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1  | INTRODUC TION

Advances in technology have led to large collections of fine‐scale 
animal biotelemetry data (Cagnacci, Boitani, Powell, & Boyce, 2010; 
Kays, Crofoot, Jetz, & Wikelski, 2015), fueling the development of 
new quantitative methods for studying animal movement (Hooten, 
Johnson, McClintock, & Morales, 2017). Nathan et al. (2008) 

introduced the movement ecology paradigm that conceptually con‐
nects different factors shaping the realized movement path of ani‐
mals (e.g., the internal state of an animal, interaction with intra‐ and 
conspecifics, and varying environmental conditions). The movement 
ecology paradigm can serve as a framework for generating new hy‐
potheses about animal movements. To test these hypotheses, effi‐
cient and straightforward tools for the management and analyses 
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Abstract
Advances in tracking technology have led to an exponential increase in animal loca‐
tion data, greatly enhancing our ability to address interesting questions in move‐
ment ecology, but also presenting new challenges related to data management and 
analysis. Step‐selection functions (SSFs) are commonly used to link environmental 
covariates to animal location data collected at fine temporal resolution. SSFs are 
estimated by comparing observed steps connecting successive animal locations to 
random steps, using a likelihood equivalent of a Cox proportional hazards model. By 
using common statistical distributions to model step length and turn angle distribu‐
tions, and including habitat‐ and movement‐related covariates (functions of dis‐
tances between points, angular deviations), it is possible to make inference regarding 
habitat selection and movement processes or to control one process while investi‐
gating the other. The fitted model can also be used to estimate utilization distribu‐
tions and mechanistic home ranges. Here, we present the R package amt (animal 
movement tools) that allows users to fit SSFs to data and to simulate space use of 
animals from fitted models. The amt package also provides tools for managing te‐
lemetry data. Using fisher (Pekania pennanti) data as a case study, we illustrate a 
four‐step approach to the analysis of animal movement data, consisting of data 
management, exploratory data analysis, fitting of models, and simulating from fitted 
models.
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of movement data are required. Although a large number of R pack‐
ages have been developed for analyzing animal movement data (e.g., 
Calabrese, Fleming, & Gurarie, 2016; Gurarie, Andrews, & Laidre, 
2009; Michelot, Langrock, & Patterson, 2016), these packages often 
utilize domain‐specific data formats and focus on a narrow subset 
of analytical methods (e.g., methods for fitting discrete or contin‐
uous time movement models or trajectory segmentation). We had 
two primary objectives in developing the amt R package, namely to 
provide: (a) a set of functions for exploratory analyses of movement 
data in R, and (b) functions for inferring habitat selection from move‐
ment data in R. For the second objective, we focus on the analy‐
sis of fine‐scale animal location data using step‐selection functions 
(SSFs), but amt also provides methods for other commonly used 
analytical approaches (e.g., home‐range analysis, resource‐selection 
functions). SSFs are powerful tools for modeling animal movement 
and habitat selection, but are not currently available in open‐source 
software packages, despite their popularity.

Methods that quantify habitat selection by linking environmen‐
tal covariates to location data of animals have been around for a 
long time. Traditionally, resource‐selection functions (RSF; Boyce & 
McDonald, 1999; Manly, McDonald, Thomas, McDonald, & Erickson, 
2007) were used to study habitat selection of animals. RSFs compare 
covariates associated with locations where the animal was observed 
with covariates associated with random locations within the avail‐
ability domain, a spatial domain within which any location is assumed 
available for the animal to use at any given time. Despite the sensi‐
tivity of the resulting inference to habitat availability (Beyer et al., 
2010), no consensus exists as to the most suitable approach to delin‐
eate the spatial domain of availability (Northrup, Hooten, Anderson, 
& Wittemyer, 2013; Paton & Matthiopoulos, 2016; Prokopenko, 
Boyce, & Avgar, 2017b). Moreover, the assumption that the availabil‐
ity domain can be considered temporally static might have been jus‐
tifiable for very coarse sampling rates (e.g., daily or weekly positions 
of the animal), but is challenging for modern GPS data with sampling 
rates <1 hr. SSFs (Fortin et al., 2005; Thurfjell, Ciuti, & Boyce, 2014) 
resolve these issues by pairing each observed location with a set of 
random locations deemed accessible from the previously observed 
location. SSFs estimate conditional selection coefficients using 
a likelihood equivalent of a Cox proportional hazards model (Gail, 
Lubin, & Rubinstein, 1981).

