

Supplementary Material

The Phosphorus Economy of Mediterranean Oak Saplings Under Global Change

Inga Dirks^{1†}, Julia Köhler², Shimon Rachmilevitch¹, Ina C. Meier^{2*}

¹French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 84990, Israel

²Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of Goettingen, 37075 Göttingen, Germany

[†]Present address: Department of Crop Sciences, Division Agronomy / Crop Science, Georg August University of Goettingen, 37075 Göttingen, Germany

* Correspondence:

Ina C. Meier imeier1@uni-goettingen.de

1 Supplementary Figures and Tables

1.1 Supplementary Figures

SUPPLEMENTARY FIGURE 1 (A) Biomass, **(B)** fine root:leaf biomass ratio, and **(C)** relative growth rate (RGR) of young Palestine oak (*Quercus calliprinos*) trees grown at increasing soil N:P ratio and decreasing soil moisture in a climate chamber. Shown are means and standard errors for replicate saplings (n = 48). The results of two-way ANOVAs on the significance of the effect of soil N:P ratio (NP) or soil moisture (M) are indicated by asterisks (*** and ** for $p \le 0.001$ and 0.01; n.s., not significant).

SUPPLEMENTARY FIGURE 2 Mass-based instantaneous late-summer photosynthesis of young Palestine oak (*Quercus calliprinos*) trees grown at increasing soil N:P ratio and decreasing soil moisture in a climate chamber. Shown are means and standard errors for replicate saplings (n = 24). The results of two-way ANOVAs on the significance of the effect of soil N:P ratio (NP) or soil moisture (M) are indicated by asterisks (** for $p \le 0.01$; n.s., not significant).

SUPPLEMENTARY FIGURE 3 ³³P uptake rate of fine roots, coarse roots and aboveground compartments of young Palestine oak (*Quercus calliprinos*) trees grown at increasing soil N:P ratio in **(A)** well-watered and **(B)** dry soil conditions in a climate chamber. Shown are means and standard errors for replicate saplings (n = 24). The results of two-way ANOVAs on the significance of the effect of the N:P ratio (NP) or soil moisture (M) are indicated by asterisks (*** for $p \le 0.001$; n.s., not significant). Significant differences at $p \le 0.05$ between soil N:P ratios are indicated for well-watered soil by different upper-case letters and for dry soil by different lower-case letters.

SUPPLEMENTARY FIGURE 4 Regression analyses on the dependence of (A) long-term P uptake efficiency (PUptakeE) from N uptake efficiency (NUptakeE) (B) P use efficiency (PUE) from N use efficiency (NUE), (C) PUE from PUptakeE, and (D) NUE from NUptakeE in young Palestine oak (*Quercus calliprinos*) trees grown at increasing soil N:P ratio and decreasing soil moisture. Significant relations are indicated for well-watered soil by black lines and for dry soil by grey lines ($p \le 0.05$).

SUPPLEMENTARY FIGURE 5 Regression analyses on the dependence of (A) area-based instantaneous late-summer photosynthesis from leaf N concentration and (B) instantaneous late-summer photosynthetic P use efficiency (PPUE) from instantaneous late-summer photosynthetic N use efficiency (PNUE) in young Palestine oak (*Quercus calliprinos*) trees grown at increasing soil N:P ratio and decreasing soil moisture. Significant relations are indicated for well-watered soil by black lines and for dry soil by grey lines ($p \le 0.05$).

1.2 Supplementary Table

SUPPLEMENTARY TABLE 1 Two-factorial analyses of variance (ANOVA) on the significance of the effects of the soil N:P ratio (NP), soil moisture (M), and their interaction on the variance of fine root or young leaf P concentrations, fine root or young leaf N:P ratio, area-based instantaneous latesummer photosynthesis (A₈₀₀), and specific leaf area (SLA) of young Palestine oak (*Quercus calliprinos*) trees. Given are *F* values and the probabilities of error *p*. Response variables were log-transformed to resemble normality. Significant effects ($p \le 0.05$) are indicated by bold letters (n = 48 for P concentrations and SLA; n = 24 for N:P ratios).

	P _{Fine roots}		P _{Young leaves}		N:P _{Fine roots}		N:P _{Young leaves}		A 800		SLA	
	F	р	F	р	F	p	F	p	F	p	F	р
NP	2.32	0.11	2.31	0.11	0.23	0.80	5.38	0.02	8.02	0.001	3.50	0.04
М	0.00	0.95	0.23	0.63	4.09	0.07	2.78	0.12	0.02	0.89	1.05	0.31
NP*M	1.19	0.31	0.83	0.45	0.18	0.83	2.34	0.14	0.44	0.65	2.25	0.12