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Abstract

Transcriptome analysis

Background: Elevated water temperature, as is expected through climate change, leads to masculinization in fish
species with sexual plasticity, resulting in changes in population dynamics. These changes are one important
ecological consequence, contributing to the risk of extinction in small and inbred fish populations under natural
conditions, due to male-biased sex ratio. Here we investigated the effect of elevated water temperature during
embryogenesis on sex ratio and sex-biased gene expression profiles between two different tissues, namely gonad
and caudal fin of adult zebrafish males and females, to gain new insights into the molecular mechanisms
underlying sex determination (SD) and colour patterning related to sexual attractiveness.

Results: Our study demonstrated sex ratio imbalances with 25.5% more males under high-temperature condition,
resulting from gonadal masculinization. The result of transcriptome analysis showed a significantly upregulated
expression of male SD genes (e.g. dmrt1, amh, cyplicl and sept8b) and downregulation of female SD genes (e.g.
zp2.1, vtgl, cypi9ala and bmp15) in male gonads compared to female gonads. Contrary to expectations, we found
highly differential expression of colour pattern (CP) genes in the gonads, suggesting the 'neofunctionalisation’ of
those genes in the zebrafish reproduction system. However, in the caudal fin, no differential expression of CP genes
was identified, suggesting the observed differences in colouration between males and females in adult fish may be
due to post-transcriptional regulation of key enzymes involved in pigment synthesis and distribution.

Conclusions: Our study demonstrates male-biased sex ratio under high temperature condition and support a
polygenic SD (PSD) system in laboratory zebrafish. We identify a subset of pathways (tight junction, gap junction
and apoptosis), enriched for SD and CP genes, which appear to be co-regulated in the same pathway, providing
evidence for involvement of those genes in the regulation of phenotypic sexual dimorphism in zebrafish.
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Background

Mammals and avian species have a chromosomal sex de-
termination (SD) mechanism in vertebrates with master
switch of SD located on the sex chromosomes [1-4],
whereas sex in teleost fish can be diverse and their sex-
ual plasticity depends on genetic and environmental
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factors [5]. The genetic mechanism of SD in zebrafish
(Danio rerio), a widely used model organism, is not fully
understood, since there are no differences between the
chromosomal sets of male and female genomes [2, 3]. In
a previous study, it was found that a sex-associated re-
gion in zebrafish differs between wild and domesticated
strains, located in the right telomere of chromosome 4
of wild populations. However, this sex-specific region
was not found in domesticated strains [6], leading to the
assumption that sex in domesticated strain is polygenet-
ically determined [1, 3, 6, 7], in which the
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sex-determining genes are distributed over the whole
genome [2]. Among a series of biotic and abiotic factors
that influence the mechanism of SD in zebrafish during
gonad development resulting in masculinization,
temperature is the most important environmental factor
[1, 8, 9]. During early embryonic development, the num-
ber of primordial germ cells (PGCs) plays an important
role in gonad differentiation and sexual dimorphism [10,
11]. In order to form the primordial gonads, which later
develop into a testis or an ovary, the PGCs form cell
clusters and migrate during the first day of embryonic
development toward the somatic cells of the gonad and
merge with these cells to form germ cells. A subset of
germ cells acquires the ability to operate as germ line
stem cells, which later differentiate into gametes [10,
12]. During this critical embryonic developmental
period, the loss or decrease in the number of PGCs may
cause by increased water temperatures leads to
masculinization [11, 13, 14]. This process is regulated in
such a way that the testicular developmental genes are
expressed and the expression of the ovarian developmen-
tal genes is inhibited in the “juvenile ovary” stage [8, 15].
The sex-reversed females are known as “neomales”, which
possess testis and have similar gene expression profiles as
normal males [1]. Hence, SD in zebrafish is controlled by
the interaction between fish genotype and environmental
factors (GxE) [1, 2, 13]. Elevated water temperature, e.g.
caused by climate change, may induce male-biased popu-
lations, leading to an elevated risk of extinction in thermo-
sensitive fish populations in nature [16].

In spite of the absence of heterogamety in zebrafish,
sex-biased gene expression profiles in adult fish revealed
a greater number of male-biased than female-biased
genes and a higher magnitude of expression level in
male-biased genes compared to female-biased genes in
the gonadal tissues [17, 18]. Furthermore, a greater pro-
portion of sex-biased genes compared to unbiased genes
in zebrafish demonstrated an evidence for positive selec-
tion and therefore faster evolution of sex-biased genes
[18]. In general, rapid evolution for sex-biased genes
might be related to positive selection [18], sexual selec-
tion [19] or to genetic drift [20]. Zebrafish does not have
much more morphological sexual dimorphism. This can
be explained by the fact that accelerated evolution for
sex-biased genes as a consequence of sexual selection
acts simultaneously on both male- and female biased
genes [18]. Nevertheless, male zebrafish show a more in-
tense yellow colouration compared to females based on
xanthophores, which is thought to be important for sex-
ual attraction [21, 22]. Unlike mammals and birds, which
have only one type of pigment cell (melanocytes), fish
species have several types of chromatophores involved in
the development of colour pattern (CP) [23, 24]. The
interaction within and between chromatophore cell
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types distributed in the hypodermis of the body and the
epidermis of scales and fins are required for CP forma-
tion in zebrafish [22-24]. In the larval stage, chromato-
phores arise directly from neural crest cells, while adult
stripe patterns are developed during metamorphosis (3—
6 weeks post fertilization) and display golden and blue
stripes composed of yellow xanthophores, silvery or blue
iridophores and black melanophores [21, 22, 25-27]. Al-
though the anal and caudal fin stripe patterns are con-
tiguous with the body stripes, the mechanism of fin
stripe formation differs from the body stripe formation.
The mechanism involved in fin CP formation in zebra-
fish is still largely unexplored [21, 22].