Until recently, SSFs were fitted by sampling random points 
based on the empirical (observed) distribution of steps (straight 
lines connecting consecutive locations). This approach has come 
under some scrutiny as it implicitly assumes habitat selection is 
conditional on animal movement but not vice versa, potentially 
leading to biased inference (Forester, Im, & Rathouz, 2009). A 
recent extension, termed integrated SSF (iSSF), alleviates this 
concern and allows for simultaneous inference of habitat se‐
lection and movement processes (Avgar, Potts, Lewis, & Boyce, 
2016). This is accomplished by requiring that random steps are 
sampled under one of several analytical distributions, and also by 
including, in addition to habitat‐related covariates, movement‐re‐
lated covariates (functions of distances between points, angular 

deviations) resulting in likelihood‐based estimates of the shape 
and scale of the underlying analytical distributions (Avgar et al., 
2016; Duchesne, Fortin, & Rivest, 2015; Forester et al., 2009). 
Unlike SSFs (that do not include an explicit movement compo‐
nent), a fitted iSSF is a fully fledged biased random walk model 
that can be used to simulate animal space‐use (Avgar et al., 2016; 
Duchesne et al., 2015; Signer, Fieberg, & Avgar, 2017). Integrated 
SSFs are attractive because one can make inferences regarding 
both habitat selection and movement processes, or to control 
for one process while investigating the other. Hence, iSSFs offer 
a flexible framework for testing complex hypotheses about ani‐
mal space‐use behavior (e.g., Prokopenko, Boyce, & Avgar, 2017a; 
Scrafford, Avgar, Heeres, & Boyce, 2018; Viana et al., 2018), while 
also providing a mechanistic predictive tool for projecting antic‐
ipated space‐use patterns across novel or modified landscapes. 
Integrated SSFs can be seen as discrete approximations to spa‐
tio‐temporal point process models (Johnson, Thomas, Ver Hoef, 
& Christ 2008; Johnson, Hooten, & Kuhn 2013; Brost, Hooten, 
Hanks, & Small 2015). Similar methods exist for continuous time 
movement models (Hanks et al., 2015; Hooten, Johnson, Hanks, & 
Lowry, 2010), but these methods typically require a discretization 
of space (rather than of time).

Step‐selection functions (SSFs and iSSFs) are usually straightfor‐
ward to fit (using any conditional logistic regression routine) once 
data are appropriately structured, but data preparation itself tends 
to be more complex and confusing and may thus become a limit‐
ing step in the application of this approach. Here, we describe the 
amt package for R, which provides a flexible and coherent workflow 
for efficient analysis of animal tracking data. We make heavy use of 
piped workflows and list columns as introduced to R through the 
tidyverse package‐family (Wickham, 2017). We illustrate a typical 
workflow for fitting a (i)SSF using fisher (Pekania pennanti) data from 
LaPoint, Gallery, Wikelski, and Kays (2013a). Detailed vignettes, 
help files, sample data and analyses are available in the amt package 
available on CRAN (https://cran.r‐project.org/package=amt).

2  | FUNC TIONALIT Y

A typical workflow to analyze animal tracking data can be divided 
into four main steps (described in detail below):

1. Data preparation, inspection, and management: Load and inspect 
gaps in the data, resample tracks if needed, and adjust coor‐
dinate reference systems.

2. Exploratory data analysis and descriptive analyses: Explore pat‐
terns in the data graphically, consider multiple movement charac‐
teristics (e.g., step‐length distribution, net square displacement, 
or home‐range size) across several animals and/or time periods.

3. Modeling: Fit models to answer questions or test hypothesis re‐
lated to movement and space use of animals.

4. Simulation: Use fitted models to simulate derived quantities (e.g., 
space use) and assess model fit.

https://cran.r-project.org/package=amt
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2.1 | Data preparation, inspection, and management

After loading data into R, users should perform a variety of data 
quality checks and possibly remove fixes with missing coordinates 
(although this information could potentially be used to test if fixes 
are missing at random). We provide functions to quantify variabil‐
ity in sampling rates over time and among individuals, inspect the 
data visually for obvious outliers (e.g., determined by screening for 
unreasonable speeds), remove periods at the beginning and the 
end of the track to exclude possible capture effects, and resample 
the data to form regular bursts (i.e., partition the track into groups 
of observations with regular sampling rates, within some specified 
level of tolerance). Regular sampling rates are required for SSFs, 
because selection is not scale invariant (Barnett & Moorcroft, 
2008; Signer et al., 2017), and thus, sampling rates should be simi‐
lar for different animals in a given study. One option to overcome 
the problem of missing fixes would be to use data imputation be‐
fore fitting (i)SSFs (McClintock, 2017), as has been suggested and 
implemented for hidden Markov models (McClintock & Michelot, 
2018).

