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gene-gene interaction types. However, evidence indicates 
that connectivity and neighborhood of genes are crucial in 
the context of GWAS, because genes associated with a dis-
ease often interact. Thus, we propose a novel kernel that in-
corporates the topology of pathways and information on in-
teractions. Using simulation studies, we demonstrate that 
the proposed method maintains the type I error correctly 
and can be more effective in the identification of pathways 
associated with a disease than non-network-based meth-
ods. We apply our approach to genome-wide association 
case-control data on lung cancer and rheumatoid arthritis. 
We identify some promising new pathways associated with 
these diseases, which may improve our current understand-
ing of the genetic mechanisms.   © 2014 S. Karger AG, Basel
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  Abstract

  Biological pathways provide rich information and biological 
context on the genetic causes of complex diseases. The lo-
gistic kernel machine test integrates prior knowledge on 
pathways in order to analyze data from genome-wide asso-
ciation studies (GWAS). In this study, the kernel converts the 
genomic information of 2 individuals into a quantitative val-
ue reflecting their genetic similarity. With the selection of the 
kernel, one implicitly chooses a genetic effect model. Like 
many other pathway methods, none of the available kernels 
accounts for the topological structure of the pathway or 
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  Introduction

  Pathway-based analysis can supplement the explora-
tion of data from genome-wide association studies 
(GWAS) through the integration of prior biological 
knowledge [e.g.  1–4 ]. Primarily, the success of pathway-
based analysis may be explained by its focus on jointly 
testing of functionally related SNPs. On the one hand, this 
allows the identification of pathways via multiple causal 
low-effect SNPs, which are usually hard to detect with 
conventional GWAS approaches. Pathway-based analy-
sis also considerably reduces the multiple-testing prob-
lem. On the other hand, it has the potential to benefit di-
rectly from the knowledge on functional dependencies in 
the human organism  [5] . Results obtained from pathway-
based analysis can be interpreted in this context. This al-
lows the easier generation of hypotheses for both diag-
nostic and prognostic targets  [6]  and can contribute to 
the development of novel treatment strategies.

  The range of pathway-based analysis approaches is 
steadily expanding; for an overview of some methods see 
Wang et al.  [7]  and Varadan et al.  [8] . Gene-set enrich-
ment analysis (GSEA)  [9] , which was originally devel-
oped for gene expression data, has remained the most 
popular method. Essentially, this method consists of a 
nonparametric test for the enrichment of SNP-disease as-
sociations in a pathway. Like nearly all other pathway-
based analysis approaches, it fails to utilize most available 
knowledge on pathways. In particular, it ignores informa-
tion on which genes interact in the pathway. Instead, giv-
en a pathway, GSEA treats genes and their corresponding 
SNPs independently from each other.

  There is increasing evidence that precisely such infor-
mation on functional relationships among genes, i.e. the 
topology of the pathway, is of relevance in the context of 
GWAS. Several studies demonstrated that disease-caus-
ing genes often directly interact with each other as part of 
larger regulatory or functional systems  [10, 11] . For 
Crohn’s disease, Chen et al.  [12]  demonstrated that ‘genes 
in the same neighborhood within a pathway tend to show 
similar association status’. In fact, it has been estimated 
that ‘80% of the currently missing heritability for Crohn’s 
disease could be due to genetic interactions’  [13] . How-
ever, not only direct interaction seems to be important. 
Lee et al.  [14]  demonstrated that SNP-trait associations 
are enriched in genes occupying structurally relevant po-
sitions in known pathways.

  Some researchers have already recognized the poten-
tial of incorporating pathway topology, also called net-
work, into the analysis of GWAS data. Chen et al.  [12]  

proposed a Markov Random Field to include topological 
structures. Pan  [15]  developed a procedure that reduces 
the multiple-testing burden according to the average dis-
tance between genes in a pathway. Others have coined 
methods that aim to identify significantly associated sub-
networks  [16, 17] . However, all these methods are based 
on p values, which summarize the risk for a disease for 
whole genes, rather than on raw genotype data.

  The integration of networks via kernels is not new, for 
example Rapaport et al.  [18]  considered one in a support 
vector machine analyzing microarray data. In general, 
kernels are the basis of many powerful statistical methods, 
such as support vector machines, nonparametric regres-
sion and smoothing splines. Thereby, kernels are positive 
semi-definite functions that reflect the pairwise similarity 
between observations. The use of such kernel methods 
rapidly gained popularity in the identification of associa-
tions between pathways and complex traits, as they are 
both powerful and flexible  [19, 20] . Schaid  [21]  speculated 
that appropriate modifications of the kernel could also al-
low for the inclusion of networks in GWAS. In this light, 
we propose sophisticated kernels for the logistic kernel 
machine test (LKMT) that account for pathway topology. 
Here, pathway topology includes not only the network, i.e. 
gene-gene interactions, but also the nature of interactions, 
which may either constitute activation or inhibition. 