Despite  the popularity of zebrafish as a
well-established teleost research model animal, little in-
formation exists about the influence of elevated water
temperature during embryonic development and its later
effects on sex differentiation [13]. In this study, we in-
vestigate the sex ratio in response to high water
temperature during embryogenesis in respect to gonadal
masculinization in zebrafish. Since the regulation of
sex-biased gene expression plays a major role in pheno-
typic dimorphism [17] and the expression of SD genes
might be associated with CP genes in respect to sexual
attraction [28], the investigation of underlying molecular
mechanisms of SD and CP genes and their interactions
can provide new insights into the genetic control of sex-
ual dimorphism in zebrafish. Furthermore, exposure to
high ambient temperatures leads to a loss of pigmenta-
tion in domesticated zebrafish [1]. Transcriptome ana-
lysis of gonads and caudal fins was performed in this
study to generate profiles of the global gene expression
patterns in both sexes, due to the distinct phenotypic
differences in colouration between males and females in
the caudal fin of zebrafish [29]. This will help fill the gap
in the current knowledge regarding the association be-
tween SD and CP genes and the temperature effects on
their expression in adult fish.

Results

Temperature effects on sex ratio

Exposure of zebrafish fertilized eggs during embryonic
development from 5 to 24 h post fertilization (hpf) to el-
evated water temperature resulted in a significantly
higher male frequency compared to the control group
(73.9% vs. 48.4%; Fig. 1). The ratio of females in the
treated group amounted to 26.1% as compared to the
control group with 51.6%. The 25.5% increase in the
proportion of males under heated conditions compared
to the control group suggests the induction of
masculinization through the interaction between geno-
type and environmental factor (GxE) during SD and
gonad differentiation. However, fish that do not change
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Fig. 1 The effect of temperature treatment on sex ratio (Back-transformed least squares means in % using generalized linear model) is shown in
control and temperature treatment groups. Means within treatment with different superscripts differ significantly (P < 0.0001). *® Significant
difference between proportion of males in control and temperature treatment, *® significant difference between proportion of females in control
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their sex under the influence of high temperatures are
characterized as heat-resistant female animals.

Transcriptome analysis of differential gene expression in
the gonads and caudal fins

To elucidate the genetic mechanisms of association be-
tween SD and CP genes, we analysed the expression pro-
files of the gonad and caudal fin in treatment versus
control group within males and females to find the effect
of temperature treatment in different experimental
groups (male treatment gonad vs. male control gonad:
MTG vs. MCG; female treatment gonad vs. female con-
trol gonad: FTG vs. FCG; male treatment fin vs. male
control fin: MTF vs. MCF and female treatment fin vs.
female control fin: FTF vs. FCF), and males versus fe-
males within treatment and control groups to find the
effect of sex in different experimental groups (male con-
trol gonad vs. female control gonad: MCG vs. FCG; male
treatment gonad vs. female treatment gonad: MTG vs.
FTG; male control fin vs. female control fin: MCF vs.
FCF and male treatment fin vs. female treatment fin:
MTEF vs. FTF). A total number of 35,119 transcripts

were read in RNA sequencing (RNA-Seq) expression
profiles, in which the numbers of 18,871 expressed tran-
scripts were analysed in all experimental groups. An
overview of the significantly differentially expressed
transcripts in comparison groups is presented in Table 1.

Differentially expressed genes in temperature treatment
versus control

The results of the treatment versus control comparison
in male and female gonads (Fig. 2, Additional file 1)
showed no significantly differentially expressed genes
(DEGs) in FTG compared to FCG. However, 31 genes
were down-regulated in MTG vs. MCG, where most of
them play important role in kidney, liver, pancreas and
gonad development (e.g. ela2, ela2l, ela3l and wtlb).
This results revealed that one paralog of wilms tumor
suppressor 1 (wt1b) (SD gene, Additional file 2; see ex-
planation in  the methods) is significantly
down-regulated in MTG compared to MCG, whereas
this gene is up-regulated in the FTF compared to the
ECEF. In general, W1 encodes a zinc finger transcription
factor, which is necessary for the development of

Table 1 Overview of the significantly differentially expressed transcripts in all compared experimental groups

Treatment vs. Control

Males vs. Females

Group Upregulated Downregulated Total Group Upregulated Downregulated Total
MTG vs. MCG - 31 31 MCG vs. FCG 7705 6355 14,060
FTG vs. FCG - - - MTG vs. FTG 6483 6449 12,932
MTF vs. MCF - - - MCF vs. FCF 247 172 419
FTF vs. FCF 16 10 26 MTF vs. FTF 334 467 801
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Fig. 2 Volcano plots illustrate significantly differentially expressed genes (DEGs) in treatment versus control within males and females in the
gonad and caudal fin. a, male treatment gonad versus male control gonad: MTG vs. MCG; b, female treatment gonad versus female control
gonad: FTG vs. FCG; ¢, male treatment fin versus male control fin: MTF vs. MCF and d, female treatment fin versus female control fin: FTF vs. FCF.
Each dot in the plot represents a gene with its corresponding log,-fold change (FC) on the x-axis and p-value (—log;o) on the y-axis. Red colour
dots show selected candidate sex determination genes and blue colour dots represent selected candidate colour pattern genes. The horizontal
line indicates the significance threshold (false discovery rate; FDR < 0.05), while the vertical line segregates genes with log,FC > 1
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different tissues including kidney, gonad, spleen and heart
in fish [30]. Both paralogous of wtl (wtla and wtlb) are
existed in zebrafish [31, 32]. In contrast to the gonad, the
transcriptome analysis in the caudal fins demonstrated no
DEGs in MTF vs. MCEF, while 26 significant DEGs (16
up-regulated and 10 down-regulated) were observed in
FTF compared to FCF. The most significant
down-regulated genes in FTF are osteocalcin genes, which
are involved in mineralization of caudal fin rays and fin
skeleton formation (e.g. bglapl, f13al and plodla) in zeb-
rafish [33, 34]. The upregulation of the myosin heavy
chain isoforms gene (myhc4), which plays a role in muscle
cells [35], is identified in FTF vs. FCF. We also found up-
regulation of a small heat shock protein (kspbl1) in FTF
compared to FCE, indicating the physiological response of
animals to the high ambient temperature in treatment
compared to the control group. This gene is expressed
during development and its expression level promotes re-
sistance to environmental stressors. Thirteen small heat
shock proteins (sHSPs) are identified in zebrafish, in
which most of them are reported to be up-regulated dur-
ing development under environmental heat shock [36].