2.2 | Exploratory data analysis and 
descriptive analyses

Once data have been cleaned, the next logical step is to explore 
the data by looking at different movement‐related statistics (e.g., 
distributions of turning angles or step lengths) and trajectory and 
space‐use summaries (e.g., net squared displacement, path sinuosity, 
home‐range area). These summaries may be calculated for the whole 
trajectory or on a subset of points (a track might be split by time of 
the day, season, year, or any other biologically meaningful factor).

2.3 | Modeling

In the next step, we fit models to test hypotheses about animal 
movement and habitat selection. Importantly, amt provides func‐
tionality necessary for data development steps prior to fitting RSFs 
and (i)SSFs (e.g., methods for generating random points or steps, 
and extract environmental covariates for the observed and random 
steps). For many other analyses (e.g., behavioral change point analy‐
ses, fitting continuous time movement models or identification of 
hidden behavioral states with hidden Markov models), amt provides 
coercion functions to translate location data into objects of classes 
required by the respective packages.

2.4 | Simulation

As a final step, new data can be simulated from fitted models. 
Simulations can be used to obtain estimates of space use (i.e., the 
utilization distribution), identify corridors of high use, asses the 
power of the model (testing how well parameters can be recovered 
as a function of sample size), or perform model validation (Fieberg 
et al., 2018). Many packages that fit models also provide methods to 

simulate from fitted models (e.g., ctmm or moveHMM). amt provides 
means to simulate space use from fitted iSSFs.

3  | C A SE STUDY

We illustrate a subset of the above steps using data from radio collared 
fishers available through movebank (LaPoint, Gallery, Wikelski, & Kays, 
2013b; LaPoint et al., 2013a). For details about the data and the cap‐
ture of the animals, we refer to Brown et al. (2012) and LaPoint et al. 
(2013a). We begin by analyzing the space use of Ricky T (id 1016), and 
then illustrate how similar analyses can be extended to several animals 
for population‐level inference (Fieberg, Matthiopoulos, Hebblewhite, 
Boyce, & Frair, 2010; Hooten, Buderman, Brost, Hanks, & Ivan, 2016).

3.1 | From data cleaning to simulated space use for 
one animal

We begin with loading the data from all fishers, remove observations 
with missing spatial coordinates (longitude, latitude), and subset re‐
locations for Ricky T (id: 1016).

The function amt::make _ track creates a track (the basic build‐
ing block of the amt package), given the names of the columns contain‐
ing x and y coordinates, time (t), and we can set a coordinate reference 
system (CRS). The original data were provided in geographical coor‐
dinates (EPSG code: 4326). Here, we shall transform this original CRS 
(using function amt::transform _ coords) to the projected North 
American Datum (NAD83, EPSG code: 5070).

We then summarize the distribution of time intervals between suc‐
cessive locations to get a general impression for the sampling rate.

We see that we have 8,957 total locations, the shortest interval be‐
tween locations is 0.1 min and the largest time interval between loca‐
tions is 1,208 min, with median interval length equal to roughly 2 min. 
Despite the 2 min temporal resolution, we choose to resample the 
track to 10 min with a tolerance of 1 min (amt::track _ resample), 
in order to conduct the analyses on the same temporal scale as the 
next example (some individuals had a median sampling rate of 10 min). 
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The function minutes from the package lubridate (Grolemund & 
Wickham, 2011), is used here to create an object of class Period that 
is then passed to amt::track _ resample. Periods can be speci‐
fied using all common time units; thus, it is straightforward to specify 
a sampling rate and an acceptable tolerance. We will also choose to 
keep only those bursts (subsets of the track with constant sampling 
rate, within the specified tolerance) with at least three relocations, 
the minimum required to calculate a turn angle (amt::filter _

min _ n _ burst). The following code implements those choices 
and translates from a point representation to a step (step length, turn 
angle) representation of the data. In the final line of the code snippet, 
we use the function amt::time _ of _ day (a wrapper around map-
tools::sunriset and maptools::crepuscule; Bivand & Lewin‐
Koh, 2017) to calculate if a location was taken during the day or night. If 
the argument include.crepuscule is set to TRUE, the function not 
only considers day and night, but also dawn and dusk.

