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Abstract: The exact cause of multiple sclerosis (MS) remains elusive. Various factors, however,
have been identified that increase an individual’s risk of developing this central nervous system (CNS)
demyelinating disease and are associated with an acceleration in disease severity. Besides genetic
determinants, environmental factors are now established that influence MS, which is of enormous
interest, as some of these contributing factors are relatively easy to change. In this regard, a low
vitamin D status is associated with an elevated relapse frequency and worsened disease course
in patients with MS. The most important question, however, is whether this association is causal
or related. That supplementing vitamin D in MS is of direct therapeutic benefit, is still a matter
of debate. In this manuscript, we first review the potentially immune modulating mechanisms of
vitamin D, followed by a summary of current and ongoing clinical trials intended to assess whether
vitamin D supplementation positively influences the outcome of MS. Furthermore, we provide
emerging evidence that excessive vitamin D treatment via the T cell-stimulating effect of secondary
hypercalcemia, could have negative effects in CNS demyelinating disease. This jointly merges into
the balancing concept of a therapeutic window of vitamin D in MS.
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1. Introduction

Various factors have been discovered which determine an individual’s risk of developing multiple
sclerosis (MS), a chronic demyelinating disease of the central nervous system (CNS). Earlier family
studies, as well as later molecular analyses, suggest a genetic predisposition for development of MS.
Intriguingly, the vast majority of all genetic risk factors identified to date, encode for parts of the
immune system. This supports the concept that an overwhelming (auto-)immune response leads
to CNS inflammation, demyelination and neurodegeneration in the pathogenesis and progression
of MS. Besides these risk genes, some environmental factors have been suggested to be involved in
triggering and perpetuating MS pathogenesis [1,2]. Infections, such as a symptomatic Epstein Barr
virus (EBV) at a vulnerable age [3], inhalative smoking [4] as well as lack of sun light exposure [5]
and low levels of vitamin D [6] have been reported to enhance the risk of developing MS. The latter
two factors could be interdependent, as the primary form of vitamin D, cholecalciferol (vitamin D3) is
generated in the skin upon ultraviolet (UV) radiation. Alternatively, vitamin D can be taken up with
food, such as dark fish (Figure 1). While diet is considered the minor source of vitamin D [7], it may
become essential when UVB exposure is increasingly restricted, both by active prevention, as well as
environmental changes [8–10]. Regardless of its relative contribution under physiological conditions,
vitamin D levels can be effectively and rapidly raised by diet. Accordingly, the possible association
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between vitamin D and MS, and so the intuitively easy elimination of a potential MS risk factor by
vitamin D supplementation has gained much interest over recent years.Int. J. Mol. Sci. 2018, 19, x 3 of 13 

 

 
Figure 1. Vitamin D metabolism. Vitamin D (cholecalciferol) can be obtained from dietary intake or 
by synthesis in the skin from 7-dehydroxycholesterol in response to ultraviolet (UV) light. The first 
step in vitamin D metabolism occurs in the liver, where it is hydroxylated by 25-hydroxylases 
(CYP2R1, CYP27A1 and CYP3A4) towards 25-hydroxyvitamin D (25(OH)D3). The second step in 
vitamin D metabolism takes place mainly in the kidneys, where it is hydroxylated by 1α-hydroxylase 
(CYP27B1) to the biologically most active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). 
Both 1,25(OH)2D3 and 25(OH)D3 are immune modulatory upon binding to a vitamin D receptor (VDR) 
present in the nucleus of almost all immune cells. However, 25(OH)D3 shows a 100-fold less binding 
affinity as compared to 1,25(OH)2D3. Other functions of 1,25(OH)2D3 is the regulation of intestinal 
calcium and phosphate absorption, calcium mobilization from bone and reabsorption of calcium in 
the kidney. Secondary hypercalcemia, mediated by high serum vitamin D levels, may lead to a T cell 
stimulatory effect. 

Figure 1. Vitamin D metabolism. Vitamin D (cholecalciferol) can be obtained from dietary intake or by
synthesis in the skin from 7-dehydroxycholesterol in response to ultraviolet (UV) light. The first
step in vitamin D metabolism occurs in the liver, where it is hydroxylated by 25-hydroxylases
(CYP2R1, CYP27A1 and CYP3A4) towards 25-hydroxyvitamin D (25(OH)D3). The second step in
vitamin D metabolism takes place mainly in the kidneys, where it is hydroxylated by 1α-hydroxylase
(CYP27B1) to the biologically most active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3).
Both 1,25(OH)2D3 and 25(OH)D3 are immune modulatory upon binding to a vitamin D receptor (VDR)
present in the nucleus of almost all immune cells. However, 25(OH)D3 shows a 100-fold less binding
affinity as compared to 1,25(OH)2D3. Other functions of 1,25(OH)2D3 is the regulation of intestinal
calcium and phosphate absorption, calcium mobilization from bone and reabsorption of calcium in
the kidney. Secondary hypercalcemia, mediated by high serum vitamin D levels, may lead to a T cell
stimulatory effect.