Differentially expressed genes in male versus female
gonads

The result of male versus female comparison in treated
and non-treated groups in the gonad and caudal fin re-
sulted in a considerable number of DEGs, illustrating
the effect of sex on transcriptome profiles within treat-
ment groups (Fig. 3, Additional file 1). The differential
expression level of candidate SD and CP genes (Add-
itional file 2; see explanation in the methods) in the
gonad and caudal fin are illustrated in Fig. 3. A set of
significantly DEGs from both gene groups in the gonads
is presented in Fig. 4. As expected, a substantial number
of up-regulated male-biased SD genes (e.g. dmrtl, ambh,
gsdf, tuba7l and sox9a) were identified in MCG vs. FCG
and MTG vs. FTG (Fig. 4). The result showed that the
male-biased genes related to steroidogenesis (cypllcl,
esr2b, hsd11b2, star and cyplla2) and spermatogenesis
(klhl10a, odf3b and tektl) are highly up-regulated in our
transcriptome profiles in treated and non-treated groups.
The p53 signalling pathway-involved genes (£p53 and
dkk3b) responsible for testicular differentiation and a
TNF-related apoptosis gene (tnfsf10l) are up-regulated
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Fig. 3 Volcano plots illustrate the result of significantly differentially expressed genes (DEGs) in males versus females within treatment and control
groups in the gonad and caudal fin. a, male control gonad versus female control gonad: MCG vs. FCG; b, male treatment gonad versus female
treatment gonad: MTG vs. FTG; ¢, male control fin versus female control fin: MCF vs. FCF; d, male treatment fin versus female treatment fin: MTF
vs. FTF. Each dot in the plot represents a gene with its corresponding log,-fold change (FC) on the x-axis and p-value (~log;o) on the y-axis. Red
colour dots show selected candidate sex determination genes and blue colour dots represent selected candidate colour pattern genes. The
horizontal line indicates the significance threshold (false discovery rate; FDR < 0.05), whereas the vertical line segregates genes with log,FC > 1

in male gonad in both temperature treated and control
groups. A greater magnitude of septin signaling tran-
scripts (sept3 and sept8b) encoding sperm tail proteins
was identified in the testis. A similar high expression
mode was observed for the spermatocyte development
gene (cycp3). We also detected an upregulation of leydig
cell (pdgfra) and sertoli cell differentiation (sox9a) genes
in the testis.

In contrast to the upregulation of male-biased genes,
down-regulated expression patterns of female-biased SD
genes (e.g. cypl9ala, figla, gdf9 and Bmpl5) were ob-
served in MCG vs. FCG and MTG vs. FTG (Fig. 4). Our
transcriptome analysis demonstrated that the most im-
portant folliculogenesis (bmp15, figla, gdf9 and [hx8a), vi-
tellogenesis (vtgl and vtg5) and zona pellucida proteins
genes for oogenesis (zp2.1 and zp3b) are highly expressed
in the ovary. In addition, steroid hormone and prostaglan-
din signalling genes (cypllal and cypl9ala) and Wnt sig-
nalling pathway genes (ctnnbipl, lefl and axinl) in the

ovary were also observed to be up-regulated as compared
to the testis in this study. Contrary to expectations, we ob-
served a set of significant differentially expressed CP genes
in the gonad (MCG vs. FCG and MTG vs. FTG, Fig. 4),
even though these were not differentially expressed in the
caudal fin, which could be due to their multifunctional
character in different tissues.

Differentially expressed genes in male versus female fins

In contrast to the gonad, the CP genes in the caudal fin
were not significantly differentially expressed in males
versus females in treated and non-treated groups (Fig.
3), while a high expression magnitude of some CP genes
in different groups (MCE, MTE, FCF and FTF) was ob-
served belonging to higher than the 75 quantile of CPM
(counts per million reads) distribution (Log,CPM per
mega base pairs; Mb, 24% of selected candidate CP
genes in the transcriptome profile; Fig. 5, Additional file
2). Certain candidate CP genes, such as rsp20, krt4,
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rps19, rpl24 and pabpcla were expressed at the highest
level in all aforementioned groups (higher than 99 per-
centile; LogoCPM per Mb ~ 18.5). The selected candi-
date CP genes in this study (Additional file 2) expressed
in the caudal fin were classified based on their physio-
logical function consisting of: (1) melanophore develop-
ment, e.g. itghla, hdacl, mitfa, kitiga and kita; (2)
components of melanosomes, e.g. silva, tyr, slc24a4 and
tyrplb; (3) melanosome construction, e.g. vpsI8, nsfa,
hpsl and vps33a; (4) melanosome transport, e.g. mipha
and myoSaa; (5) regulation of melanogenesis, e.g. asip2b
and mgrnla; (6) systemic effects, e.g. elovidb, vldir,
casp3a, atp7b and atpbapl; (7) xanthophore develop-
ment, e.g. csflra, ghrb and sox10; (8) Iridophore develop-
ment, e.g. Itk, hdacl, tjpla, tjplb and vpsi8 (9)
pteridine synthesis, e.g. paics, frem2b and spra, in
carotenoid-based colour patches; and (10) Eumelanin
and Pheomelanin, e.g. soxI8, nadl1.2 and edaradd.