We then use the str function to inspect the structure of stps.

stps is a regular data _ frame with 11 attributes of steps (e.g., 
start, end, and step length; columns) and 1501 steps (rows). For each 
step, the start (x1 _ , y1 _ ) and end (x2 _ , y2 _ ) coordinates, as well 
as the start and end time (t1 _ , t2 _ ) are given. In addition, the follow‐
ing derived quantities are calculated: step length (sl _ ; in CRS units), 
turning angles (ta _ ; in degrees; notice that it cannot be calculated 
for steps that are not preceded by a valid step), the time difference 
(dt _ ), and the burst (burst _ ) to which the step belongs. We pro‐
ceed by preparing the environmental data. We hypothesized that 
Ricky T prefers forested wetlands over other landuse classes. We used 
the National Landcover Database (which is freely available at https://
www.mrlc.gov/nlcd11_data.php). We first load the landuse raster and 
create a layer called wet that is 1 for forested wetlands (category 90) 
and 0 otherwise (using the raster package; Hijmans, 2017).

For convenience and readability, we give the layer a meaningful 
name.

Before proceeding to modeling space use and habitat selection of 
Ricky T, we perform some exploratory data analysis based on step length 
and turning angles in different habitat types (forested wetlands versus 
other areas) and time of the day (day and night). We will have to extract 
the covariate value at the start point of each step (using the function 
amt::extract _ covariates) and plot the density of step lengths 
per habitat class and time of day (Figure 1; for the full code to replicate 
Figure 1 see Supporting information Data S1). Note that the function 
amt::extract _ covariates takes an argument where that indi‐
cates whether covariate values should be extracted at the beginning or 
the end of a step (“both” can be used to extract the covariate at the start 
and the end of a step). Depending on the target process under investi‐
gation (habitat selection or movement), covariates might be extracted at 
the end of the step (habitat selection process) or at the start of the step 
(movement process). If covariates are extracted at the end of the step, 
they are typically included in the model as main effects, to answer ques‐
tions of the type: How do covariates influence where the animal moves? 
In contrary, if covariates are extracted at the beginning of the step, they 
are typically included in the model as an interaction with movement 
characteristics (step length, log of the step length, or the cosine of the 
turn angle), to test hypotheses of the type: Do animals move faster/more 
directed, if they start in a given habitat? Finally, covariate values at the 
start and the end of a step can also be included in the model as an inter‐
action with each other, to test hypotheses of the type: Are animals more 
likely to stay in a given habitat, if they are already in that habitat?

To fit SSFs, the observed covariates associated with observed 
steps are compared to covariates associated with random (or con‐
trol) steps. Random steps can be generated by either (a) sampling 
from the observed turn step‐length and turn angle distribution (re‐
sulting in a traditional SSF), or (b) by fitting a parametric distribution 
to the observed step lengths (either a negative‐exponential, a half‐
normal, a log‐normal, or a gamma; see Avgar et al., 2016, Appendix 2) 
and turn angles (a von Mises; Duchesne et al., 2015). As mentioned 
above, an iSSF is arguably less biased and also provides the user with 
a mechanistic movement model that can be used to simulate space 
use, and hence utilization distributions (Avgar et al., 2016; Signer 
et al., 2017). Currently, amt only implements the iSSFs with gamma 
and von Mises distributions.

Thus, we proceed by fitting a gamma distribution to the step 
lengths and a von Mises distribution to the turn angles using max‐
imum likelihood (Agostinelli & Lund, 2017; Delignette‐Muller & 
Dutang, 2015), and use these distributions to generate and pair nine 
random steps with each observed step. The number of random steps 
effects the estimation error; the more the steps, the lower the error, 
but the higher the computational burden (Avgar et al., 2016). We then 
extract the covariates at the end point of each step (observed and 
random) using the function amt::extract _ covariates, and fit 
a conditional logistic regression model to the resulting data including 
movement‐related covariates with the function amt::fit _ issf (a 
wrapper to survival::clogit; Therneau & Grambsch, 2000; see 
Supporting information Data S2 for details of the model).