  We apply the LKMT with our novel network-based 
kernels to genome-wide case-control data on rheumatoid 
arthritis (RA) and lung cancer (LC). Both diseases are 
common in industrialized nations with an enormous so-
cial and economic impact. Moreover, generally effective 
cures or prevention strategies have not been discovered 
yet. In fact, for the United States, estimated 228,190 new 
LC cases will occur in 2013, making it the most common 
type of cancer  [22] . Even though exposure to tobacco 
smoke determines most of the risk of developing LC, 
many studies also suggest genetic influences. Other than 
a few rare LC syndromes, only a moderate number of ge-
netic effects, each contributing to only a weak increase in 
risk, are known. RA is the most common chronic joint 
disease and affects nearly 1% of the adult population in 
the United States. Many genetic factors have been firmly 
established as contributing to RA risk, in particular the 
human leukocyte antigen (HLA) region on chromosome 
6  [23] . Thanks to their different genetic profiles, the study 
of both these diseases offers an excellent opportunity to 
evaluate the performance of novel statistical methods 
whose aim is to detect genetic associations of different 
strengths. Using kernels that incorporate known network 
structures of pathways within the LKMT has the potential 
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to discover previously unknown genetic risk factors. 
Through its focus on pathways, it also promises to eluci-
date disease etiology  [5] .

  Next, we briefly outline the framework of the LKMT. 
We suggest a way to construct kernels that integrate in-
formation on a pathway topology obtained from the pub-
licly available ‘KEGG: Kyoto encyclopedia of genes and 
genomes’ (KEGG)  [24] . We then present simulation re-
sults demonstrating the power of our kernels compared 
to commonly used kernels in simple scenarios. We also 
demonstrate that our kernels retain the correct type I er-
ror level. Moreover, we discuss the results obtained from 
the analysis of the 2 GWAS on LC and RA. Using con-
cepts from statistical network theory, we verify empiri-
cally that the integration of network information does not 
lead to artifacts or conceal genuine effects. Finally, we 
conclude with a discussion of the promising results of our 
research as well as possible further improvements to our 
method. Most of the analysis was conducted with the sta-
tistical software package R  [25]  unless stated otherwise.

  Materials and Methods

  In this section, we firstly describe the LKMT, followed by de-
tails of the network-based kernel and its construction. We second-
ly introduce the GWAS and pathway data used. Finally, we de-
scribe the simulations performed and the analysis of their results.

  The Logistic Kernel Machine Test
  The LKMT assumes a semi-parametric logistic regression 

model for the probability of being a case. It models genetic effects 
nonparametrically and environmental effects parametrically:

  logit( P ( y  i  = 1)) =  x  i  T  β  +  h ( z  i ), (1)

  where  y  i  is the case-control indicator (control:  y  i  = 0, case:  y  i  = 1) 
for  i  = 1, ...,  n  individuals. The vector  β  represents the intercept and 
regression coefficient terms related to the environmental covari-
ates  x  i  for the  i -th individual ( i  = 1, ...,  n ). These typically include 
gender and other trait-relevant information, which are modeled 
parametrically as fixed effects. The variable  z  i  denotes the genotype 
vector of some selected or all SNPs, coded in the usual trinary fash-
ion (the number of minor alleles, i.e.  z  is   ∈  {0, 1, 2} for any modeled 
SNP  s  in individual  i ). The nonparametric function  h   ∈  H K  de-
scribes how the risk of being affected by the disease depends on the 
observed genotypes. Here, H K  denotes a reproducing kernel Hil-
bert space generated by a positive semi-definite and symmetric 
kernel  K . The mathematical properties imply that any function in 
that space,  h   ∈  H K , can be approximated arbitrarily close by linear 
combinations of its corresponding kernel  [26] , i.e. 

  
1
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  The kernel  K ( z  i ,  z  j ), evaluated for individuals  i  and  j , can also 

be understood as measuring the similarity between the individuals 
 i  and  j  based on their genotypes. Hence, by selecting a different 

kernel, one specifies a different concept of similarity and, implic-
itly, a different model for the effect of the SNPs on the risk of de-
veloping the investigated disease. One of the most commonly used 
kernels is the linear kernel (LIN),  K ( z  i ,  z  j ) =  z  i  T   z  j , which measures 
the correlation between pairs of individuals. It assumes each SNP 
delivers a random independent and additive contribution with the 
same variance, in fact, specifying a linear multiple marker logistic 
regression. In case of a squared loss function instead of a log-like-
lihood, the model implied by the LIN can be shown to be equiva-
lent to ridge regression. Note that this also highlights the close 
relationship to principle component methods  [27] . Obviously, 
such a model neglects interactions among the considered SNPs 
 [20] .

  On the basis of the semi-parametric logistic regression model, 
we test the null hypothesis ( H  0 ) that none of the modeled SNPs is 
associated with the disease. We can express this mathematically by 
 H  0 :  h ( z  i ) = 0 for all  i  = 1, ...,  n . Such a  H  0  can be tested by construct-
ing a score-type statistic. Score statistics are known from variance 
component tests or lack-of-fit of fixed effect models. In our case, 
the score-type statistic used in the LKMT is given by:
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(2)

  where  y  = ( y  1 , ...,  y  n ) T  denotes the vector of all individual case-con-
trol outcomes and  μ̂  (0)  is a vector with elements  μ ̂  i  (0)  = logit –1 ( x  i  β ), 
the maximum likelihood estimate under  H  0  for the  i  individuals. 
The matrix  K  corresponds to the kernel evaluated for all combina-
tions of individuals. Due to its quadratic form, the test statistic  Q  
follows asymptotically an unknown mixture of χ 1  2  distributions. In 
order to obtain a p value for significance, this distribution is well-
approximated by a moment matching method (see Wu et al.  [20] ). 
When testing many different pathways, multiple-testing correc-
tions should be applied to the p values. In our analysis, we used the 
rather conservative but simple Bonferroni correction.

