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The homeostasis of iron is of fundamental importance in the central nervous
system (CNS) to ensure biological processes such as oxygen transport, mitochondrial
respiration or myelin synthesis. Dyshomeostasis and accumulation of iron can be
observed during aging and both are shared characteristics of several neurodegenerative
diseases. Iron-mediated generation of reactive oxygen species (ROS) may lead to
protein aggregation and cellular toxicity. The process of misfolding and aggregation of
neuronal proteins such as α-synuclein, Tau, amyloid beta (Aβ), TDP-43 or SOD1 is a
common hallmark of many neurodegenerative disorders and iron has been shown to
facilitate protein aggregation. Thus, both, iron and aggregating proteins are proposed to
amplify their detrimental effects in the disease state. In this review, we give an overview
on effects of iron on aggregation of different proteins involved in neurodegeneration.
Furthermore, we discuss the proposed mechanisms of iron-mediated toxicity and
protein aggregation emphasizing the red-ox chemistry and protein-binding properties
of iron. Finally, we address current therapeutic approaches harnessing iron chelation as
a disease-modifying intervention in neurodegenerative disorders, such as Parkinson’s
disease, Alzheimer’s disease, and amyotrophic lateral sclerosis.
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INTRODUCTION

Neurodegenerative disorders (NDDs) rapidly gain importance due to their age-related prevalence
and the resulting socio-economic burden (Hindle, 2010; Abbott, 2011). Aging is one of the main
risk factors for NDDs (Ashraf et al., 2018) and the constantly growing life expectancy will result in
their increased prevalence (Oeppen and Vaupel, 2002). Although different NDDs present a variety
of symptoms ranging from cognitive, motor, sensory and/or autonomic failure, neuronal loss is
the shared characteristic. Therefore, it is of great relevance to identify common pathophysiological
features that are present in multiple NDDs to elucidate general mechanisms of neurodegeneration
and potential pathways for intervention.

Iron does not only play a main role in cellular senescence but also in NDDs such as Parkinson’s
disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) or prion diseases (PrD)
(Ashraf et al., 2018). As protein aggregation is another shared hallmark among many NDDs
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(Iadanza et al., 2018), it is suggestive to assume a mutual interplay
of iron and protein aggregation amplifying their detrimental
effects. In addition to iron, other transition metals such as copper
and manganese are also considered in the pathogenesis of NDDs.
This review, however, is focusing on the role of iron in protein
aggregation disorders and the reader is referred to alternative
publications on the role of other metals (e.g., Carboni and Lingor,
2015; Kim et al., 2018).

In this review, we discuss the mode of action of iron in NDDs
and proposed mechanisms of iron-mediated protein aggregation.
Finally, we outline recent therapeutic approaches targeting iron
as promising treatment option for NDDs.

IRON DYSHOMEOSTASIS AND
ACCUMULATION

Iron is the most abundant trace metal in the human brain,
present in neuronal and glial cells. It acts as a catalytic center
for multiple enzymes and supports the synthesis of DNA,
neurotransmitters and myelin in the brain. Furthermore, it
participates in oxygen transport, neurotransmitter metabolism
and mitochondrial respiration (Ward R.J. et al., 2014; Ashraf
et al., 2018).

Iron metabolism is tightly regulated by iron responsive
elements (IREs). In the presence of iron, binding of the iron
regulatory protein (IRP) to IREs controls the translation of
mRNAs related to proteins of iron metabolism, e.g., iron
import, export and storage proteins. Under physiological
conditions, extracellular ferric iron (Fe3+) is mainly bound to
the glycoprotein transferrin (Tf), being delivered to cells by
transferrin receptors (TfR). Non-transferrin-bound ferrous iron
(Fe2+) is mainly transported into the cell via the divalent metal-
ion transporter 1 (DMT1) (Hider and Kong, 2013; Jiang et al.,
2017). DMT1 is also an important player in mitochondrial uptake
of Fe2+ (Wolff et al., 2018). Intracellularly, ferritin is the major
iron storage protein complex. Before storage in both H- or
L-ferritins, Fe2+ is oxidized by H-ferritin to Fe3+. Under normal
conditions, the labile Fe2+ pool and ferritin molecules are at
an equilibrium. The export of Fe2+ is regulated by ferroportin-
1 (FPN1) being controlled by hepcidin (Hider and Kong, 2013;
Ashraf et al., 2018).