Gene set enrichment and pathway analysis of
differentially expressed genes

A Venn diagram in Fig. 6 displays the overlapping asso-
ciations between significantly DEGs of comparison ex-
perimental groups (MCG vs. FCG, MTG vs. FTG, MCF
vs. FCF and MTF vs. FTF). In total, 762 significantly
DEGs were identified in MTG vs. FTG and 119 in MTF
vs. FTF (FDR < 0.005, log,FC > 2), which were not over-
lapping with their corresponding control groups, MCG
vs. FCG and MCEF vs. FCF, respectively. In the overlap-
ping sets, 108 significantly DEGs (FDR < 0.005, log,FC >
2) were detected between four comparison groups, con-
sidering the genes involved in the gonads and caudal
fins. The lists of these genes were used for Gene Ontol-
ogy (GO)-enrichment in the biological process category
and pathway analysis (Additional file 3). The result dem-
onstrated that the enriched GOs in the caudal fin have
functional roles in the cilia and flagella structure in the



Hosseini et al. BMC Genomics (2019) 20:341

Page 7 of 17

base pairs (log,CPM per Mbp)

25+
: . : :
t ; . s
H 2 ! .
: H H
20—
s :‘ %
o)
= +d i'
5 15 e s
a 1 e
= s
a
&)
S 5
(o] T
o | S
10- S
5— ‘ T
‘ .
1
I | | |
MCF MTF FCF FTF

Fig. 5 Box plots illustrate the expression of selected candidate colour pattern genes (CP) in the caudal fin. Each dot in the plot represents level of
expressed gene in transcriptome profiles of four experimental groups. Blue dots show the expression level of selected candidate CP genes in
male control fin (MCF), male treatment fin (MTF), female control fin (FCF), and female treatment fin (FTF), which are not significantly differentially
expressed. Each blue dot in different experimental groups stands approximately on the same expression level and the expression level of
corresponding dot in different experimental group connected using gray lines. The y-axis is the logarithm of counts per 1 million reads per mega

surface of the cells such as cilium movement
(GO:0003341), motile cilium assembly (GO:0044458)
and cilium-dependent cell motility (GO:0060285). Their
corresponding enriched pathways play a role in isopren-
oid biosynthesis to chondrocytes and cartilage tissues
development, such as terpenoid backbone biosynthesis,
synthesis and degradation of ketone bodies, and valine
leucine and isoleucine degradation (Fig. 7a Set A, 7b Set
A, Additional file 3). The Wnt signalling pathway in-
volved in somitogenesis (GO:0090244), zona limitans
intrathalamica formation (GO:0022006),
microtubule-based process (GO:0007017) and eye pig-
ment granule organization (GO:0008057), and the rele-
vant pathways in ovarian and testis development namely
Fanconi anemia and apoptosis were enriched in the
gonad (Fig. 7a Set B, b Set B, Additional file 3).

More importantly, the result of four comparison
groups illustrated the enriched GO terms related to SD
and CP, such as binding of sperm to zona pellucida

(GO:0007339), positive regulation of acrosome reaction
(GO:2000344), egg coat formation (GO:0035803) and
oogenesis (GO:0048477) for SD and lateral semicircular
canal development (GO:0060875) and retinal pigment
epithelium development (GO:0003406) for CP forma-
tion, in respect to biological processes.

According to pathway analysis in this group, tight
junction was the top significant pathway (FDR <0.002)
including important differentially expressed SD genes,
tuba4 [37] and tuba7l [38], which are functionally in-
volved in ovarian follicle and in testis development, re-
spectively. The same SD genes (tuba4l and tuba7l) were
also observed in the enriched gap junction and apoptosis
pathways. The genes in the tight junction pathway with
a CP function in melanophore development and migra-
tion (itghla and itgh1b.2) and iridophore migration or
shape change (tjpla and tjp1b) [39] are highly expressed
in our transcriptome profiles of the caudal fin. Likewise,
other CP genes (pdgfc, gnalla, and map 2kI) with a
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MCG vs. FCG

MCF vs. FCF

treatment fin (MTF vs. FTF, red)

Fig. 6 Venn diagram shows overlapping of significantly differentially expressed genes (DEGs) (false discovery rate; FDR < 0.005) using multiple
comparisons with fold-changes (FC > 2): male control gonad versus female control gonad (MCG vs. FCG, yellow), male treatment gonad versus
female treatment gonad (MTG vs. FTG, blue), male control fin versus female control fin (MCF vs. FCF, green), and male treatment fin versus female

MTG vs. FTG

MTF vs. FTF

similar function in melanophore development in the gap
junction pathway and the genes with systemic effects
(casp3a, casp3b and pdpklb) in the apoptosis pathway
were also expressed in the caudal fin in this study (Fig.
7a Set C, b Set C, Additional file 3). Therefore, the gene
set enrichment analysis (GSEA) in this study exhibited
the enriched pathway genes play a role in the SD and
CP and may have a co-regulation mechanism resulting
in co-expression of those genes as expected.

Discussion

Sex ratio in response to high temperature

In this study, high water temperature treatment during
embryogenesis in zebrafish resulted in masculinization,
while in the control group no significant difference was
found between male and female proportion. In a com-
parable study, the effect of elevated water temperature
(at 35°C during embryogenesis) from a mating of mi-
totic gynogenic males with normal females was investi-
gated in zebrafish [13]. A mitotic gynogenetic male is
developed by applying a shock treatment during the first
embryonic cell cycle of a maternal haploid cell that in-
duces two sets of chromosome in the same nucleus and
forms a diploid cell. In female-heterogametic SD system,
the gynogenesis process will result in an equal number
of ZZ males and WW females, assuming that WW indi-
viduals are viable. However, if the W chromosome is le-
thal in the homozygous condition, all offspring will be
male [40]. In Fl-generation of crossing between the mi-
totic gynogenetic males and normal females the ex-
pected proportion of females would be 50% (in the case
of using ZZ as a father) or 100% (in the case of using