  Construction of Network-Based Kernels
  In order to accommodate network topologies of pathways, 

Schaid  [21]  proposed the kernel matrix  K  =  ZSZ  T  for genomic in-
formation, where the matrix  S  scores the similarity of SNPs. The 
matrix  Z  = ( z  1 , ...,  z  n ) T  denotes the genotype matrix, i.e. the collec-
tion of genotype vectors  z  1 , ...,  z  n  of all individuals. However, 
Schaid does not give a general specification of  S , but he reviews 
different choices for some exemplary genomic applications in-
stead. The kernel, which we develop to take network topologies 
into account, is motivated by the viewpoint of a kernel as a similar-
ity measure: SNPs located in the same gene or in interacting genes 
are scored to be more similar than SNPs far apart regarding the 
network structure. Such a notion of similarity is sometimes also 
referred to as ‘guilt-by association’  [28]  and has been verified em-
pirically for several complex diseases. More precisely, we define the 
matrix  S  as  ANA  T , where matrix  A  maps SNPs to genes and matrix 
 N  represents the network (for an illustration of the kernel’s con-
struction, see also  fig. 1 ). Altogether, the kernel matrix is defined 
as  K  =  ZANA  T  Z  T . Here, the genotype matrix  Z  is allowed to con-
tain missing values making imputation necessary.

  The elements  a  sg   ∈  {0, 1} of matrix  A  represent the membership 
of SNP  s  in gene  g . Most commonly, SNPs are assigned to genes 
purely on the basis of their location on the genome, but other an-
notations are conceivable  [7] . In the 2 real GWAS, we assign a SNP 
to a gene, when it is directly located in a gene or in the 500-kbp 
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windows on either side. Note that, a SNP can be assigned to more 
than one gene due to some overlap of genes. Further, we adjust for 
different gene sizes by re-weighting the impact of a gene effect. 
This ensures an equal treatment despite different numbers of gen-
otyped SNPs in the genes. We denote the modified  A  by  A  *  with 
elements

  
,sg

sg
g

a
a

r
 

  where  r  g  equals the number of SNPs in gene  g . In the following, we 
refer to network-based kernels using the unadjusted gene-SNP an-
notation as NET and ANET under utilization of the size-adjusted 
gene-SNP matrix  A  * .

  The matrix  N  denotes the quadratic adjacency matrix of the 
neighborhood structure of the genes in the pathway. Its dimension 
equals the number of genes in the pathway. We consider selfinter-
actions, i.e. that every gene interacts with itself, by setting all di-
agonal elements of matrix  N  = 1. Unlike other network-based 
methods, we distinguish between activating and inhibiting gene-
gene interactions. Thus, an element  n  g,g’  of  N  equals 1 or –1, if genes 
 g  and  g ’ interact in an activating or inhibiting fashion, respectively. 
In the following, we refer to the use of adjacency matrices that dis-
tinguish between inhibition and activation as  signed  and networks 
with unspecified interaction types as  unsigned .

  This basic network structure must be further modified to en-
sure a well-defined kernel, which should be complete, symmetric 
and positive semi-definite. Firstly, to ensure completeness of the 
pathway topology, we rewire certain interactions, which are as-
sociated to genes without genotyped SNPs. During mapping 
computation,  S  =  ANA  T  such genes and their interactions would 
be removed from the analysis automatically. Firstly, to preserve 
full information on interactions in the pathway, we project links 
of genes without genotyped SNPs to their immediate neighbors. 
This means, we include additional links, where earlier 2 interac-
tions existed and which would otherwise have been removed en-
tirely. Thereby, the link sign of the newly created interaction is 
determined in a multiplicative fashion, e.g. the combination of a 
former inhibition and activation results in a new inhibition. Sec-
ondly, we transform the directed pathway structure into an undi-
rected network via mirroring along the diagonal. Finally, kernels 
are required to be positive semi-definite, while undirected adja-
cency matrices  N  are not necessarily positive semi-definite. Thus, 
we introduce a new procedure to find the closest matrix  N  *  by 
superimposing as much noise as necessary to render the new ma-
trix positive semi-definite without introducing additional inter-
actions to the network. If  N  is not positive semi-definite, we re-
place the original matrix  N  in the kernel equation by the weight-
ed  N  *  =  ρ  N  + (1 +  ρ ) I , where  I  is the identity matrix. It can be 