Impaired iron metabolism coupled with its accumulation in
various brain regions are hallmarks of physiological aging. H-and
L-ferritins also are more abundant with age (Zecca et al., 2001).
During life, both ferritin subunits increase in their concentration
within the SN but stay constant within the locus coeruleus. Both
regions are important target areas for PD whereas the locus
coeruleus is also affected in AD (Zecca et al., 2004a). Brains of
patients suffering from NDDs, e.g., PD and AD, are lacking the
age-associated rise of both ferritins. In PD, reduced ferritin levels
in SN and pathological iron accumulation were found (Dexter
et al., 1991; Connor et al., 1995).

Excessive ROS production resulting in oxidative stress is
a common feature of NDDs and accumulated redox-active
iron triggers ROS formation by the Fenton and Haber-Weiss
reactions, providing the basis for catalyzed oxidation processes.

Accordingly, iron reacts with hydrogen peroxide, which is a
by-product of the mitochondrial respiration and intracellularly
abundant, resulting in hydroxyl free radicals (HO•). Therefore,
iron fosters the formation of ROS that lead to oxidative stress,
inducing mitochondrial dysfunction and cell death (Zecca et al.,
2004b).

This said, the reasons for iron accumulation and its precise
effects on pathomechanisms in neurodegeneration remain still
incompletely understood. Its contribution to the aggregation of
disease-relevant proteins may be a major effector of its toxicity in
NDDs.

PROTEIN AGGREGATION

A shared hallmark of numerous NDDs is protein aggregation.
For example, α-synuclein aggregates are the main components
of Lewy bodies in PD (Spillantini et al., 1998), whereas
neurofibrillary tangles and plaques in AD are composed of Tau
and Amyloid beta (Aβ), respectively (Glenner and Wong, 1984;
Brion, 1998). Aggregation of TDP-43 or SOD1 are observed
in ALS (Brown, 1998; Neumann et al., 2006). Recent data
demonstrate, however, that aggregation of one particular protein
is not specific for one disease (e.g., Cisbani et al., 2017; Trist et al.,
2018). Under physiological conditions, the ubiquitin proteasome
system (UPS), autophagosomes and chaperone activity ensure
the clearance of protein aggregates (Stroo et al., 2017). However,
genetic or environmental factors can disturb the balance of
aggregate formation and clearance, so that native soluble proteins
or peptides start misfolding and assemble into insoluble beta-
sheet oligomers and protofibrils. This filamentous aggregation
results in amyloid fibrils and protein inclusion formation. For
different disease-dependent proteins this aggregation process is
likely to follow similar pathways (Soto and Pritzkow, 2018).

Whereas for protein inclusions a possible neuroprotective
role is still discussed, oligomers and protofibrils of the above-
mentioned species are very likely neurotoxic. Amyloid structures
are believed to impair axonal transport, DNA transcription
and the UPS, and trigger mitochondrial dysfunction, synaptic
dysfunction and oxidative stress (Dhouafli et al., 2018; Iadanza
et al., 2018). Furthermore, oligomers increase the lipid bilayer
conductance and, therefore, induce calcium dyshomeostasis
(Verma et al., 2015). Altogether, these mechanisms contribute to
cellular dysfunction and cytotoxicity.

IRON AND PROTEIN AGGREGATION

Via interaction with redox-active metal ions, amyloidogenic
forms of, e.g., Aβ or α-synuclein triggered ROS production
and oxidative cytotoxicity (Liu et al., 2011; Deas et al., 2016).
Especially iron was shown to enhance aggregation processes of
α-synuclein (Ostrerova-Golts et al., 2000), Aβ (Rottkamp et al.,
2001) or Tau (Sayre et al., 2000). How iron enhances protein
aggregation is not fully understood, but two distinct mechanisms
are considered as relevant. First, the direct binding of iron to
amyloidogenic proteins, and second, an indirect iron-mediated
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FIGURE 1 | Overview on relevant interactions of iron and NDDs-associated proteins. (A) Iron induces α-synuclein aggregation by direct binding or via oxidation.
Indirectly, iron also influences α-synuclein on its transcriptional and translational level. α-synuclein acts as a ferrireductase and can induce iron accumulation by
overexpression. (B) Iron fosters aggregation of both Aβ und Tau by binding. Whereas Aβ reduces levels of ferritin-bound iron, an overexpression of mitochondrial
ferritin reduces Aβ toxicity. APP controls iron efflux and together with iron it affects the Aβ release. Furthermore, there is evidence for both, Aβ-induced iron