We included two main effects in the model, the environmental co‐
variate wet, and the log of the step length (log _ sl _ ) as a modifier 

https://www.mrlc.gov/nlcd11_data.php
https://www.mrlc.gov/nlcd11_data.php
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of the shape parameter of the underlying gamma distribution. The es‐
timated coefficient of log _ sl _ can be used to adjust the tentative 
shape estimate (i.e., the estimate of the shape parameter using the 
observed step lengths) of the underlaying gamma distribution for the 
step lengths. We also include interactions between wet and tod _ , 
a factor with two levels—day (the reference category) and night, and 
between tod _ and log _ sl _ . These interactions are included to 
the test the hypotheses that habitat selection and displacement rate, 
respectively, differ between day and night. The target variable case _ 
is one for observed steps and zero for random (or control) steps. Each 
step is paired with several (here 9) control steps that form together 
a stratum (indicated by strat(step _ id _ ) in the model formula). 
The function amt::random _ steps automatically creates a new col‐
umn, step _ id _ , that identifies different strata.

We could have also included cosines of the turning angles and their 
interaction with day. This choice would modify the concentration pa‐
rameter of the underlying von Mises distribution for the turning angles 
and allow the degree of directional persistence to depend on time of 
day; the data summarized in Figure 1 suggest that this could be a sen‐
sible choice. For the sake of simplicity, however, we have assumed we 
have correctly modeled the degree of directional persistence and that 
it does not differ between day and night. It would be straightforward 

to perform model selection (e.g., using Akaike Information Criterion 
(AIC); Akaike, 1974) to identify the best model structure.

Inspecting the fitted model (Table 1), we make the following ob‐
servations. (a) There is evidence to suggest that the animal prefers 
forested wetlands over other landuse classes, (b) there is no differ‐
ence in Ricky's preference for wetlands between day and night, (c) 
there is evidence to modify the shape of the gamma distribution fit 
to the observed step lengths (through the log of the step length), 
and (d) the modification of the shape parameter should be done sep‐
arately for day and night, indicating that expected movement speeds 
differ between day and night.

Besides inspecting the coefficients and their standard errors, we can 
calculate derived quantities, such as the expected speed. Because we 
included an interaction between parameters of the step‐length distri‐
bution and time of the day, we have to account for this interaction when 
calculating the expected speed for day and night. We begin by retrieving 
the tentative parameter estimates (i.e., the estimated parameters before 
correcting for habitat selection; see Avgar et al. (2016) for more details) 
for the gamma distribution of the step‐length distribution:

We then adjust the shape parameter separately for day and night 
with the estimates of the corresponding coefficients from the fitted 
model (Avgar et al., 2016).

F I G U R E  1   Exploratory data analysis 
of one individual fisher, Ricky T (id: 1016): 
empirical distributions of step lengths 
(first column) and turning angles (second 
column) are shown for forested wetland 
(second row) and other habitats (first row) 
and for day and night (colors)
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The underlying gamma distributions for the step lengths vary by 
time of day (Table 1). The expected speed for day and night is thus 
given by the product of the tentative scale parameter (no adjust‐
ment is needed here, because we did not include step length in the 
model and hence assumed that the scale of the gamma distribution 
describing the step lengths remains unchanged) and the adjusted 
shape parameter. To obtain 95% confidence intervals for the mean 
speed, we bootstrapped the model m1 1,000 times by resampling 
(with replacement) the strata (for full code see Supporting informa‐
tion Data S1). Results suggest that Ricky T moves significantly faster 
during nights (11.0 m/min, 95% CI = 10.7, 11.4 m/min) than during 
days (8.57 m/min, 95% CI = 7.8, 9.32 m/min).

In a final step, we simulated space‐use from the fitted model m1 
to obtain a model‐based estimate of the animal's utilization distribu‐
tion (UD; Avgar et al., 2016; Signer et al., 2017). Generally, two types 
of UDs can be simulated: the transient UD and the steady‐state UD. 
The transient UD describes the expected space‐use distribution of 
the animal within a short time period and is hence conditional on 
the starting position. The steady‐state UD describes the expected 
space‐use distribution of the animal in the long‐term. In order to sim‐
ulate UDs, one has to ensure that the animals stay within the study 
domain. We see three possible methods for achieving this goal–all 
implemented in amt: (a) use a covariate that attracts the animal to‐
ward one or more centers of activity (e.g., the squared distance to 
the mean of all coordinates), (b) use a very large landscape, or (c) use 
a wrapped landscape (torus). Here, we illustrate the simulation of 
steady‐state and transient UDs. For the steady‐state UD, we simu‐
late from the first observed location 107 time steps on a toroid land‐
scape, once for day and once for night. For the transient UD, we are 
interested in the UD up to 10 hr after last observation, we therefore 
simulated 72 steps (at a 10 min sampling rate) 5 × 103 times.