  Fig. 1.  Pipeline of the construction of the 
network-based kernel matrix  K  =  ZANA  T  Z  T .
( A1 ) Genotype data (SNP No.) coded in 
trinary fashion for cases and controls (ID 
No.) are presented in a matrix. ( B1 ) SNP-
gene annotation is mapping all SNPs to 
pathway genes, as long as they are located 
in the gene or in the 500-kbp windows 
around the gene. ( C1 ) The pathway net-
work with activating (solid arrows) and in-
hibiting (dashed arrow) interactions be-
tween genes. ( A2 ) Imputation of missing 
genotype values via BEAGLE  [33]  and de-
letion of SNPs that cannot be mapped to a 
pathway resulting in genotype matrix  Z . 
( B2 ) Representation of the SNP-gene an-
notation as matrix ( A ), where 1 indicates 
membership. ( C2 ) The network structure 
is modified so that genes without any ge-
notyped SNPs (yellow node) and their cor-
responding links (grey arrows) are deleted, 
but their directed interactions with their 
next neighbors are retained (black arrows); 
the network structure is then converted
to an undirected adjacency matrix  N , 
where 1 represents activation and –1 rep-
resents inhibition. ( D ) Calculation of the 
network-based kernel similarity matrix by
 K  =  ZANA  T  Z  T . 
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easily verified that  N  *  is a positive semi-definite matrix if  ρ   ∈  [0, 
 ρ  max ], where

  
max

min

1
   

1
�

�

 
(3)

  and  λ  min  is the smallest eigenvalue of  N . Our approach of approx-
imating the symmetric matrix  N  by a positive semi-definite one 
has the advantage that the original network topology is exactly 
preserved although the link weights are eased. It also allows for an 
interpretation of the identity matrix as a noise component. We 
suggest using  ρ  =  ρ  max  since  N  *  is the closest to the original matrix 
 N  but is positive semi-definite and has the minimum eigenvalue 
zero. We also tested normalized and ordinary Laplacian matrices 
 [29]  as well as an algorithm by Higham  [30]  to find the nearest 
positive semi-definite approximation of the network matrix, but 
found them to have inferior performances (data not shown) when 
compared to  N  and its replacement described above. Moreover, 
the alternative methods change the network topology by including 
additional interactions, while our method preserves the structure 
of network.

  Data
  RA and LC GWAS
  The German Lung Cancer Study (GLCS) examines the role of 

genetic polymorphisms on the risk of developing LC at a relative-
ly early age, specifically LC diagnosed prior to the age of 50 years 
 [31] . Cases for this study, which comprise both small-cell LC as 
well as non-small-cell LC, were sampled from 31 German hospi-
tals, while controls are from the KORA epidemiological survey of 
individuals living near the southern German city of Augsburg. The 
second study, which was conducted by the North American Rheu-
matoid Arthritis Consortium (NARAC), aims to identify genetic 
risk factors for RA  [32] . Thereby, the criterion of being a RA case 
was set by the American College of Rheumatology and cases were 
procured from New York hospitals. Informed consent was ob-
tained from all participants of both studies; the studies were con-
ducted according to the Declaration of Helsinki.

  We applied stringent quality control (QC) measures, notably 
the exclusion of possibly related individuals. Furthermore, SNPs 
with a call rate <90% were eliminated. For all remaining SNPs, 
missing genotypes were imputed using the standard software 
BEAGLE  [33] . The number of cases, controls and genotyped SNPs 
can be found in  table 1 . Since some SNPs could not be assigned to 
any genes, not all genotyped SNPs were used in the analysis. We 
included sex as an additional environmental covariate. In GLCS, 
we also considered age at LC diagnosis (cases) or exam (controls) 
and the cigarette consumption in pack-years, i.e. the number of 
cigarettes smoked per day multiplied by the years of exposure 
through active smoking.

  While participants in the LC study are fairly homogeneous 
with regards to ethnicity, the ancestries of the participants in the 
RA study ranged from Northern to Southern European. Despite 
this, we did not correct explicitly for population stratification in 
either study. There is cumulative evidence that multiple marker 
methods used in high-dimensional settings inherently capture 
cryptic relatedness, rendering additional corrections obsolete 
 [34, 35] . For multiple regression models which do not include 
population structure explicitly, Setakis et al.  [36]  were able to 
demonstrate their robustness for population stratification effects 
via simulation studies. Thus, it stands to reason that additional 

correction for population stratification in the LKMT, which is 
similar to such a model, would lead to overcorrection and in turn 
loss of power.

  Besides applying the LKMT with our network-based kernels 
and the LIN kernel, we analyzed both data sets using GSEA. Unlike 
the LKMT, GSEA tests competitive hypotheses, i.e. whether a par-
ticular pathway tends to be more associated with the disease than 
all other investigated pathways. As a direct result of this funda-
mental difference between the LKMT and GSEA, comparisons of 
their results are of particular interest. Here, we use the publicly 
available GenGen software  [9]  to implement GSEA.

  Pathway Data
  We decided to use the popular database KEGG due to its man-

ual curation. Moreover, it offers a selected range of pathways in-
cluding experimentally verified metabolic pathways, information 
and cellular processing pathways as well as those related to organ-
ismal system information and human diseases. We did not access 
KEGG directly, but extracted the adjacency matrices by means of 
the R package rBioPaxParser  [37] , which allows the use of the stan-
dardized Biological Pathway Exchange (BioPAX) language. Viswa-
nathan et al.  [38]  called BioPAX the ‘currently [...] best-suited for-
mat for mathematical modeling and simulations’. Our analysis in-

  Table 1.   Number of individuals, SNPs and genes in the 2 GWAS 
of LC and RA

GLCS NARAC 

 Cases  Before QC 506 868 
 After QC 467 866 
 Males 286 226 
 Females 181 640 

 Controls  Before QC 480 1,194 
 After QC 468 1,189 
 Males 237 341 
 Females 231 848 