(Continued)
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FIGURE 1 | Continued
accumulation and Aβ-induced iron depletion. Whereas iron increases Tau-phosphorylation via CDK5 and GSK3ß pathways, iron-induced oxidative stress reduces
Tau-phosphorylation. (C) Iron binds SOD1, inducing oxidative stress and toxicity. Mutations of SOD1 lead to an upregulation of iron metabolism proteins followed by
iron influx. Iron is suggested to affect TDP-43 aggregation indirectly via oxidative stress-mediated ROS accumulation. An interaction of iron and TDP-43 has not been
objectified so far. (D) PrP operates as a ferrireductase partner of ZIP14 and DMT1 increasing Fe3+ uptake. Furthermore, PrP-ferritin aggregates induce iron
deficiency and an upregulation of total iron, Fe2+ and iron uptake proteins. Inflammation processes may contribute to iron deficiency. Vice versa, Fe3+ triggers PrP
accumulation within the cell.

process, where the above-mentioned Fenton and Haber-Weiss
reaction of Fe2+ triggers aggregation by ROS production and
resulting oxidative stress. An overview on relevant interactions
of iron and below-mentioned proteins is shown in Figure 1.

α-Synuclein
α-Synuclein is a 140 amino acid protein expressed in neuronal
cytosol and presynaptic terminals that is thought to participate
in vesicle packaging, release and trafficking as well as in
membrane remodeling. Furthermore, interactions of α-synuclein
with histones as well as with nuclear DNA are suspected, but
its concrete function in the nucleus and presynaptic terminals
needs to be further investigated (Bendor et al., 2013; Rocha
et al., 2018). α-Synuclein is intensively studied in regard to
the pathophysiology of PD, since some inherited forms of PD
can result from point mutations and from overproduction of
α-synuclein through multiplications of the SNCA gene encoding
the human α-synuclein protein. In total, six point mutations
(A30P, E46K, H50Q, G51D, A53T, and A53E) of the SNCA gene
were identified so far leading to a biophysical change of amino
acid substitutions (Uchihara and Giasson, 2016). Therefore,
models overexpressing α-synuclein or a mutated form are used
to understand the role of α-synuclein and its interaction with iron
(e.g., Zhu et al., 2016; Carboni et al., 2017).

Analyzing the interaction of iron and α-synuclein, different
studies could show that α-synuclein fibrillation can be induced by
iron (Uversky et al., 2001; Golts et al., 2002; Kostka et al., 2008).
In vitro, using BE-M17 neuroblastoma cells iron had stronger
effects on aggregation of A53T and A30P mutant compared to
wild-type α-synuclein (Ostrerova-Golts et al., 2000). In vivo, iron
treatment showed reduced survival of α-synuclein mutant (A53T,
A30P) and α-synuclein wild-type flies compared to w1118 wild-
type controls, but only the mutant flies showed a strong motor
decline (Zhu et al., 2016). Transmission electron microscopy
resolved that ex vivo Fe3+ addition to wild-type and mutant
(A53T, A30P, E46K) α-synuclein generates fibrils, resembling
fibril conformations formed without iron incubation, whereas
copper addition to mutant α-synuclein led to the formation
of amorphous aggregates. These results indicate that the fibril
morphology is metal-specific (Bharathi et al., 2007).