We describe the simulation for the steady‐state and transient 
UD for daytime. First, we create a movement kernel (Figure 2a) that 
is used to determine the animal's movement ability at each time step. 
Note, we use the tentative scale estimate and the shape estimate 
adjusted for day.

Next, we create a habitat kernel (that is for each pixel we calculate 
the estimated selection coefficients times the resources and exponen‐
tiate the product; Figure 2b).

We then estimate the steady‐state UD (Figure 2c and e) with the 
function simulate _ ud:

In order to simulate the transient UD (Figure 2c and e), we have 
to repeatedly simulate short tracks starting at the same point, and 
then sum individual UDs and normalize, which we do with the func‐
tion amt::simulate _ tud.

All simulations took <1 min on a standard laptop.

3.2 | Many animals: quantifying population‐
level effects

We start again with the same data set (dat), containing data from 
six individual fishers. This time we are interested in quantifying 
among‐animal variability in the selection coefficients. We proceed 
using nearly all the same steps as in the first example, but with a 
different data structure: data _ frames with list columns (Müller 
& Wickham, 2018). List columns are best thought of as regular 
columns of a data _ frame that are R lists and can contain any 
objects (in our case tracks and fitted models). The purrr::nest 
command can be used to nest data into a list column (Henry & 
Wickham, 2017).

dat _ all is now a data _ frame with 6 rows (one for each in‐
dividual) and two columns. In the first column the animal id is given, 
and in the second column (by default named data) the relocations of 
the corresponding animal are saved. We start by assigning the sex 
of each animal.

We can now apply the steps as before for all animals. We first cre‐
ate a track for each animal and transform the coordinate reference sys‐
tem using the function amt::transform _ coords.

coef exp(coef) SE(coef) z Pr(>|z|)

wet 0.9765 2.6552 0.2672 3.6551 0.0003

log_sl_ −0.2775 0.7577 0.0600 −4.6259 0.0000

wet:tod_end_night −0.3656 0.6938 0.2831 −1.2914 0.1966

log_sl_:tod_end_night 0.3529 1.4231 0.0655 5.3839 0.0000

TA B L E  1   Coefficients of fitted 
integrated step‐selection function
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F I G U R E  2   Simulated utilization distributions. To obtain simulated Utilization Distributions (UD), a movement kernel (panel a) and a 
habitat kernel (panel b) are needed. The movement kernel is always placed at the current position of the animal. The next step of the animal 
is then sampled with probability proportional to the product of two kernels. Expected differences in movement speeds between night and 
day are reflected in the transient UD (panels c and e) and to a lesser extend in steady‐state UD (panels d and f). Note, for better visualization, 
fills were log10 transformed for panels a, c, and e

−250

0

250

−250 0 250
x

y

Movement kernel (night)

2,412,000

2,413,000

2,414,000

1,778,000 1,779,000 1,780,000 1,781,000

x

y 

Transient UD (day)

2,412,000

2,413,000

2,414,000

1,778,000 1,779,000 1,780,000 1,781,000

x

y

Transient UD (night)

(a)

(c)

(e)

2,411,000

2,412,000

2,413,000

2,414,000

1,776,000 1,778,000 1,780,000 1,782,000

x

y

Steady state UD (night)(f)

2,411,000

2,412,000

2,413,000

2,414,000

1,776,000 1,778,000 1,780,000 1,782,000

x

y

Habitat kernel (night)(b)

2,411,000

2,412,000

2,413,000

2,414,000

1,776,000 1,778,000 1,780,000 1,782,000

x

y

Steady state UD (day)(d)



     |  887SIGNER Et al.

Next, we prepare again the landuse data. This time we reclassify 
the landuse raster (using raster::reclassify) into five categories: 
water and wetland forests, developed open spaces, other developed 
areas, forests and shrubs, and crops.

