C m ⁻³	30	300	-
K _{De_ref}	Michaelis-Menten constant of decomposition Eq. (9)	kg C m ⁻³	0.001	0.1	-
K _{U_ref}	Michaelis-Menten constant of uptake Eq. (8)	kg C m ⁻³	0.01	10	-
т	Exponent in Eq. (11)	-	1	2	(Hamamoto et al., 2010)
п	Exponent in Eq. (11)	-	1.5	2.5	(Hamamoto et al., 2010)
r _{ed_ref}	Reference rate of CEM, CED decay	h-1	0.0001	0.002	(Li et al., 2014)
r _{md_ref}	Reference rate of CM decay	h-1	0.0001	0.01	(Li et al., 2014)
r_{mr_ref}	Reference rate of maintenance respiration	h-1	1.00E-06	0.0001	(Price and Sowers, 2004)
$ heta_{th}$	Moisture threshold for diffusion	m ³ m ⁻³	0.01	0.1	(Manzoni and Katul, 2014)
а	Moisture function coefficient Eq. (21)	-	2	4	(Moyano et al., 2013)
b	Moisture function coefficient Eq. (21)	-	2	4	(Moyano et al., 2013)
V_{D1_ref}	Reference rate of decomposition Eq. (6)	h-1	1.00E-05	0.001	(Li et al., 2014)
V _{D2_ref}	Reference rate of decomposition Eq. (7)	h-1	0.001	0.1	(Li et al., 2014)
V _{Dm_ref}	Reference rate of decomposition Eq. (8)	h-1	0.1	1	(Li et al., 2014)
V_{Dmr_ref}	Reference rate of decomposition Eq. (9)	h-1	1.00E-05	0.001	(Li et al., 2014)
Vu_ref	Reference rate of carbon uptake	h-1	0.01	1	(Li et al., 2014)

Table S1: Calibrated model parameters with lower and upper bounds.

References Value Units Symbol Description (Grisi et al., 1998; Salazar-Villegas E_e Activation energy for *r_{ed_ref}* 10 kJ et al., 2016) (Grisi et al., 1998; Salazar-Villegas E_m Activation energy for *r_{md_ref}* 10 kJ et al., 2016) kg kg⁻¹ Fraction of uptake to growth (i.e. CUE) (Hagerty et al., 2014) 0.7 fug Particle density 2700 kg m⁻³ pd33 kPa Ψ_{opt} Optimal water potential Eq. (22) 15000 kPa Ψ_{th} Threshold water potential Eq. (22) R 0.0083 R gas constant _ 290 °K T_{ref} Reference temperature Eq. (20) Soil sand fraction 0.28 kg kg⁻¹ sand kg kg⁻¹ silt Soil silt fraction 0.57 Soil clay fraction 0.15 kg kg⁻¹ clay $m^3 m^{-3}$ 0.45 Soil pore space psSoil total organic carbon 0.012 kg toc Soil depth 1 z m $\Psi_{\rm sat}$ Saturation water potential 0.46 kPa _

Table S2: Fixed model parameters.

Par	11-dif	22-dif	M1-dif	M2-dif	MM-dif	M2-psi	M2-sat	Mr2-dif
E_V	49	39	99	94	98	68	94	94
fD	0.00014	2.50E-05	4.00E-05	9.10E-05	5.10E-05	0.00096	0.00018	0.001
f_E	9.20E-05	0.00021	0.00071	0.00068	0.00041	0.00057	0.00066	0.00042
fм	0.092	0.012	0.085	0.08	0.012	0.015	0.065	0.042
f_{ge}	0.048	0.018	0.041	0.034	0.018	0.031	0.031	0.033
g_0	1.1	9	5.6	0.98	8.3	-	-	0.61
K _{D_ref}	-	-	53	62	31	100	180	-
K_{De_ref}	-	-	-	-	-	-	-	0.063
K_{U_ref}	-	-	-	-	1.1	-	-	-
т	1.9	1.1	1.3	1.1	1.7	-	-	1
п	2.4	2.3	2.3	2.3	2.5	-	-	2.2
r _{ed_ref}	0.0018	0.00056	0.00038	0.00056	0.00017	0.0016	0.00064	0.00025
r_{md_ref}	0.0087	0.0096	0.0036	0.00099	0.0016	0.0093	0.008	0.00059
r _{mr_ref}	5.50E-06	9.70E-05	8.90E-05	1.50E-05	9.80E-05	9.00E-05	8.80E-05	4.80E-05
$ heta_{th}$	0.029	0.055	0.049	0.063	0.011	-	-	0.06
а	-	-	-	-	-	-	3.1	-
b	-	-	-	-	-	-	2.1	-
V _{D1_ref}	4.80E-05	-	-	-	-	-	-	-
VD2_ref	-	0.0082	-	-	-	-	-	-
V _{Dm_ref}	-	-	0.23	0.37	0.22	0.65	0.57	-
V _{Dmr_ref}	-	-	-	-	-	-	-	0.00028
V_{U_ref}	0.082	0.75	0.018	0.11	0.19	0.11	0.15	0.18