Even micromolar concentrations of Fe3+ increased
α-synuclein aggregation and produced larger SDS-resistant
oligomers. Since H2O2 treatment did not lead to the same effects
as iron treatment, oxidation of α-synuclein per se cannot be the
reason for the oligomerization, showing that trivalent ions play
a relevant role (Kostka et al., 2008). However, further in vitro
studies showed that Fe2+ also promoted α-synuclein aggregation,
transmission and affected viability of SK-N-SH and SN4741 cells
(Li et al., 2011; Xiao et al., 2018). Specifically, in SK-N-SH cells

α-synuclein aggregation was increased around the nucleus (Li
et al., 2011). Under aerobic conditions in vitro, Fe2+ treatment
caused a polymerization into antiparallel soluble α-synuclein
oligomers, whereas under anaerobic conditions both Fe2+ and
Fe3+ induced parallel ß-sheet aggregates (Abeyawardhane et al.,
2018).

How iron influences α-synuclein aggregation is not completely
understood. However, α-synuclein has a high metal binding
affinity and it is known that both Fe2+ and Fe3+ can bind
α-synuclein, revealing a binding constant of 1.2 x 1013 M−1 for
Fe3+ and 5.8 x 103 M−1 for Fe2+ (Peng et al., 2010). Fe2+ binds
at the C-terminus, specifically at Asp-121, Asn-122, and Glu-
123 (Binolfi et al., 2006) and the binding affinity is increased in
phosphorylated (pY125 or pS129) α-synuclein (Lu et al., 2011).
Additionally, Fe3+ can bind α-synuclein, having two binding
sites, which are likely at the C-terminus (Davies et al., 2011).

Interestingly, there is a close homology in the 5′-UTR of
human α-synuclein mRNA to the IRE of the ferritin mRNA,
which could explain the regulation of α-synuclein levels by
intracellular iron (Friedlich et al., 2007). Fe3+ was suggested
to control the translation of α-synuclein mRNA since the iron
chelator deferoxamine (DFO) highly decreased the polysome-
associated endogenous α-synuclein mRNA in HEK293 cells
(Febbraro et al., 2012). Furthermore, a knockdown of the
IRP in SK-N-SH cells enhanced α-synuclein aggregation by
upregulation of α-synuclein transcription, indicating that iron
partially controls the aggregation process through the IRE/IRP
system (Li et al., 2011). In addition to its direct binding there
is thus evidence that iron also influences α-synuclein on a
transcriptional and translational level.

Iron also promotes α-synuclein aggregation indirectly by
regulating the nuclear transcription factor EB (TFEB), which
is a transcriptional regulator of the autophagosome-lysosome
pathway. Iron enrichment decreased the TFEB expression and
inhibited its nuclear translocation through the activation of
the Akt/mTORC1 pathway resulting in increased α-synuclein
aggregation in cell lysates by the inhibition of TFEB-mediated
autophagosome-lysosome fusion. Furthermore, iron increased
α-synuclein cell-to-cell transmission, which was attenuated by
TFEB overexpression (Xiao et al., 2018). As an indirect pathway,
oxidative stress contributes to the iron-induced aggregation.
This was further supported by the finding that supplementation
of the antioxidative vitamin E attenuated aggregation in SK-
N-SH cells (Li et al., 2011). Additionally, an ex vivo study
indicated that oxidative stress enhances α-synuclein aggregation
indirectly via oxidation of iron from Fe2+ to Fe3+ (Levin et al.,
2011).

Vice versa, iron levels were increased by the overexpression of
α-synuclein itself in primary midbrain neurons and PC12 cells
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which were analyzed with particle induced X-ray emission. Iron
accumulation quantified by X-ray fluorescence was specifically
observed within the perinuclear regions of PC12 cells (Ortega
et al., 2016).

Furthermore, α-synuclein was also found to act as a
ferrireductase, reducing Fe3+ to Fe2+ (Davies et al., 2011). The
ferrireductase active form of α-synuclein is suggested to be
a membrane-associated helical-rich tetramer (McDowall et al.,
2017; Angelova and Brown, 2018). Previous studies suggest a
resistance of the tetramer to fibril and aggregate formation,
making the tetramer to an interesting subspecies in vivo (Bartels
et al., 2011; Wang W. et al., 2011; Dettmer et al., 2015).

Regarding treatment strategies to reduce or prevent
α-synuclein aggregation, iron seems to be a promising target.
Iron recycling by Nramp1 (Soe-Lin et al., 2009) was shown to
degrade microglial α-synuclein oligomers in vitro and in vivo,
highlighting natural defense mechanisms in iron overload
conditions (Wu et al., 2017). Furthermore, different iron
chelators showed various beneficial effects in preclinical cell or
animal PD models (e.g., Sangchot et al., 2002; Mandel et al., 2004;
Billings et al., 2016; Finkelstein et al., 2016, 2017; Carboni et al.,
2017; Das et al., 2017).