 SNPs  Before QC  561,466  545,080 
 After QC  529,637  492,209 
 In the analysis  255,241  243,096 

 Genes  In the analysis 2,808 2,807 

  Table 2.   Network characteristics for the 182 investigated pathways

 Network characteristic  Mean  Median  Range 

 Dimension  22.85  14.00  [2.00, 316.00] 
 Density 0.24 0.16  [0.00, 1.00] 
 Average degree 4.22 2.00  [0.00, 303.19] 
 Inhibition degree 0.14 0.00  [0.00, 3.07] 
 Diameter 3.57 3.00  [0.00, 15.00] 
 Transitivity 0.50 0.50  [0.00, 1.00] 
 Signed transitivity 0.32 0.31  [–0.20, 1.00] 
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cluded the topology of 182 pathways, which have sufficient network 
information. After preparation, 38 adjacency matrices  N  were al-
ready positive semi-definite. For the remaining networks, we 
found the closest positive semi-definite counterpart with the afore-
mentioned procedure ( ρ  max  computed by equ. 3 has a mean value 
of 0.48). 

  We found the structures of the different networks to be very 
diverse, which is supported by common descriptive network sta-
tistics (see  table 2 ). We considered:

  
   Dimension  counting the total number of genes in the pathway.
   Density  denoting the ratio of existing interactions to the possible 
number of interactions in a fully connected pathway.
   Average degree  referring to the mean number of interactions from 
or to a gene.
   Diameter  measuring the maximum length of the shortest path be-
tween all pairwise combinations of genes.
   Transitivity  denoting the probability of triangles, i.e. the interac-
tion between 2 neighbors of a gene.
  

  For transitivity and degree, we also distinguished between 
signed and unsigned networks. In the case of average degree, we 
also looked at the average degree of inhibitions only. Its low mean 
highlights that there are only very few inhibiting interactions in the 
data base. Furthermore, we used the extension of transitivity intro-
duced by Kunegis et al.  [39] , which is able to take the interaction 
type into account. In general, examination of the means and me-
dians of all descriptive statistics revealed strongly left-skewed dis-
tributions for all introduced network characteristics (see  fig. 2 ).

  Simulation Study
  To evaluate the performance of the LKMT with our network-

based kernels, we studied empirical type I error rates and power in 
different genetic settings. Note that null simulations for testing the 
type I error rate are equivalent to the scenarios for testing power 
without genetic effects. Empirical power or empirical type I error 
rates are determined as the proportion of simulations for which a 
p value < the ordinary 0.05 threshold is obtained. Ideally, the em-
pirical type I error rate should be exactly 0.05, while conservative 
approaches are acceptable; whereas power should be as high as 
possible. We compared type I error rates and power of the LKMT 
with our network-based kernels (NET) with the performance of 
the LKMT with the LIN kernel and the minimum p value approach 
(minP). In the latter method, the minimum p value from single-
marker tests applied to every SNP in the pathway represents the 
association of the entire pathway. Since larger pathways are more 
likely to generate low p values by random chance  [7] , we used a 
conservative Bonferroni correction to adjust the obtained p value 
by the size of the simulated pathway.

  A comprehensive pathway disease model that explains how in-
teractions between genes with susceptibility variants lead to the 
development of a disease connecting biological and statistical 
thinking has not been developed so far. Even if such a model were 
to exist, its necessary complexity would render it extremely chal-
lenging to simulate. Our network-based kernels have been devel-
oped with such a degree of complexity in mind, but we use a sim-
pler simulation model. This model meets many assumptions of the 
LKMT with the LIN kernel, and therefore we expect the LIN kernel 
to be favored. Roughly, our method of simulation can be divided 
into 4 parts:

  (1) Choosing the genetic setting with respect to a known network 
structure and corresponding genetic effects.

  (2) Simulating genetic variants and corresponding case-control 
status for all individuals.

  (3) Creating a structure of a pathway by mapping genetic variants 
to ‘genes’ and ‘genes’ to ‘pathways’.

  (4) Applying the pathway analysis approaches to the simulated 
data.
  As pathways we choose to investigate network structures of 2 

real KEGG pathways;  path:hsa04950  with 22 genes and  path:
hsa05218  with 9 genes (compare  fig. 3 ). Values of dimension, den-
sity, average degree, and average negative degree of  path:hsa04950  
are very close to the mean values of these network characteristics 
obtained from all investigated KEGG pathways. In contrast, the net-
work characteristics of  path:hsa05218  are more extreme compared 
to the KEGG pathway averages. In order to examine empirical pow-
er, we simulated 2 different genetic settings each at different 
strengths. In the ‘connected’ setting, 3 ‘genes’, each of which con-
tains 3 causal genetic variants, were selected in a way that they di-
rectly interact in the network. In the ‘apart’ setting, 3 ‘genes’, each 
including 3 causal genetic variants, were far away from each other 
with respect to the given network structures (see  fig. 3 ). We expect-
ed our network-based kernel to perform better in the ‘connected’ 
setting than in the ‘apart’ setting, as our network-based kernel was 
developed with the aim of exploiting connections explicitly. In both 
settings, detection should be aided by the presence of strong linkage 
disequilibrium (LD) between causal genetic variants and simulat - 
ed noncausal variants (compare online suppl. fig. S1; for all online 
suppl. material, see www.karger.com/doi/10.1159/000357567; 
 Barrett et al.  [40] ). The effect strength was varied by increasing het-
erozygous risk from 1.05 to 1.20 and the homozygous risk accord-
ingly from 1.10 to 1.40 for each causal variant.

