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Optogenetic methods enable selective de- and hyperpolarization of cardiomyocytes 
expressing light-sensitive proteins within the myocardium. By using light, this technology 
provides very high spatial and temporal precision, which is in clear contrast to electrical 
stimulation. In addition, cardiomyocyte-specific expression would allow pain-free 
stimulation. In light of these intrinsic technical advantages, optogenetic methods provide 
an intriguing opportunity to understand and improve current strategies to terminate cardiac 
arrhythmia as well as for possible pain-free arrhythmia termination in patients in the future. 
In this review, we give a concise introduction to optogenetic stimulation of cardiomyocytes 
and the whole heart and summarize the recent progress on optogenetic defibrillation and 
cardioversion to terminate cardiac arrhythmia. Toward this aim, we specifically focus on 
the different mechanisms of optogenetic arrhythmia termination and how these might 
influence the prerequisites for success. Furthermore, we critically discuss the clinical 
perspectives and potential patient populations, which might benefit from optogenetic 
defibrillation devices.

Keywords: optogenetics, defibrillation, cardioversion, ventricular arrhythmia, ventricular tachycardia,  
ventricular fibrillation, atrial fibrillation, implantable cardioverter defibrillator

INTRODUCTION

Optogenetic Tools Relevant to Cardiac Defibrillation
Optogenetics is a technology that employs light-sensitive proteins for the stimulation of cells 
and organs by illumination and can be  used in vitro as well as in vivo (Hegemann and Nagel, 
2013). Optogenetic stimulation provides unprecedented spatiotemporal resolution since light 
can be  focused to specific regions using lenses or light fibers, and the exact time of activation 
and deactivation is defined by onset and duration of the illumination. Furthermore, by expressing 
optogenetic proteins under the control of cell type-specific promoters, the stimulation can 
be  restricted to certain cell types of interest within an intact organ. The most frequently used 
optogenetic protein is Channelrhodopsin2 (ChR2), a light-gated, non-selective cation channel 
derived from green algae (Nagel et  al., 2003). This protein with seven transmembrane domains 
contains all-trans-retinal as chromophore in which photon absorption leads to isomerization 
to the 13-cis form and subsequently opening of the channel pore, which mainly conducts Na+ 
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and K+ ions. Fortunately, retinal as co-factor is already present 
in most mammalian tissues in vivo (Kane et  al., 2005). Within 
excitable cells, ChR2 activation leads to inward currents and 
cell membrane depolarization, which allows contact-free control 
of the membrane potential. A myriad of different 
Channelrhodopsin variants have been created by amino acid 
exchanges, generating chimeric proteins or identifying new 
versions in other species in nature, which vary in their light 
sensitivity, wavelength specificity, and on- and off kinetics 
(Mattis et  al., 2011). Besides channelrhodopsins, light-driven 
H+ and Cl− pumps from bacteria and fungi were used to 
export H+ ions or import Cl− ions, which leads to light-induced 
hyperpolarization and inhibition of electrical activity (Zhang 
et al., 2007; Mattis et al., 2011). New Cl− selective ChR2 variants 
(Berndt et  al., 2014; Wietek et  al., 2014) as well as natural 
anion conducting light-gated channels (Govorunova et al., 2015) 
can also hyperpolarize some cell types; however, this depends 
strongly on the Nernst potential for Cl−. In fact, in cardiomyocytes, 
light-induced activation of anion-conducting channels at resting 
membrane potential leads to depolarization as shown elegantly 
by Kopton et al. in this Research Topic article collection (Kopton 
et  al., 2018). Recently, K+ selective light-gated ion channels 
have been described for optogenetic silencing of electrical 
activity but with very slow off kinetics (Alberio et  al., 2018; 
Bernal Sierra et  al., 2018).