Iron and α-synuclein thus influence each other mutually:
whereas iron contributes to α-synuclein aggregation by direct
binding and indirectly via oxidative stress and transcription
factors, α-synuclein shows ferrireductase activity influencing iron
homeostasis.

Aβ and Tau
Aβ is a metalloprotein consisting of 39–43 residues that is
derived from the transmembrane amyloid precursor protein
(APP) by proteolytic cleavage. Aβ aggregates are found as
amyloid plaques in AD and Aβ plays a role in metal sequestration
and homeostasis, synaptic activity and neuronal plasticity (Smith
et al., 2007; Rajasekhar et al., 2015). Aβ was found to be
strongly colocalized with brain iron in risk patients for AD
measured by magnetic resonance imaging and positron emission
tomography (Van Bergen et al., 2016). X-ray studies analyzing
Aβ plaques in cortex tissue of transgenic mice and Aβ plaque
cores of AD patients confirmed a direct correlation of iron
and Aβ localization, suggesting the formation of an iron-Aβ

complex (Telling et al., 2017; Everett et al., 2018). Ex vivo,
Fe3+ was found to promote aggregation of Aβ1-40 and Aβ1-
42 visualized by fluorescence spectroscopy and atomic force
microscopy (Tahmasebinia and Emadi, 2017). Fe3+ was also
shown to bind Aβ using the phenolic oxygen of tyrosine 10
as binding site (Miura et al., 2001). Fe3+-mediated generation
of Aβ aggregates was also reported in vitro. However, these
aggregates were shorter and less ordered than in iron-free Aβ

incubation (Liu et al., 2011). In drosophila, the affinity of Aβ

for iron is mediated by three N-terminal histidines enhancing
Aβ dimerization and leading to histidine-dependent oxidative
damage (Ott et al., 2015).

Furthermore, treatment with iron chelators (clioquinol,
YM-F24) increased survival and locomotor function of
flies expressing Aβ1-42 compared to control wild-type flies,
highlighting the relevance of oxidative stress for neurotoxicity

of Aβ (Rival et al., 2009; Liu et al., 2011). Iron chelation also
showed beneficial effects in mammalian models (Fine et al.,
2015; Zhao et al., 2017) and reduced Aβ1-42 aggregation in an
ex vivo study (Tahmasebinia and Emadi, 2017). Other studies
showed that the presence of the important iron storage protein
ferritin has beneficial effects on Aβ pathology. Accordingly,
in vitro and in vivo, mitochondrial ferritin reduced neurotoxic
effects exerted by Aβ (Wu et al., 2013; Wang P. et al., 2017).
The overexpression of mitochondrial ferritin in SHSY5Y cells
prevented the activation of the MAPK signaling pathway, which
is related to oxidative stress-induced cell death (Wu et al.,
2013).

Iron also strongly influences APP. Treating SHSY5Y cells with
Fe3+ caused APP accumulation in membrane-enriched cellular
fraction and increased activity of β-secretase that both triggered
increased release of Aβ1-42 (Banerjee et al., 2014). Another
study using SHSY5Y cells confirmed increased APP steady state
levels and APP production after iron treatment (Rogers et al.,
2016).

Furthermore, APP influences iron export by controlling the
persistence of FPN1 on the neuronal surface, even if it does not
function as a ferroxidase (Wong et al., 2014). There is evidence
that Aβ induces iron accumulation in a cell-free ex vivo study
(Everett et al., 2014b). Other studies suggest that Aβ controls the
redox-activity of iron and reduces iron chemically in vivo (Everett
et al., 2018). Accordingly, Aβ was able to inhibit ascorbate-
dependent hydroxyl radical generation by free Fe3+ (Nakamura
et al., 2007). Furthermore, interaction with Aβ led to a reduction
of ferrihydrite (ferritin-bound iron) to pure redox-active Fe2+