sex-reversed WW male as a father) [13]. However, the
result of the aforementioned study [13] revealed a high
male frequency in temperature treatment (47.5%) com-
pared to the control group (22%), which indicates the in-
fluence of the high ambient temperature on
masculinization. A recent study of heat-induced
masculinization in domesticated AB strain of zebrafish
showed that elevated water temperature (36 °C) during
larval stage leads to a wide variety of inter-family
masculinization up to 90% [1]. The results of the effect
of the increase in water temperature on sex ratio in pre-
vious studies [1, 13, 14] are in agreement with the out-
come of this study. In many other fish species, which
have a similar sexual plasticity, the effect of elevated
water temperature on masculinization has been demon-
strated [41-43]. Therefore, our result emphasizes the
interplay between genetic and environmental influences
on SD in zebrafish and confirms earlier studies on poly-
genic SD (PSD) in domesticated strains [2, 3, 44] during
embryonic [13, 14] and larval stages [1]. However, little
is known about the molecular basis of the effects of high
water temperature during embryogenesis on SD in zeb-
rafish and many closely related species.

Transcriptome profiles of differentially expressed genes

in different temperature groups

Transcriptome analysis of gonads and caudal fins were
performed to investigate the underlying genetic mechan-
ism of the association between SD and CP genes and the
effect of high ambient temperature on their expression
profiles in zebrafish. Gene expression analysis in treat-
ment versus control group within males and females is
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Fig. 7 Results of gene set enrichment analysis (GSEA): a, Bar charts represent classification of significantly differentially expressed genes (DEGs) in
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(762 genes), Set C: the enriched pathways or GOs considering significantly DEGs in overlapping between four comparison groups (108 genes)

showed a set of DEGs in MTG vs. MCG and in MTF vs.
MCE. One of these genes, Wtl, is down-regulated in
MTG vs. MCG, which is related to the development of

different organs in zebrafish. Most studies on the func-
tion of wtl in zebrafish have been focused on the embry-
onic kidney, the pronephros, development [31, 32].
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However, W21 is necessary for urogenital ridge develop-
ment and identifying the adrenal-gonadal primordium
(AGP), and both paralogous are seems to be required for
kidney and gonad development in zebrafish [45]. These
paralogous have a clear role in pronephric glomerular
formation of kidney during embryonic development in
zebrafish. Wtla is expressed at the early of pronephros
development to form glomerular structures, while wtib
is expressed in the later stage of nephrogenesis [32]. In
adult zebrafish, a high expression level of both wtI genes
can be found in the kidney, gonad, heart, spleen, and
muscle tissues [30, 31]. Expression of wtl at AGP is es-
sential for the steroidogenic interrenal cells development
in cooperation with ff1b (nr5ala) gene (the equivalent of
mammalian SF-I), suggesting its important role during
development of gonadal primordium in zebrafish [45-
47]. In a recent study, expression of wtla gene was ob-
served in the zebrafish testis and is identified as a
pro-male gene [48]. In medaka, wtla is expressed in the
somatic cells of the gonadal primordium, but wtib is
expressed in the later stage of development. The somatic
gonadal cells in medaka arise from the lateral plate
mesoderm (LPM) at the early of embryonic development
[49]. Wtla is expressed in the LPM during early em-
bryogenesis and later in the somatic cells of the primor-
dial gonad. WtIb coordinates with the wtla to develop
both pronephros and gonad developments. Expression
of both genes in the medaka displays a strong effect on
the maintenance and survival of the number of PGCs
during gonad development [50]. Our transcriptome pro-
files revealed that thermal treatment during embryogen-
esis might influence the expression mechanism of the
wtlb gene in the zebrafish during gonad differentiation,
which in turn may result in masculinization. Since the
number and survival of PGCs are necessary for ovarian
development in zebrafish [10, 11], we hypothesized that
downregulation of wtlb in MTG compared to MCG
during embryogenesis in our study may cause the reduc-
tion in the number of PGCs, leading to masculinization
in heat-treated animals. However, its underlying molecu-
lar mechanism requires further research. Furthermore,
the high expression of hspbll in FTF vs. FCF with re-
gard to the thermal stress has been observed in this
study. Generally, sHSPs act as molecular chaperones to
prevent the aggregation of denatured proteins or to re-
verse improper protein associations during cellular stress
[51-53]. This function is an important physiological role
of sHSPs, which implicitly induces of the expression of
sHSPs by a variety of stressors [52, 53]. In zebrafish, the
high expression of hspbl1, as a member of sHSPs family,
was observed in somites, heart, dorsal mid- and hind-
brains after heat shock [36, 51]. In this study, we ob-
served a high expression of hspbll in the caudal fin of
zebrafish in response to the elevated water temperature.