  Given the causal variants and their effect sizes, we simulated 
genetic variants and corresponding case-control status for 1,000 
individuals using the HAPGEN2  [41]  and the CEU sample of the 
International HapMap Project  [42] . HAPGEN2 is considered to 
mimic real genetic studies due to its reliance on reference popula-
tions and observed fine-scale recombination rates. Thus, it pre-
serves natural LD structures in the human genome. We simulated 
1,100 genetic variants in the region between 1,054 and 11,657 kbp 
on chromosome 1 for 500 cases and 500 controls. For each sce-
nario, we repeated the simulations 1,000 times. Note that we did 
not use the pathway topology directly when simulating data.

  To apply our network-based kernel, we require genetic variants 
to be assigned to genes, which are in turn mapped to a network 
topology. Since for reasons of feasibility we simulate genetic vari-
ants in one genomic region, we worked with local regions acting 
as substitutes for real genes. We selected 22 or 9 local regions each 
with 50 genetic variants separated by 500 kbp to prevent LD be-
tween ‘genes’. By restricting our analysis to same size ‘genes’, there 
was no difference between results obtained with either the NET or 
the ANET kernel. In the situation of equally sized genes, the adjust-
ment for ANET reduces to a constant scale factor, which vanishes 
during the moment matching procedure. 

  Finally, we could apply all 3 investigated methods to the differ-
ent simulations. For the LKMT with the NET kernel, we utilized 
the signed as well as unsigned versions of the pathways. Note that 
only the NET kernel uses the created structure of the pathway. 
Neither the LIN kernel nor the minP approach even takes into ac-
count which genetic variants belong to the same ‘gene’.
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  Results

  Simulation Study
  We demonstrate here that the type I error rate is main-

tained for the LKMT with both the LIN and NET kernel 
as well as the minP approach in all studied genetic settings 
(see  table  3 ). Of all investigated pathway analysis ap-
proaches, minP is the most conservative possibly due to 
the utilization of the Bonferroni correction. The type I 
error rate for all methods was closer to the expected level 
for the pathway with only 9 genes. Even so, if we were to 

simulate larger pathways we would observe size bias for 
the LIN kernel. Size bias refers to the inflation of the type 
I error rate with increasing numbers of SNPs contained 
in the pathways. This phenomenon was demonstrated 
conclusively for the LKMT with the LIN kernel via a sim-
ulation study by Freytag et al.  [43] . 

  Power simulations indicate that the LKMT with our 
network-based kernels is indeed superior in performance 
compared to other pathway analysis approaches for some 
genetic settings (see  fig. 4 ). In particular, the NET kernel 
has up to 10% more power than the LIN kernel in the 
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  Fig. 2.  Histograms for all network properties of the 182 KEGG pathways. The network characteristics include 
dimension, density, average degree, inhibition degree, diameter, transitivity, and signed transitivity.
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‘connected’ setting. However, if the causal variants are 
distributed more randomly with respect to the network, 
the LIN kernel does generally better than the NET kernel. 
Even though, for lower risk the differences between the 
LIN and NET kernel in the ‘apart’ setting are not as pro-

nounced. The minP approach was inferior to all other 
methods for both simulated pathways. Generally, all 
methods have uniformly higher power for the smaller 
simulated pathway. Furthermore, differences in power 
between the signed and unsigned version of the NET ker-
nel existed only for the larger pathway. The equivalence 
of the signed and unsigned version in the small pathway 
probably stems from the fact that it only contains one in-
hibition. Given the simplicity of our simulation study, 
which favors the LIN kernel, our network-based kernels 
(NET) performed very well.

  Application
  GWAS Findings
  Previous GWAS revealed many associations for RA, 

but they detected only a few for LC  [23, 31] . The results 
from our analysis of the RA and LC GWAS confirm these 
observations. The LKMT with the signed ANET, unsigned 
ANET, signed NET and unsigned NET detects 26, 27, 25 
and 26 pathways, respectively, to be significantly associ-
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  Fig. 3.  Pathway network examples: ‘matu-
rity onset diabetes of the young’ pathway 
 (path:hsa04950)  and ‘melanoma skin can-
cer’ pathway  (path:hsa05218) . The corre-
sponding HUGO gene identifiers for each 
node are given in the box at the bottom. 
Solid lines correspond to activations and 
dashed lines to inhibitions. The ‘connect-
ed’ scenario refers to the simulations where 
genes with causal SNPs are close to each 
other, while in the ‘apart’ scenario the 
genes with causal SNPs are far apart. 