(Everett et al., 2014a).
Iron was not only shown to modulate the aggregation of

Aβ but also of Tau (Kim et al., 2018). Tau is a microtubule-
associated protein that is the main component of neurofibrillary
tangles in AD. Mostly, it is located in axons and sometimes
in dendrites (Nisbet et al., 2015). So far, little is known about
the interplay of iron and Tau and present studies are not
consistent. Iron treatment enhanced Tau aggregation in iron-
enriched hippocampal regions and iron was shown to bind Tau
(Sayre et al., 2000). Some studies showed that only trivalent
metal ions, as Fe3+, trigger Tau aggregation but not divalent ions
(Yamamoto et al., 2002; Bader et al., 2011). Fe3+-generated Tau
oligomers were even more stable than DMSO-generated ones
(Nübling et al., 2012). However, a recent electrochemical study
showed that both, Fe3+ and Fe2+, bind Tau at different binding
sites, inducing a structural change, which was more pronounced
with Fe2+ (Ahmadi et al., 2017).

Iron-induced oxidative stress reduced Tau phosphorylation
by interfering with the function of the CDK5/p25 system
of hippocampal neurons (Egaña et al., 2003). Another study
using primary cultures of rat cortical neurons showed iron-
induced Tau phosphorylation by activation of GSK3 (Lovell
et al., 2004). Ebselen, an organo-selenium compound with
antioxidant activity, inhibits the CDK5 and GSK3β pathway
leading to less Tau phosphorylation. These effects were not
only caused by the antioxidant effects of Ebselen, but rather
by the inhibition of DMT1 in SHSY5Y cells (Xie et al.,
2012). The same effects on CDK5 and GSK3β as well as
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on Tau phosphorylation were shown with the iron chelator
DFO analyzing APP/PS1 transgenic mouse brains (Guo et al.,
2013).

In summary, iron binds both, Aβ and Tau, partially
modifying their structure and fostering their aggregation process.
Furthermore, the Aβ and Tau phenotypes can be partially rescued
by iron chelation.

SOD1 and TDP-43
SOD1 is an abundant antioxidant protein predominantly
located within the cytosol. Its aggregation leads to, e.g.,
neuronal degeneration and changes in DNA/RNA metabolism,
neurofilament and axonal transport (Pasinelli and Brown, 2006).
An NMR study showed binding of iron to SOD1 with binding
sites closely located to Cu/Zn binding pockets leading to Fe2+-
bound SOD1 complexes, which are likely toxic (Lim and Song,
2015). Even if there is no direct evidence for iron-induced SOD1
aggregation, several studies emphasize a coherence of iron load
and SOD1 pathology.

Therapeutic approaches showed that in SOD1 mouse models
(G93A, G37R, G86R) iron chelators [VK-28, M30, HLA20, VAR-
ced, deferiprone (DFP)] extended lifespan, increased locomotor
function and motoneuron survival and decreased oxygen free
radicals, iron levels and TfR expression (Jeong et al., 2009;
Kupershmidt et al., 2009; Wang Q. et al., 2011; Golko-Perez et al.,
2016; Moreau et al., 2018).

Furthermore, several studies observed an impact of SOD1 on
iron metabolism. Accordingly, in vivo studies with SOD1.G93A
mutant mice showed increased mRNA expression of ferritin,
TfR1 and DMT1. These results indicate enhanced iron load, since
iron is known to regulate ferritin expression (Jeong et al., 2009;
Wang Q. et al., 2011). In vitro studies analyzing cell lysates
showed an increased iron content and altered iron metabolism
mediated by an impaired Akt signaling pathway. Accordingly,
SOD1.G93A overexpression triggered an inactivation of Akt,
activation of the transcription factor FOXO3a and subsequently
increased ferritin synthesis and iron accumulation (Hadzhieva
et al., 2013; Halon-Golabek et al., 2018). SOD1.G37R mutants
showed in vivo and in vitro increased mRNA levels of TfR1,
ferritin, DMT1 but also of mitochondrial ferritin (Jeong et al.,
2009). The above-mentioned results of an increased iron content
and increased TfR levels suggest an iron dyshomeostasis, which
is not primarily controlled by IRE/IRP1 mechanisms (Lovejoy
and Guillemin, 2014). Other studies showed diverse effects of
SOD1 on the cytosolic iron sensor IRP1. SOD1 activation in
G93A mutant mice showed no changes of IRP1 expression but
more activated IRP1 (Jeong et al., 2009; Gajowiak et al., 2016).
In vivo, SOD1 deficiency and the resulting oxidative stress caused
IRP1 downregulation (Milczarek et al., 2017). Furthermore, in
SOD1.G93A mutant mice ROS induction led to an upregulated
iron import, triggering oxidative stress (Hadzhieva et al., 2013).