Table S3: Calibrated model parameters showing optimal values found for each model version. A missing value means the parameter was not part of the model.

References

10

Grisi, B., Grace, C., Brookes, P. C., Benedetti, A. and Dell'abate, M. T.: Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils, Soil Biol. Biochem., 30(10–11), 1309–1315, doi:10.1016/S0038-0717(98)00016-9, 1998.

5 Hagerty, S. B., van Groenigen, K. J., Allison, S. D., Hungate, B. A., Schwartz, E., Koch, G. W., Kolka, R. K. and Dijkstra, P.: Accelerated microbial turnover but constant growth efficiency with warming in soil, Nat. Clim. Change, 4(10), 903–906, doi:10.1038/nclimate2361, 2014.

Hamamoto, S., Moldrup, P., Kawamoto, K. and Komatsu, T.: Excluded-volume expansion of Archie's law for gas and solute diffusivities and electrical and thermal conductivities in variably saturated porous media, Water Resour. Res., 46(6), doi:10.1029/2009WR008424, 2010.

Hu, Q. and Wang, J.: Aqueous-phase diffusion in unsaturated geologic media: A review, Crit. Rev. Environ. Sci. Technol., 33(3), 275–297, 2003.

Jones, D. L., Healey, J. R., Willett, V. B., Farrar, J. F. and Hodge, A.: Dissolved organic nitrogen uptake by plants—an important N uptake pathway?, Soil Biol. Biochem., 37(3), 413–423, doi:10.1016/j.soilbio.2004.08.008, 2005.

15 Li, J., Wang, G., Allison, S. D., Mayes, M. A. and Luo, Y.: Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity, Biogeochemistry, 119(1–3), 67–84, doi:10.1007/s10533-013-9948-8, 2014.

Manzoni, S. and Katul, G.: Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils, Geophys. Res. Lett., 41(20), 7151–7158, doi:10.1002/2014GL061467, 2014.

20 Manzoni, S., Moyano, F., Kätterer, T. and Schimel, J.: Modeling coupled enzymatic and solute transport controls on decomposition in drying soils, Soil Biol. Biochem., 95, 275–287, doi:10.1016/j.soilbio.2016.01.006, 2016.

Moyano, F. E., Manzoni, S. and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models, Soil Biol. Biochem., 59, 72–85, doi:10.1016/j.soilbio.2013.01.002, 2013.

Price, P. B. and Sowers, T.: Temperature dependence of metabolic rates for microbial growth, maintenance, and survival, Proc.
Natl. Acad. Sci. U. S. A., 101(13), 4631–4636, 2004.

Salazar-Villegas, A., Blagodatskaya, E. and Dukes, J. S.: Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture, Front. Microbiol., 7, doi:10.3389/fmicb.2016.00524, 2016.

Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biol. Biochem., 35(4), 549–563, 2003.

30 Tang, J. and Riley, W. J.: Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions, Nat. Clim. Change, 5(1), 56–60, doi:10.1038/nclimate2438, 2014.

Vetter, Y. A., Deming, J. W., Jumars, P. A. and Krieger-Brockett, B. B.: A Predictive Model of Bacterial Foraging by Means of Freely Released Extracellular Enzymes, Microb. Ecol., 36(1), 75–92, doi:10.1007/s002489900095, 1998.

Wang, G., Post, W. M. and Mayes, M. A.: Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses, Ecol. Appl., 23(1), 255–272, 2013.