Int. J. Mol. Sci. 2019, 20, 218 3 of 13

2. Vitamin D and Multiple Sclerosis

Several aspects suggest that low levels of vitamin D could contribute to MS in a pathogenic
manner. Firstly, MS patients generally have relatively low levels of vitamin D, which further decline
throughout their disease course [11,12]. Most importantly, low serum levels of vitamin D are associated
with an enhanced risk of developing de novo MS when analyzed in a large cohort of individuals
prospectively [13]. In patients with established MS, vitamin D levels above 70 nmol/L were found
to be associated with a decreased risk of attacks [14]. In contrast, lower concentrations increased the
likelihood of both relapses and early chronic progression [15,16]. Further supporting a direct effect of
vitamin D in MS, genome-wide association studies have identified that genetic abnormalities in genes
encoding 1α-hydroxylase, the rate-limiting enzyme for the conversion of vitamin D into its active
metabolite, increased the risk of developing MS [17]. It can thus be concluded, that a higher serum
level of functional vitamin D is associated with a reduced MS risk and severity. However, a causal
protective effect and accordingly, whether therapeutically raising the vitamin D level alters disease
severity, is a matter of ongoing debate.

2.1. Vitamin D Metabolism and Direct Effects of Vitamin D Metabolites

To assess a potential clinical benefit of vitamin D in MS and other autoimmune conditions,
it is instrumental to recall the metabolism of this vitamin in humans. Vitamin D (cholecalciferol) is
a secosteroid hormone that can be obtained from dietary intake or by synthesis in the skin from
7-dehydroxycholesterol in response to UV light (Figure 1) [18–20]. In the circulation, vitamin D
binds to a specialized carrier protein, vitamin D-binding protein (DBP) and is transported to the liver,
where it is hydroxylated by 25-hydroxylases (CYP2R1, CYP27A1 and CYP3A4) to 25-hydroxyvitamin
D (25(OH)D3). 25(OH)D3 is the most abundant metabolite in the circulation, with a half-life of
20–90 days [21,22]. Primarily based on its relative stability, measurement of this metabolite is the
most accepted parameter to assess the overall vitamin D status in an individual patient. The second
step in vitamin D metabolism takes place mainly in the kidney. Here, it is hydroxylated by
1α-hydroxylase (CYP27B1) to the biologically most active form of vitamin D, 1,25-dihydroxyvitamin
D3 (1,25(OH)2D3) [19,23]. The conversion into 1,25(OH)2D3 can also be performed by several immune
cells, which also express CYP27B1, such as macrophages, monocytes, dendritic cells (DC), B cells and
T cells [24,25]. Most biologic functions of 1,25(OH)2D3 are mediated by its strong and specific binding
to a vitamin D receptor (VDR) present in the nucleus of almost all immune cells, including T cells [26],
dendritic cells [23], monocytes and macrophages [26,27], activated B cells [25], as well as neuronal
and glial cells [28–36]. 25(OH)D3 is also able to bind to VDR with a 100-fold less binding affinity as
compared to 1,25(OH)2D3 [37]. Upon binding, a chain of genomic events is triggered, resulting in
the transcriptional control of vitamin D-regulated genes [38–40]. After completion, 1,25(OH)2D3 is
catabolized by repeated oxidations, converted to calcitroic acid and then excreted [37].