SOD1 is also thought to interact with the ALS-relevant protein
TDP-43 (Higashi et al., 2010). Aggregates of the RNA-binding
protein TDP-43 are incorporated in ubiquitinated inclusions
within the neuronal cytoplasm found in ALS and in syndromes
jointly named ‘neurodegeneration with brain iron accumulation’
(NBIA) (Neumann et al., 2006; Haraguchi et al., 2011). SOD1

was shown to initiate modification and accumulation of TDP-
43 (Zeineddine et al., 2017; Jeon et al., 2018). In SOD1 mutant
mice, iron chelators reduced TDP-43 aggregation, whereas
vehicle-treated animals showed TDP-43 aggregates located in
the cytoplasm of motor neurons (Wang Q. et al., 2011). Since
oxidative stress-mediated accumulation of ROS fosters the TDP-
43 aggregation in vitro (Cohen et al., 2012), iron chelator effects
on TDP-43 aggregation suggest an indirect effect of iron by
oxidative stress induction.

In conclusion, proteins of the iron metabolism are altered
in SOD1 mutants, which partially could explain enhanced iron
loading. Iron chelator effects in SOD1 models indicate an
impact of iron on SOD1 pathology. Even if iron accumulation
is a common feature of ALS (e.g., Moreau et al., 2018), a
contribution of iron to aggregation of SOD1 or TDP-43 is yet
unproven.

Prion Protein
The prion protein (PrP) is located intracellularly and is also
an important membrane-bound protein at the cell surface.
Therefore, PrP is involved in exocytotic and endocytic synaptic
vesicle processing as well as in signaling pathways, but also in
myelination and neurogenesis (Liebert et al., 2014; Legname,
2017; Watts et al., 2018).

By using PrP knockout or PrP-overexpressing mouse models,
studies showed that upregulation or downregulation of PrP
levels, respectively, affect the iron homeostasis (Singh et al.,
2009a,b; Pushie et al., 2011; Ashok et al., 2018). Accordingly, iron
deficiency is a crucial characteristic in brains of humans, hamster
and mice affected with prion pathology. Analyzing pathological
brain tissue as well as scrapie-infected ScN2a and SMB cells, iron
dyshomeostasis was supposedly caused by the iron sequestration
in detergent-insoluble PrP-scrapie-ferritin aggregates, resulting
in a decreased bio-available iron pool and a state of cellular
iron deficiency. These results also explain increased amounts of
total iron and Fe2+ as well as iron uptake proteins (Singh et al.,
2009a). Another study investigated PrP-mediated iron deficiency
in retinas of scrapie-injected hamsters and demonstrated an
accumulation of detergent-insoluble ferritin. Furthermore, they
showed a correlation of the ferritin accumulation with microglia
activity. These results suggested a contribution of chronic
inflammation as a side effect of PrP accumulation to functional
iron deficiency (Asthana et al., 2017).

Another explanation for the influence of PrP on the iron
homeostasis is that PrP operates as a plasma membrane
ferrireductase. Accordingly, PrP-expressing neuroblastoma cells
showed a significant increase in ferrireductase activity compared
to non-transfected cells. Furthermore, mutant PrP forms showed
that for an optimal ferrireductase function of PrP the presence
of NADH, the copper binding octa-peptide repeat region and the
linkage to the plasma membrane is needed (Singh et al., 2013).
Also in HepG2-cells, expressing PrP, ferrireductase activity was
indicated by an increased uptake of Fe3+ but not of Fe2+. Since
Fe3+ uptake was significantly increased after a co-expression of
PrP with metal transporter ZIP14 and DMT1, PrP is suggested to
be the ferrireductase partner of both metal transporter (Tripathi
et al., 2015).
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So far, there is not much evidence for the influence of iron
on the PrP pathology. One study using PrP-deficient HpL3-4
cells showed that Fe3+ but not Fe2+ induced accumulation of
internalized PrP after iron exposure and PrP treatment of cells
(Choi et al., 2013). However, it is not clarified if a direct binding
to the PrP protein or indirect mechanisms triggered by iron foster
the aggregation of PrP.