Page 10 of 17

Transcriptome profiles of differentially expressed genes
in different sexes
Within a substantial number of significantly differently
expressed sex-biased genes, a series of pro-male and
pro-female genes were identified within two temperature
groups. One of the most important pro-male genes is
dmrtl, which has a sex-specific role in testis development
and its expression is necessary for the transcriptional
regulation of amh. Amh is a key testis gene and normally
expressed in the sertoli cells after testicular differentiation
and inhibits the ovarian aromatase gene expression
(cyp19ala), resulting in gonadal masculinization in zebra-
fish. Amh is downstream of dmrtl in zebrafish and its ex-
pression is regulated by dmrtl in somatic cells of testis.
These suggest that dmrt1 plays a male-specific role in zeb-
rafish and loss or decrease of its expression interferes with
normal male sexual development [7, 48, 54]. A similar ex-
pression pattern of dmrtl in other fish species such as me-
daka [55], tilapia [56], European seabass [41] and pejerrey
fish [57] has been observed in temperature-induced
masculinization. Furthermore, steroidogenic enzymes,
encoded by cyplicl and hsd11b2 pro-male genes [48], are
required for 11-oxygenated androgen production, which
are up-regulated in testis in this study. In contrast to the
pro-male genes, CypI9ala is a key regulator gene in ovar-
ian development (pro-female gene) encodes the P450 aro-
matase enzyme, responsible for conversion of androgens
to estrogens in the female gonad, and is a downstream
gene of Bmpl5. Oocyte-produced signalling protein,
Bmp15, is necessary for expression of ¢ypl9ala and main-
tains of adult female sex differentiation in zebrafish.
Hence, loss or downregulation of the expression of
Bmp15 leads to a reduction in the expression of Cyp19ala
and consequently to a disruption of ovarian development
[58]. Additionally, the expression of zp family member
genes (zp2 and zp3), which are up-regulated in the ovary,
encodes the major protein components of zebrafish egg
chorion (glycoprotein layer) and is active in the develop-
ment of oocytes [59]. Finally, a high number of signifi-
cantly sexually dimorphic transcripts are identified in our
study (Table 1), in which some of them were already iden-
tified in other studies as pro-male and pro-female genes
[1, 48] in accordance with our results. During the zebra-
fish SD and gonad differentiation, the actions of several
pathways regulate the sexual fate of an organism to de-
velop either a testis or an ovary [60]. GSEA in this study
revealed that Fanconi anemia and apoptosis pathways with
SD function in the ovary and testis respectively were
enriched in the comparative analysis of adult gonads, sup-
porting the observation of previous studies [1, 61].
Surprisingly, similar to the sex-biased gene expression
in the gonads, a significant set of CP genes was differen-
tially expressed in the gonads. Many of the CP genes in-
volved in pigment cell development have other functions
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not related to the pigmentation and they are considered
as duplicated genes that have arisen from ancestral gen-
ome duplication specific to ray-finned fish [62]. A study
on retroduplication in mammals and Drosophila demon-
strated that “testis” has a central role in fixation and
functional evolution of new genes. Indeed, testis is an
evolutionary tissue with the most rapidly evolving organ,
which may represent the target tissue for the evolution
of new genes [63, 64]. These genes and their functions
could become adopted into other tissues over time [64,
65]. These novel genes can impact the evolution of cellu-
lar, physiological, morphological, behavioral and repro-
ductive phenotypic traits [64]. The neofunctionalisation
of one copy of many duplicated genes implicated a sec-
ondary character, but is interestingly co-opted to a pri-
mary role after duplication [66]. The kit system is a
well-studied duplicated gene family known to play an es-
sential role in pigmentation and ovarian development.
Kitlga and kita genes are more specialized for melano-
phore development and migration [67, 68]. Kit ligand
and their receptor also play an important role in sperm-
atogenesis and oogenesis in adult zebrafish [69, 70].
Kitlga is expressed in the trunk of the body in zebrafish
during melanocyte migration stage and later in the skin,
and its receptor (kita) is required for melanocyte sur-
vival [67]. Kitlga and kita genes are also expressed in the
ovarian somatic follicle cells and are responsible for oo-
cyte maturation. Since the target tissue of endocrine
hormones for regulation of folliculogenesis is somatic
follicle cells, the expression of Kitlga in somatic cells
possesses a function as an external stimulating factor on
IGF-1 mediator in PI3K-Akt pathway in the gonad [70].
Kit system genes in mouse testis play an important role
in signalling cascades initiated by Kit in PGCs, sperm-
atogenesis and oogenesis. In mouse testis, kit ligand and
its receptor is expressed in sertoli cells during spermato-
gonial development and in leydig cells, which have con-
siderable influence on the endocrine function in mouse
spermatogenesis [71]. Interestingly, in this study we
found the upregulation of kit genes in the male gonads
compared to female gonads, which emphasizes the im-
portance of the kit system genes in the spermatogenesis
process in zebrafish. To the best of our knowledge, we
are the first to report the expression of a series of CP
genes in the zebrafish reproduction system, but its
underlying biological reason is still unknown and de-
serves further research.

Contrary to the gonads, no significantly differentially
expressed CP genes were observed in the caudal fin.
However, some of those genes showed a high level of ex-
pression in both temperature groups. For CP formation
in zebrafish, chromatophores arise directly from neural
crest cells during embryonic development and later dur-
ing metamorphosis from stem cells to generate the adult
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pigment pattern through interactions between different
chromatophore cell types [21, 22, 72, 73]. Besides this
cell-cell interaction mechanism, agouti-signalling peptide
(ASIP) has been observed to control the dorso-ventral
patterning in the skin of adult zebrafish (60 and 210 days
post fertilization: dpf), resulting in the graded expression
of melanin synthesis-involved genes such as wmitfa,
tyrplb and dct. However, ASIP was not detected to con-
tribute to the pigmentation of the adult fins [74] due to
different mechanisms of stripe formation in the body
and fins [21, 22]. Nevertheless, the studies of caudal fin
regeneration have been shown that the regeneration cells
are able to remember their former locations and pat-
terned the caudal fin tissue after injury in adult zebra-
fish. The expression activity of the kitligan gene is
demonstrated to promote the recovery of melanocytes
during the regeneration of adult zebrafish caudal fin
[75-77]. Sex-biased gene study in the tail of guppy has
revealed that several male-biased genes encoded proteins
with pigment biosynthesis functions (e.g. kita, kitb,
mitfa, mitfb, tyrplb, dct and xdh) [28]. In adult zebra-
fish, sexual dimorphism is illustrated by a brighter yel-
low colouration in males than in females [22]. Therefore,
assuming that the differential expression of CP genes
may be important for sex-dependent colour patterning
during early stages of development, in adults; at least
their expression levels are more constant. The observed
differences in colouration between males and females
could be due to post-transcriptional regulation of key
enzymes involved in pigment synthesis and distribution.
In GSEA, the tight junction and gap junction pathways
has been enriched in this study, in which the genes in-
volved in these pathways have a function in CP develop-
ment in zebrafish, as their expression was observed in
our transcriptome profiles. Interestingly, tuba4 and
tuba?7l, which play a role in SD in zebrafish, were differ-
entially expressed in these pathways, but their role in CP
of zebrafish needs further investigation. We also ob-
served a few SD genes (e.g. cyp19alb, zp3b, tektl, dmrtl
and sycp3) are differentially expressed in the MCF vs.
FCF and MTF vs. FTF. Taking into account the fact that
the correlations between the expression level of these
genes in the gonads and in the caudal fins are relatively
weak, the genetic cause of these gene expressions re-
quires further research.