Most of the studies providing insight into how 1,25(OH)2D3 modulates the immune system were
done in vitro. Monocytes cultured in the presence of 1,25(OH)2D3 showed a VDR-dependent loss
of MHCII [41,42] and a reduction in co-stimulatory molecules, such as CD40, CD80 and CD86 [43].
This resulted in a diminished capability to induce proliferation of T cells upon stimulation with tetanus
toxoid or CD40L [41,43]. Moreover, 1,25(OH)2D3 exposure to monocytes decreased the secretion of
IL-1α, IL-6, IL-12, TNF-α and IP-10 [44–47], increased the transcription levels of IL-10 RNA [42,48]
and enhanced their phagocytic function [42]. Monocytes can differentiate into immature DC in
the presence of GM-CSF and IL-4 [49,50] and can be further differentiated into mature DC upon
TNF-α, LPS, IL-1 or CD40L incubation in vitro [45,51,52]. Exposure to 1,25(OH)2D3 restored their
monocytic phenotype [52] and inhibited DC maturation [51–54]. Furthermore, differentiated mature
DCs, in the presence of 1,25(OH)2D3, showed a downregulation of CD40, CD80, CD86, as well as
MHCII. They also showed a diminished release of Th1 and Th17 cell-inducing cytokines, such as IL-12
and IL-23, while the production of IL-10 and CCL22, involved in Treg and Th2 immune responses,
was enhanced respectively [51–53]. In addition, co-culture of mature DC with T cells in the presence
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of 1,25(OH)2D3, resulted in less T cell proliferation [51,52,54]. A direct effect of 1,25(OH)2D3 on
microglial cells and antigen presenting cells (APC) within the CNS, included an inhibition of TNF-α,
IL-6 and Nitric Oxide production in vitro [55]. B cells express negligible amounts of VDR and have
been shown to be a target of 1,25(OH)2D3 after activation, due to their VDR up-regulation [56,57].
Nevertheless, exposing B cells to 1,25(OH)2D3 inhibited their proliferation [25,58,59], plasma cell
differentiation including immunoglobulin G and -M secretion, memory B cell generation and induced
B cell apoptosis in proliferating B cells [25]. T cell subsets show a high variability in their VDR
expression levels. In contrast to high VDR levels on cytotoxic CD8+ T cells, Th2-, Th17- and Treg cells,
Th1 cells exhibit moderate VDR expression, which is increased upon activation [26,60–62]. Exposing
T cells to 1,25(OH)2D3 inhibited T cell proliferation, as well as Th1- and Th17-derived cytokine
production, such as IL-2 [63–66], IFN-γ, IL-17, IL-21 and IL-22 [62,64,67–69]. However, it promoted
the release of Th2- and Treg-derived cytokines, including IL-4, IL-5 [70] and IL-10 [71–73]. Moreover,
1,25(OH)2D3 induced cell-cycle arrest and apoptosis of activated effector T cells mediated by the
Fas/FasL system or IL-2 [74–76]. Taken together, vitamin D and its metabolites clearly alter phenotype
and function of various immune cells in vitro, and exert the vast majority of these immune modulatory
properties via interaction with the VDR.

2.2. Vitamin D Supplementation Studies in MS

In light of this strong in vitro evidence, and the fact that a low vitamin D level is a negative
predictor in MS, it is intuitive to study its supplementation in MS. Unfortunately, the question whether
vitamin D exerts a therapeutic effect in established CNS demyelinating disease is much less clear
than the in vitro evidence. In part, this is likely due to the complex interaction of vitamin D and its
metabolites, not only with immune cells, but various other tissues and organs affecting regulation of
multiple hormones and homeostasis of ions (Figure 1). A direct effect of vitamin D on MS activity
is the requirement for all current efforts to therapeutically raise its level in affected patients. In the
most widely used preclinical model of MS, murine experimental autoimmune encephalomyelitis
(EAE), vitamin D indeed appeared to prevent its development [77] and to reversibly block EAE
progression [78]. This effect was associated with an impaired activation and CNS migration of
monocytes [79,80] and T cells [81], as well as an accentuation of anti-inflammatory natural killer T
cell properties [82]. In MS patients, moderate vitamin D supplementation increased the serum level
of transforming growth factor beta (TGF-β) [63] and reduced the frequency of Th17- and effector
memory T cells [83]. Empirical vitamin D supplementation studies have so far provided conflicting
results [84,85], and failed to conclusively establish such causality. For example, adding vitamin D3 to
interferon beta (IFN-β) treatment, reduced MRI activity in a small trial with relapsing-remitting MS
patients [86]. In this context, a study suggested that both components interact to modulate MS disease
activity. This is in the sense that, an elevated level of vitamin D is a pre-requisite for IFN-β to properly
function, and not necessarily a beneficial factor by itself [87]. Another study indicated that the initiation
of IFN-β treatment was associated with a significant reduction in all MRI outcomes, irrespective of
the patients’ vitamin D level. This suggests that the anti-inflammatory effect of increasing vitamin
D levels is small when compared to IFN-β treatment. Moreover, it is controversial whether genetic
variation in Wilms’ tumor gene product 1 (WT1) plays any role in regulating the relationship between
IFN-β and serum 25-hydroxyvitamin D [88,89]. Similarly, in MS patients treated with natalizumab,
supplementing vitamin D was reported to reduce the relapse rate when compared to its frequency
prior to vitamin D supplementation [90]. Interpretation of this result, however, may be hampered
by an increase in the efficacy of natalizumab itself over time [91], as the study was not controlled by
a group in which vitamin D levels remained low. In the first trial examining the safety of high oral
vitamin D treatment, 25 patients received escalating doses ranging from 4000 IU up to 40,000 IU per
day for 28 weeks. This was followed by another 28 weeks, in which the patients were down-titrated to
4000 IU per day [92]. According to the authors, high-dose vitamin D administration was well tolerated.
That being said, a follow-up study evaluating the clinical effect of high-dose vitamin D treatment in
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patients with MS, failed to show a significant clinical benefit of the high over the low-dose group [84].
In the largest interventional study thus far (SOLAR study), 229 participants were randomized to receive
either daily oral cholecalciferol (14,000 IU vitamin D3) or placebo as add-on therapy to 44-µg IFN-β.
Vitamin D supplementation significantly reduced the number of new MRI lesions in patients receiving
IFN-β. However, the ambitious primary endpoint of the study, being a change in the proportion of
patients with “no evidence of disease activity”, was not formally reached [93,94]. Larger ongoing
trials aim to determine more conclusively whether interventional vitamin D supplementation directly
alters relapse frequency or accumulating disability, independent of any respective co-medication in
MS [95,96].