We again first inspect the sampling rate of the six individuals:

This time we see that some individuals have a 2 min sample rate 
and others a 10 min one. Thus, we decided to resample the tracks to 
the same sampling rate of 10 min (noting that (i)SSF inference is scale 
dependent; Signer et al., 2017) using amt::track _ resample. We 
then filter again bursts, keeping only those with at least three points 
(filter _ min _ n _ burst), convert from a point to a step repre‐
sentation of the tracks (amt::steps _ by _ burst) and generate 
nine random steps for each observed step (amt::random _ steps), 
extract the environmental covariates (amt::extract _ covari-

ates), convert landuse to a factor (mutate), and fit a SSF (amt::fit _

issf). The main difference to the previous example here, is that the 
all the steps from above are wrapped into one mutate call. This call 
creates a new column to dat _ all called ssf. This is a list column and 
each entry in this column contains a fitted SSF.

m1 is still a data _ frame with one new column: ssf that is again 
a list column with a fitted SSF. From here, it is easy to investigate co‐
efficients for several animals and look at population‐level effects. The 
results suggest that there are some general population‐level trends 
(Figure 3). All fishers seem to prefer wetland forests and natural areas 
relative to developed areas (of either type), whereas considerable 
among‐animal variability in the coefficients for crops makes it difficult 
to draw firm conclusions about this landuse type. Lastly, there seems 
to be little differentiation based on sex (Figure 3, code provided in 
Supporting information Data S1).

4  | DISCUSSION AND OUTLOOK

We have illustrated how amt can be used to fit SSFs and explore tem‐
poral movement and habitat selection patterns at the individual and 
population levels. We demonstrated how an iSSF, fit to a single fisher, 
can be used to simulate utilization distributions (UDs; Signer et al., 
2017). The UD map (Figure 2) can be thought of as a stochastic ap‐
proximation of a mechanistic home‐range model (Moorcroft & Lewis, 
2013). Whereas traditional home‐range estimators offer static sum‐
maries of space‐use patterns, mechanistic home‐range estimators can 
provide insights into the movement and habitat selection processes 
that give rise to these patterns. In our model, we included an inter‐
action between parameters of the movement model and time of the 

F I G U R E  3   Point estimates with 95% confidence intervals for the relative selection strength (Avgar, Lele, Keim, & Boyce, 2017) for 
different landuse classes (we used wetland forests and wet areas as the reference class). Different colors indicate the id of the animals and 
symbols the sex (circles for female and triangles for males). Population‐level estimates are given by solid horizontal lines and 95% confidence 
intervals at population level are given by the light gray boxes. The dashed horizontal line indicates no preference relative to wetland forest 
(the reference category)
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day (day/night), allowing us to explore time‐dependent space‐use pat‐
terns (Figure 2b,d). We then showed how amt can be used to conduct 
similar analyses with more than one animal, allowing us to investigate 
population‐level effects by looking at the distribution of animal‐spe‐
cific coefficients (Figure 3 Fieberg et al., 2010; Hooten et al., 2016). In 
our second example (modeling six fisher), we restricted the analysis to 
habitat selection; incorporation a movement model would be straight 
forward here as well (Prokopenko et al., 2017a; Scrafford et al., 2018).

We expect amt will contribute to movement ecology in two ways. 
First, amt is likely to help researchers manage their data and analy‐
ses using a more reproducible workflow, a much discussed issue (e.g., 
Cooper & Hsing, 2017; Lewis, Vander Wal, & Fifield, 2018). Second, 
amt will facilitate the use of iSSFs by a wider community of ecologists 
and also allow them to more fully realize the power of these methods 
(e.g., by modeling how landscape features influence both movement 
and habitat selection processes). Prior to amt, software for imple‐
menting iSSFs was not available. Therefore, use of iSSFs required 
custom‐written code. amt provides functions that make it easy to fit 
iSSFs and to explore predicted space‐use patterns from fitted models.

Besides the introduced functions to fit SSFs, amt provides ad‐
ditional functions for calculating home ranges, estimating RSFs and 
other utility functions to work with telemetry data and interface with 
other packages. Future development of amt will focus on increased 
functionality by adding more functions for data quality assurance. 
We also hope to implement UD estimation for more sophisticated 
models. Currently, amt does not allow simulating UDs from models 
that include interactions between movement (speed and/or turning 
angles) and other covariates.
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