  Table 3.   Type I error rates for null simulations differentiated by the 
tested pathways

 Method  Inhibition   Estimated type I error rate 

  pa th:hsa04950
   (1,100 SNPs) 

  path:hsa05281
   (450 SNPs) 

 NET  Not considered  0.039  0.050 
 NET  Considered  0.042  0.050 
 LIN  –   0.049  0.048 
 minP  –   0.019  0.023 

  The type I error rate is based on 1,000 null simulations each 
with 500 cases and 500 controls. 
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ated with RA. In contrast, we were unable to detect any 
significant pathway associations for LC. Another possible 
explanation for the lack of significant LC associations 
could also lie in the small sample size of the GLCS GWAS.

  Similar to previous studies on LC, we cannot find any 
significant pathways either. Thus, we rank the pathways 
according to their p values in order to capture potential 
important effects on the disease. The top 5 ranked path-
ways are largely similar for the different network-based 

kernels. As an example, we depict the results for signed 
ANET in online suppl. table S1 as this is the most sophis-
ticated version of our kernels. The smallest p value belongs 
to the pyruvate pathway  (path:hsa00620) . The pyruvate 
pathway converts glucose to pyruvate, which supplies en-
ergy to living cells when oxygen is present. When oxygen 
is lacking, it converts pyruvate to lactate. In cancer cells, 
this second process takes place regardless of the presence 
of oxygen, otherwise known as the Warburg effect  [44] .
Today, the Warburg effect is recognized as one of the im-
portant characteristics of cancer-causing mutations.

  For RA, most of the identified susceptibility pathways 
contain genes which have been shown to be associated 
with the development and progression of RA in at least 
one scientific publication (for significant results of signed 
ANET, see online suppl. table S2). Furthermore, genes 
located in the HLA region were present in the majority of 
identified pathways. The results obtained using different 
network-based kernels hardly differ. Results between the 
signed and the unsigned version only differ by one path-
way for the adjusted and unadjusted versions of the net-
work-based kernel probably owing to the lack of inhibi-
tions in the investigated pathways. Interestingly, there are 
2 pathways identified by the signed ANET but not by 
signed NET, and 1 vice versa. This indicates that differ-
ences in the weighting of genes can alter the results. For 
all network-based kernels, the steroid hormone biosyn-
thesis pathway  (path:hsa00140)  is among the pathways 
with the smallest p values. Steroids are known to influ-
ence the immune system heavily. They can, in fact, reduce 
inflammation, which is the reason that they are still some-
times used in RA treatment. Moreover, we identify 1 
 novel association with the drug metabolism pathway 
 path:hsa00983 . This pathway is responsible for process-
ing drugs involved in the inhibition of DNA replication, 
such as fluorouracil and azathioprine. Interestingly, aza-
thioprine is widely used as an immunosuppressive in the 
treatment of chronic inflammatory diseases, such as RA. 
Its efficacy in this area is attributed to its role in the con-
trol of T cell apoptosis by modulation of RAC1 activation 
upon CD28 co-stimulation  [45] .

  Comparison of the Results by Different 
Pathway-Based Methods
  In addition to our novel signed ANET kernel, we also 

applied the established GSEA approach and the LKMT 
with the simpler LIN kernel. For LC, none of the methods 
detected any significant pathway association. In contrast, 
the number of identified RA susceptibility pathways dif-
fered greatly, but they had a large common subset. The 
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  Fig. 4.  Results from power simulations. The power in the ‘con-
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and  path:hsa05218) . Note that the results for the signed and un-
signed network-based kernel are identical in the second pathway. 
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conventional GSEA approach identified only 14 path-
ways with significant effects, possibly due to the compar-
ative nature of the hypothesis. All of them were detected 
as well with the LKMT using the signed ANET kernel, 
which found 26 associated pathways. This might indicate 
a higher sensitivity of the LKMT with network-based ker-
nels. Instead, the results obtained by using the LIN kernel 
were less specific, as 130 pathways were determined to be 
associated with RA. This large proportion of significant 
results seems to be unlikely. Instead, we believe that size 
bias in combination with the HLA region is responsible 
for this oversensitivity. Thus, in our applications the 
LKMT with the network-based kernel was powerful, gen-
erated reasonable results and thus represents the happy 
medium between sensitivity and specificity.

  We also examined the p values of the different meth-
ods. We observed that the distribution of the LIN kernel 
results seem to be anomalously extreme. In contrast, the 
p value distribution obtained with our network-based 
kernel, which was fairly close to the one of GSEA, did not 
exhibit any such anomalies (see online suppl. fig. S2).

  Impact of Network Characteristics
  Associations of LKMT results and network topology in-

dicate that the effects of the genotypes are concealed by the 
effects generated by network structures. Thus, we corre-
lated network structure with obtained p values according 
to Kendall’s rank coefficients (see  table 4 ). Here, network 
topology is described by various network characteristics 
ranging from the average degree to clustering coefficient. 

  Apparently, there is some correlation in the RA GWAS 
between the p values and properties of underlying net-
works, whereas the LC GWAS results reveal quite low de-
grees of correlations. We observed correlations between 

RA p values and pathway dimension for all kernels. This 
indicates the aforementioned presence of size bias. How-
ever, the bias is strongly reduced for our network-based 
kernels. We believe that further investigations of this is-
sue will lead to better size corrections. Density, which 
measures the connectivity of the network, also seems to 
influence the magnitude of the p values. Since this influ-
ence is even higher for the LIN kernel, which does not 
incorporate network information, we assume some spu-
rious correlation. The effective size of the pathway is re-
flected by the diameter; its correlation therefore depends 
on size as well as the degree of connectivity. The inhibi-
tion degree displays negative correlations, but these were 
even stronger for the LIN kernel, so that we again assume 
some spurious correlation. We cannot notice any effect 
for the extent of clustering in the pathways which is quan-
tified by (signed) transitivity. Altogether, the differences 
between networks with regard to their non-disease-caus-
ing characteristics do not seem to introduce bias.