In light of these heterogeneous results thus far, alternative concepts corroborating the correlation
of sunlight and MS disease activity currently arise. Exposure of the skin to sun has numerous
biological effects, with UV radiation probably exerting the greatest impact. In this regard, a recent
report highlights that higher actinic skin damage, as a result of UV exposure, is associated with
a reduction in MS inflammatory events, independent of concomitantly raised vitamin D levels [97].
Besides promoting vitamin D synthesis, UV-B is absorbed to a large extent by urocanic acid
(UCA), hereby converting from the trans-isomer to its active form cis-UCA, which conveys both
cutaneous and systemic immunosuppression [98]. Cis-UCA plasma levels were found to be lower
in RR-MS patients compared to healthy controls [99], this parallels vitamin D’s properties [100,101].
Cis-UCA in vitro reduces the pro-inflammatory antigen presenting capacity of myeloid APCs and
promotes development of Treg [99]. Enhanced Treg function and frequency is probably the most
consistent immunoregulatory effect to occur upon UV irradiation. A recent study mechanistically
dissected this concept in mice. UV-B light facilitated development of tolerogenic DC, which in return
fostered development of EAE-ameliorating Treg [102]. Most importantly, this immune-mediated
clinical effect occurred in the absence of a detectable increase in 25-(OH)D3 [103]. Together with the
parallel observation that mice with genetically disrupted vitamin D signaling are fully susceptible to
UV-mediated immunosuppression [104,105], these findings substantially question whether vitamin
D is the central metabolite in mediating the beneficial effect of UV irradiation in CNS demyelinating
disease and in explaining the association of MS with higher latitude [106].

2.3. Possible Side Effects of Secondary Hypercalcemia

As mentioned above and illustrated in Figure 1, vitamin D and its metabolites regulate multiple
hormones and homeostasis of ions. Specifically, 1,25(OH)2D3 influences the secretion of hormones such
as prolactin, parathyroid hormone (PTH), as well as insulin [37] and has complex functions in calcium
and phosphorus homeostasis. The latter includes regulation of intestinal calcium and phosphate
absorption, calcium mobilization from bone and reabsorption of calcium in the kidney [107]. Elevated
serum 1,25(OH)2D3 in humans, hereby leads to an increased uptake of calcium from the intestines,
resorption in the kidneys and may result in secondary hypercalcemia [108]. This is especially true
when combined with calcium intake [109–111].