Conclusions

Elevated water temperature during embryogenesis re-
sulted in male-biased sex ratio in this studied zebrafish
population, which supports the hypothesis of a PSD sys-
tem in domesticated strains. In this study, transcriptome
analysis of gonads revealed the activation of pro-male
gene expression and repression of pro-female gene ex-
pression in male compared to female gonads, leading to



Hosseini et al. BMC Genomics (2019) 20:341

gonadal masculinization in laboratory zebrafish. How-
ever, unexpected differential expression patterns of the
most CP genes were observed in the gonad, suggesting
the neofunctionalisation of those genes in zebrafish
reproduction system. Contrary to the gonad, the differ-
ent colouration in the caudal fin of adult fish was not
due to the differential expression of CP genes, even
though a high expression magnitude of those genes was
observed in both sexes. The observed differences in col-
ouration between males and females may be due to a
post-transcriptional regulation of key enzymes involved
in pigment synthesis and distribution. Furthermore, we
identified a subset of enriched pathways (tight junction,
gap junction and apoptosis) containing both SD and CP
genes, which may play a pivotal role in regulation of
phenotypic sexual dimorphism, regarding the differences
in CP of two sexes in adult zebrafish.

Methods

Fish stocks and husbandry

The Singapore strain of zebrafish was used in this study.
This strain was directly imported from a breeding farm
in Singapore in 1990 by the Company Aquafarm Ryba
Zeven, GmBH (Zeven, Germany) [78, 79] and kept in
the aquaculture facilities of the University of Goettingen
for research purposes in accordance with approved insti-
tutional guidelines. The zebrafish population was kept in
mixed sex groups at 28 + 0.5 °C. The photoperiod regime
was applied 12-h light/12-h dark per day. The fish were
fed two times a day with commercial food (Tetramine
junior, Germany) and freshly hatched Artemia salina
nauplii.

Temperature treatments

In this study, we used the fertilized eggs derived from
full-sib family in equal proportions in order to investi-
gate the effect of high water temperature on sexual plas-
ticity and sex related colour patterning. For this
proposed, two temperature treatments were designed: 1)
in the first treatment, the animals were kept at the con-
stant temperature of 28°C throughout the experiment
(control group), and 2) in the second treatment, the eggs
were exposed to the high water temperature of 35°C
[16, 80-82] during embryogenesis from 5 to 24 hpf
(treatment group). This development time is a critical
phase of embryonic development known as segmenta-
tion stage (between gastrula to pharyngula period) [13,
14, 83]. After treatment, the heat-exposed groups were
returned to the control temperature at 28 °C. All experi-
mental groups were then kept under the same environ-
mental conditions until sexual maturity. In order to
avoid the heat stress, the temperature of treatment
group was gradually increased and/or decreased to the
target temperature in this study. To ensure the accuracy
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of the experiment, the temperature of the experimental
groups was controlled daily throughout the study. Both
temperature treatment and control groups were mixed
separately in 36-1 tanks (AquaBox® by Aqua Schwarz
GmbH, Goettingen, Germany) 2 weeks after the eggs
had hatched until sexual maturity to eliminate the ef-
fects of population density within tanks. After sexual
maturity, the urogenital papilla was examined and, in
the unclear case, the microscopic examination was per-
formed to determine the sex of each individual. In this
study, the sex of a total number of 559 individuals was
determined in all experimental groups. All husbandry fa-
cilities, fish management and water quality control, ani-
mal care and feeding are described by details in Hosseini
et al. [14].

Tissue sample collection

Since the distinct phenotypic sexual dimorphism in col-
ouration between males and females was observed in the
caudal fin, the tissue samples of caudal fins and gonads
of adult zebrafish were collected for transcriptome ana-
lysis. Tissue samples of 6 individuals in each experimen-
tal group (control male, control female, treatment male,
and treatment female) from two different tissues (gonad
and caudal fin) were collected after sexual maturity. A
total number of 48 tissue samples (24 caudal fin and 24
gonad samples) were used for transcriptomic analysis
(Fig. 8). For this purpose, the animals were sacrificed
and tissues were carefully dissected. Tissue samples were
stored in RNA stabilization solution, RNAlater® Tissue
Collection (Thermo Fisher Scientific, Germany) and kept
at — 20 °C until starting the molecular laboratory genetic
analysis.

RNA extraction and sequencing

Total RNA of the gonad tissues was isolated using a
RNeasy Plus Mini kit (Qiagen, Hilden, Germany) and
total RNA from the caudal fin samples was extracted by
a RNeasy Fibrous Tissue kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The RNA
quantity and quality was measured using a Qubit 2.0
Fluorometer (Thermo Fisher Scientific, Waltham, USA)
and RNA Screen Tape on an Agilent Bioanalyzer 2100
(Agilent, Santa Clara, USA). The RNA integrity number
(RIN) of the most samples was>7, exception of two
samples with RIN scores of 6.1 and 5.6. The sample li-
braries preparation was performed from 500 ng input
total RNA using the TruSeq stranded mRNA kit, and se-
quenced on an Illumina HiSeq4000 platform aiming for
25 million 2 x 75 bp paired-end reads per sample.