  Discussion

  The topology of pathways contains information rele-
vant to our understanding of the functional connections 
between biological pathways and complex disease pro-
gression and development. We developed a network-
based kernel for the logistic kernel machine to make use 
of pathway information when analyzing GWAS. Alto-
gether, this presents a sophisticated and elegant statistical 
framework, which allows the seamless integration of ad-
ditional knowledge on biological mechanisms. We dem-
onstrated that our procedure maintains the correct type I 
error rate and often has more power to detect genuine 

  Table 4.   Correlations of network characteristics and p values for the investigated GWAS

 Network characteristics  LC GWAS RA GWAS 

 LIN  ANET  NET  LI N  ANET  NET 

 Dimension 0.13  –0.11  –0.12   –0.58    –0.33    –0.29  
 Density  –0.11 0.00  –0.01 0.38  0.32  0.28  
 Average degree 0.02   –0.16    –0.17    –0.23   –0.05  –0.04 
 Inhibition degree 0.13 0.06 0.06   –0.28    –0.19    –0.17  
 Diameter 0.05  –0.11  –0.12   –0.36    –0.25    –0.23  
 Transitivity 0.04  –0.10  –0.15  –0.07 0.07 0.06 
 Signed transitivity 0.05   –0.15    –0.12    –0.19  0.00 0.01 

  The values are nonlinear correlation coefficients (according to Kendall). Values in bold indicate a correlation 
that substantially differs from zero. 
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associations than 2 conventional pathway analysis meth-
ods.

  The applications to case-control studies for LC and RA 
demonstrated the ease of implementation and efficiency 
of our method. Furthermore, the disease studies revealed 
its ability to generate plausible results under extremely 
different genetic profiles. For LC, the most promising re-
sult, though not significant, was the suggestion of a rela-
tionship with pyruvate metabolism. An immunohisto-
chemical analysis conducted by Koukourakis et al.  [44]  
provided evidence that the pyruvate pathway is repressed 
in 73% of non-small-cell lung carcinoma. Therefore, it is 
possible that the attempt to replicate our results in a big-
ger study may well shed further light on the question as 
to whether there exists a genuine genetic association or 
not. In the case of RA, several promising pathways, most 
of them involving the HLA region, were identified using 
our network-based procedure. Besides the pathway for 
drug deactivation, the notch-signaling pathway is of con-
siderable interest in finding the cause of RA. Notch sig-
naling may be responsible for further exacerbating the 
inflammatory response and joint destruction in RA pa-
tients through the formation of dysfunctional microves-
sels in the papillary dermis of the skin  [46] .

  Currently, there is little knowledge of how the in-
creased occurrence of genetic variation in a pathway af-
fects the functionality of the human system. This lack of 
a reasonable biological effects model not only severely 
hampers method development, but it also makes infor-
mative simulation studies impossible. For our new kernel 
in particular, it would be of tremendous interest to inves-
tigate power using meaningful pathway-disease scenari-
os. Since such simulation scenarios would feature interac-
tions between causal variants, we are confident that our 
network-based kernels would then be by far superior in 
comparison with commonly used kernels. Such kernels, 
in particular the LIN kernel, typically assume linearity of 
effects and thus fail under such conditions. Furthermore, 
these simulation models would allow us to investigate the 
effect of incorrectly specified networks. We expect that 
the network-based kernels can handle some missing links 
with some power decrease. In the application, we already 
demonstrated that our approach found a happy medium 
between sensitivity and specificity, even though the used 
pathway data are known to be incomplete. Thus, given 
the extent of our knowledge we will have to rely on the 
good performance of our kernels in the 2 applications as 
well as the greatly simplified simulation study.

  Our method constitutes a promising foundation for 
further advances in network-based analysis of GWAS 

data. In particular, the procedure to generate positive 
semi-definite network matrices, which can include nega-
tive interactions, may find applications in diverse fields of 
research. As one area of improvement, we see the inclusion 
of interaction directionality between genes. An adjacency 
matrix also tracking the direction of the interaction would 
no longer be symmetric, thus violating the requirement of 
positive semi-definite kernels. The restriction to undirect-
ed adjacency matrices is a common simplification but 
presents a considerable loss of information. Another im-
provement would lie in the explicit consideration of link 
uncertainty via incorporating link prediction approaches 
or Bayesian methods in the construction of the kernel.

  More importantly, the inaccurate and incomplete na-
ture of regulatory models remains the biggest challenge 
to network-based analysis. Collaborative research by lab-
oratories and institutes has improved our understanding 
of biological processes greatly, but much work still re-
mains to be done. The true value of network-based meth-
ods will only be realized, when network models leverage 
additional information particular to the investigated dis-
ease  [5] . In particular, models should account for the cell-
specific context and the dynamic nature of the regulation 
of biological mechanisms dependent on time  [47] .
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