Calcium ions (Ca2+) are essential second messengers in the human body and their widespread
roles in biology are mirrored in the immune system [112]. Engagement of several different tyrosine
and non-tyrosine kinase receptors stimulate Ca2+ influx in immune cells, including T cells, B cells
and monocytes/macrophages [113]. In T cells, antigen engagement of the T cell receptor triggers
Ca2+ release from intracellular stores in the endoplasmic reticulum (ER). This transient Ca2+ release
opens calcium-release activated channels (CRAC) in the plasma membrane. This, in conjunction with
voltage-gated calcium channels (VGCC), results in a massive influx of extracellular Ca2+ into the
cytosol followed by activation of calcineurin and nuclear import of NFATc proteins. These regulate
immune-response genes, encoding for cell proliferation, differentiation, migration and production of
cytokines [114]. Several studies suggest that extracellular calcium influx, via voltage-gated calcium
channels contributes to white matter damage in acute spinal cord injury and stroke. In experimental
autoimmune encephalomyelitis (EAE), the animal model of MS, administration of calcium channel
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blockers ameliorated disease [115], decreased microglial proinflammatory activity [116], fostered
remyelination and induced microglia-specific apoptosis [117]. Moreover, a diminished calcium activity
caused by EDTA injections showed a therapeutic effect in EAE [118]. While there is currently no
molecule to selectively interfere with calcium influx into immune cells in vivo, genetically engineered
T cells with non-functioning calcium channels completely blocked EAE by preventing development
of myelin-reactive Th1 and Th17 cells [119,120]. In this context, we recently revisited the effect of
two different doses of vitamin D in EAE [121]. We fed mice with cholecalciferol, the metabolite most
commonly supplemented in humans. We measured the serum level of 25(OH) vitamin D, which used
in humans to assess the vitamin D status after several weeks. In our three dosing groups we set
levels reflective of MS patients who are (a) vitamin D-deficient, (b) modestly supplemented and (c)
treated in MS high dose supplementation trials [92,122]. As consistently observed in other studies,
moderately substituting a low vitamin D status ameliorated EAE, which is normally associated with
a dampened development and expansion of encephalitogenic T cells. In sharp contrast, we detected
that supplementation with high doses of vitamin D exerted an activation of innate and adaptive
immune cells, associated with enhanced CNS immune infiltration and a distinctive acceleration
of EAE severity. Importantly, these mice containing vitamin D serum levels exactly mirroring the
ones in humans on high dose supplementation, showed a subtle but significant rise in their mean
serum calcium. Modelling these calcium levels in vitro revealed that T cell activation was strongly
enhanced in a culture medium with higher calcium content. Importantly, this was the case when
murine T cells were used, but even more so when human T cells were examined. Upon activation,
an enhanced calcium influx triggered proliferation and pro-inflammatory differentiation of T cells.
This corroborates a causal sequence of high dose vitamin D treatment, secondary hypercalcemia and
a promoted development of disease-driving encephalitogenic T cells.

Importantly, hypercalcemia to the extent comparable to the levels associated with deterioration of
EAE, commonly occurs in humans supplemented with high doses of vitamin D [108]. This is especially
true when combined with calcium intake [109–111]. High dose vitamin D was also reported to cause
hypercalcemia in the treatment of MS [123], which was associated with development of severely
disabling relapses as well as increased MRI activity [124]. Along the same lines, recent clinical trials
revealed enhanced immune cell activation in MS patients supplemented with 50,000 IU of vitamin D3

every five days [125]. Whereas the functionally opposite outcome occurred at moderate vitamin D
levels [83,94]. In conjunction with our pre-clinical observation, these findings may indicate that the
immunological and clinical benefit of vitamin D is reflective of immune-regulatory vitamin D receptor
signaling. However, these desirable effects are abolished by a secondary rise in the mean calcium
level when a certain dose threshold of vitamin D is exceeded. Therefore, we recommend a vitamin
D serum level between 75–125 nmol/L, as proposed by other clinicians [126]. This range of vitamin
D has been associated with low risk of developing MS and low disease activity and can be easily
reached with adequate sun exposure and vitamin D balanced diet without any additional vitamin
D supplementation.

3. Conclusions

There is little doubt that a low vitamin D status is a risk factor for development and progression
of MS. In part, this may reflect a true deficit in vitamin D itself, on the other hand, low vitamin
D levels may be indicative of a lack of sun exposure, which appears to mediate beneficial effects
independent or in addition to raising the vitamin D levels. Although, controlled supplementation
studies in patients with MS suggest that therapeutically raising vitamin D in affected patients may
positively influence the course of disease, conclusive evidence is unfortunately still lacking. Emerging
studies caution that higher dose vitamin D supplementation may have the opposite clinical effect
via secondary hypercalcemia having a T cell-stimulating effect. This novel concept of a relatively
narrow therapeutic window for vitamin D, may also shed light on the question of why clinical trials
often using higher doses of vitamin D failed or yielded conflicting results. In conclusion, vitamin D
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should be supplemented at moderate doses in a serum level-controlled manner. Patients should be
also assessed for hypercalcemia, which should be strictly avoided. In the big picture, moderate sun
exposure, combined with a diverse diet including vitamin D precursors, in conjunction with a regular
assessment of vitamin D serum levels, might be the best balanced and advisable strategy for patients
with MS.
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