Vice versa, PrP was shown to influence the iron homeostasis
via its ferrireductase activity and PrP-ferritin aggregates but it
needs further investigation to explain if these two modes of action
or indirect mechanisms such as the activation of inflammation
processes lead to iron deficiency.

CLINICAL APPLICATION

Iron accumulation in NDDs argues for a clinical evaluation
of iron chelators as symptomatic or neuroprotective agents.
Iron chelation by DFO, DFP or deferasirox (DFX) is clinically
approved by the FDA for systemic conditions like acute iron
intoxication and chronic iron overload1. DFO application is
problematic due to the required continuous injection (short
plasma half-life period) and dose-dependent neurotoxicity. DFX
and DFP can be administered orally. DFX must be especially
monitored for renal failure and DFP for agranulocytosis and
neutropenia (Mobarra et al., 2016). With its ability to relocate
iron and to cross the blood brain barrier, DFP presents the most
promising candidate for targeting iron load in the CNS, being
tested in NDDs with regional iron overload, e.g., Friedreich ataxia
(e.g., Velasco-Sánchez et al., 2011; Pandolfo et al., 2014) and
NBIA (e.g., Lim et al., 2018; Rohani et al., 2018).

In PD patients (FAIR-PARK-I, NCT00943748), DFP treatment
showed benefits in motor performance and reduced MR-
quantified substantia nigra iron content (Devos et al., 2014). In
another trial (DeferipronPD, NCT01539837), administration of a
lower dosage resulted in a reduced T2∗ MRI iron content in the
dentate and caudate nucleus (Martin-Bastida et al., 2017). Based
on these results, a European multicenter, parallel-group, placebo-
controlled, randomized phase III trial is ongoing to assess
disease-modifying effects of DFP in PD patients (FAIRPARKII,
NCT02655315).

In a pilot trial (SAFEFAIRALS, NCT02164253), DFP
treatment of ALS patients reduced R2∗ iron content in the
cervical spinal cord, medulla oblongata and motor cortex.
Additionally, patients showed a smaller decrease in the ALS
function rating scale and in the body mass index in the first
3 months of treatment compared to the first treatment-free
period (Moreau et al., 2018). Based on these results, a phase
II/phase III study with a larger sample size has been initiated
testing DFP (FAIR-ALSII, NCT03293069).

In AD, intramuscular application of DFO significantly
reduced the decline of daily living skills (Crapper McLachlan
et al., 1991). Besides, cognition of AD patients benefited from
treatment with the metal-attenuating compound clioquinol or
its derivate (Ritchie et al., 2003; Lannfelt et al., 2008). Now, AD
1 www.fda.gov

patients are recruited for an ongoing phase II study investigating
effects of DFP (The 3D Study, NCT03234686).

Details of the mentioned studies can be found in
Supplementary Table 1. Summing up, iron chelators already
showed promising results in smaller trials and this advocates for
further assessment in larger studies.

CONCLUSION

Current investigations focus on iron accumulation and protein
aggregation as two pathological hallmarks of multiple NDDs. The
interaction of both features appears to be an essential part of
common neurodegeneration mechanisms. So far, iron was found
to bind amyloidogenic proteins like α-synuclein, Aβ and Tau
fostering their aggregation. Indirectly, iron influences disease-
related proteins via oxidative stress or manipulation of their
transcription and translation. On the other hand, α-synuclein,
Aβ and SOD1 were found to affect iron metabolism and iron
accumulation, proposing a mutual interplay and an amplification
of their detrimental effects in the disease state. Even if precise
effects of iron on neurodegenerative pathomechanisms remain
incompletely understood, translational trials in human patients
already showed beneficial effects of iron chelation as a treatment
strategy for NDDs. Thus, iron may be a substantial contributor to
neurodegeneration and merits further investigation as molecular
and therapeutic target.
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