RNA read alignment and gene counting
Quality assessment of raw sequencing data was con-
ducted using FastQC (version 0.11.4) [84] and MultiQC
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Fig. 8 General overview of experimental design and tissue sample
(Gonad and Caudal fin) collection for RNA_Seq analysis in this study.
Total RNA was isolated from adult zebrafish gonad and caudal fin
tissues of each individual separately and used for transcriptome
analysis. Hpf: hours post fertilization; dpf: days post fertilization; C:
control; T: temperature treatment

(version 1.3) [85] for forward and reverse reads. Due to
the overall high quality of the reads, no samples had to
be excluded from the analysis. FASTQ files were proc-
essed with Trimmomatic (version 0.36) [86] to remove
the low quality bases and Illumina adapters. The average
percentage of paired reads that survived in trimming
was 93.5% +0.5%. RNA read alignments were then
mapped to the Danio rerio genome assembly version
GRCz10 (GCA_000002035.3), which was downloaded
from Ensembl [87] using STAR-2pass (version 2.4.2a)
[88] and resulted in an average mapping success rate of
90.1% + 3.3%. Finally, FeatureCounts (version 1.4.3) [89]
was utilized to count the number of reads mapped for
each gene with an average successful read assignment of
73.6% +4.9%. All aforementioned software packages
were run using the standard settings.

Differential gene expression and gene set enrichment
analysis

All RNA_Seq analyses in this study were performed in
the R-Statistics program [90] using the “edgeR” package
[91]. For each tissue (gonad and caudal fin), we con-
ducted four comparisons - (1) males vs. females within
treatment and control groups, and (2) treatment vs. con-
trol within males and females— to assess the effect of sex
and temperature treatment, respectively. This resulted in
8 comparisons, for which we performed a differential
gene expression analysis (DGEA).
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To investigate the significantly differentially expressed
SD and CP genes, we prepared two gene lists for candi-
date genes: (1) a list containing genes that have been as-
sociated with SD; and (2) that have been associated with
CP, which are addressed in the different literatures and
NCBI gene database for zebrafish. For selection and
classification of CP genes, we used coat colour categories
(http://www.espcr.org/micemut) [62] and additional in-
formation given by zebrafish database (ZFIN; http://zfin.
org) [92]. A total number of 79 SD and 213 CP genes
were used as selected candidate genes in this study
(Additional file 2).

For the DGEA, we only considered genes with more
than 1 CPM to avoid unreliable results across all sam-
ples, of at least one of the eight experimental groups:
male control gonad (MCG), female control gonad
(FCG), male treatment gonad (MTG), female treatment
gonad (FTG), male control fin (MCF), female control fin
(FCF), male treatment fin (MTF), and female treatment
fin (FTF) to be expressed and use them for further ana-
lyses. This resulted in a matrix of 18,871 genes for 48
samples (6 biological replicates per experimental group).
The DGEA was conducted using a negative binomial
model and the exact test in edgeR. In general, each
DGEA was comprised of three main steps: (1)
normalization of gene counts for sample-specific effects
(sequencing depth and RNA composition); (2) fitting a
negative binomial model to the count data to estimate
relevant dispersion parameters; and (3) performing an
exact test for the negative binomial distribution to com-
pare whether gene expressions are significantly different
between two conditions.

To account for multiple testing, we employed the false
discovery rate (FDR) approach by Benjamini and Hoch-
berg [93]. We then compared the results of the 8 com-
parisons and obtained three sets of significant DEGs
(FDR < 0.005, log,FC>2), for which we performed a
GSEA to gain insight into their biological interpreta-
tions. To this end, we first created a pathway and Gene
Ontology (GO) annotation based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[94] and GO database [95], respectively. Then, for each
pathway and GO and each set of significant genes, we
performed a Fisher’s Exact test to identify pathways and
GOs that are enriched with significant genes. Hereby, we
considered pathways or GOs that contain at least one
significant gene. Due to the small number of animals
and since the Fisher’s Exact test is known to be conser-
vative, we are aware that our test might be under pow-
ered. Therefore, we considered GOs that are highly
ranked (the first 5 GOs with the smallest p-values) and
in addition 3 other important GOs regarding our objec-
tives in this study as potential candidates for discussion.
The GOs and pathways with the p-values less than 0.05
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were investigated to be enriched in DGEA. In addition,
GOs and pathways with corrected p-values after multiple
test correction (Benjamini-Hochberg method) were
considered to be significantly enriched in the DGEA and
are presented in Additional file 3.

Statistical analysis

Since sex is a binary variable characterized by 0 and 1
values, and its consideration as the independent variable
in a statistical model does not represent the assumption
of a normal distribution, and a statistically appropriate
function to describe this association is the logistic
model, therefore, a linear logistic model was used to in-
vestigate the effect of temperature treatment on sex de-
termination. In this case, the dependent variable (y;)
represents the value 1 for the probability to be male (i)
or 0 for the probability to be female (1- ;) for the obser-
vation 1i.

The logit link function [96] is defined by Logit(;%)
=5, where n; is the probability of being male on the
logit scale.

The GLIMMIX procedure of SAS version 9.3 [97] was
then used to analyse the data according to the following
model: #;=p + a,where 1; is the probability of being
male, p is the general mean effect, a; is the fixed effect
of temperature treatment (i=1: temperature-treated
eggs 35°C, i=2: control group 28°C). Least squares
means were estimated on the logit scale and then back
transformed using the inverse link function to the ori-
ginal scale (probability to be male) [98].

Additional files

Additional file 1: Table S1. Differentially expressed genes in male
treatment gonad vs. male control gonad (MTG vs. MCG). Table S2.
Differentially expressed genes in female treatment gonad vs. female
control gonad (FTG vs. FCG). Table S3. Differentially expressed genes in
male treatment fin vs. male control fin (MTF vs. MCF). Table S4.
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