Optogenetic Pacing of Cardiomyocytes 
and Intact Hearts
Ever since its development, optogenetics has been used in the 
field of neuroscience to study basic neurophysiology and disease 
mechanisms by light-induced modulation of electrical activity 
in neurons (Adesnik, 2018). Our group has shown for the first 
time that optogenetics can be  employed for light-based pacing 
of cardiomyocytes in vitro and of the atria and ventricles of 
transgenic mice in vivo (Bruegmann et  al., 2010). Similarly, 
Arrenberg and colleagues demonstrated in embryonic zebrafish 
hearts light-induced hyperpolarization with a light-driven Cl− 
pump to block excitation as well as ChR2-based pacing (Arrenberg 
et  al., 2010). These publications laid the foundation for the 
field of cardiac optogenetics with subsequent publications focusing 
mainly on technological developments and optogenetic pacemaking 
(Jia et  al., 2011; Abilez, 2012; Boyle et  al., 2013; Nussinovitch 
et  al., 2014; Zaglia et  al., 2015; Klimas et  al., 2016; Lapp et  al., 
2017; Rehnelt et  al., 2017). In addition to direct pacing by 
light-induced depolarization, modulation of intrinsic pacemaking 
mechanisms and induction of arrhythmic beating were performed 
by optogenetic stimulation of the Gq or Gs protein-coupled 
receptors Melanopsin (Beiert et  al., 2014) or Jellyfish opsin 
(Makowka et  al., 2019), respectively. To be  able to propose 
clinical applications of cardiac optogenetics, our group has 
demonstrated that systemic injection of adeno-associated viruses 
(AAV) results in ChR2 expression in the mouse heart, which 
is sufficient for optogenetic pacing (Vogt et  al., 2015). The AAV 
ChR2 gene transfer strategy was extended to rats in order to 
suggest optogenetic cardiac resynchronization by multi-point 
illumination (Nussinovitch and Gepstein, 2015). Proving the 

ability to express ChR2 in wild-type hearts, these papers allowed 
for the first time a translational perspective for cardiac optogenetics. 
Because the potential application of optogenetic pacing of the 
heart has been reviewed extensively (Entcheva, 2013, 2014, 2015; 
Ambrosi et  al., 2014; Boyle et  al., 2014, 2015; Klimas and 
Entcheva, 2014) and optogenetics would probably provide only 
minor advantage over implantable electrical pacemakers, we will 
focus in this review on optogenetic termination of 
cardiac arrhythmia.

OPTOGENETIC TERMINATION OF 
CARDIAC ARRHYTHMIA

Cardiac Arrhythmia
Ventricular tachycardia (VT) and the subsequent degeneration into 
ventricular fibrillation (VF) are life-threatening arrhythmic states 
of the heart. These may result in a drop in cardiac output, reduction 
of arterial blood pressure, syncope, and often in sudden cardiac 
death. VT and VF occur after myocardial infarction, myocarditis, 
in patients with reduced ejection fraction, during electrolyte 
imbalance or because of side effects of drugs and mutations of 
cardiac ion channels. The primary therapy of these acutely life-
threatening arrhythmias is defibrillation by an electric shock to 
resynchronize the heart. Atrial fibrillation (AF) represents the most 
common arrhythmia with growing incidence and is accompanied 
by an increase in morbidity and mortality despite being not acutely 
life-threatening (Lip et  al., 2012). In early stages of AF, the first 
clinical aim is to restore sinus rhythm by cardioversion with 
external electrical shocks (Lip et  al., 2012; Kirchhof et  al., 2016).

Cardiac arrhythmias are usually initiated by an ectopic trigger 
and sustained by areas of slow conduction that promote the 
development of a so-called re-entry mechanism or the formation 
of rotors. Triggering occurs mainly during the diastole because 
of spontaneous opening of ion channels or Ca2+ release from 
intracellular stores. A re-entry mechanism is initiated, when 
the premature propagating wave front has to travel around a 
non-excitable region. Such regions can be non-excitable due 
to the anatomical structure (e.g., scar tissue) leading to re-entry 
wave fronts around the scar. Furthermore, electrophysiological 
heterogeneities such as partial refractory tissue (Wagner et  al., 
2015) can lead to cardiac electric rotors (Pandit and Jalife, 
2013). A single macroscopic stable rotor (Figure 1A) or a 
re-entry wave front results in a monomorphic shape in the 
ECG. Additional rotors can be generated when waves traveling 
from the primary rotor encounter additional wavebreaks. This 
results in generation of highly periodic three-dimensional rotors 
that interact with each other in complex spatiotemporal patterns, 
which can be  observed in the ECG as AF, polymorphic VT, 
or VF (Wagner et  al., 2015).

Mechanisms of Electrical Defibrillation
Although the risk of VT can be  reduced by pharmacological 
treatment or catheter-based ablation of pro-arrhythmogenic 
regions in the ventricles, ventricular arrhythmias often re-occur 
in patients resulting in a high risk of sudden cardiac death. 
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For this reason, patients with a propensity for VT/VF receive 
implantable cardiac defibrillators (ICD), which can terminate 
the arrhythmia by applying rapid antitachycardia pacing or 
finally by delivering a strong and painful electrical shock (Adgey 
et  al., 2005). Even though the exact cellular mechanisms of 
defibrillation are still not fully understood, it was shown that 
it can be  achieved by depolarization of a sufficient number of 
cells in accordance to the “critical mass theory.” This model 
was developed in the early 1970s when Doug Zipes and colleagues 
demonstrated that injection of K+ into the coronary arteries 
was able to defibrillate the canine heart (Zipes et  al., 1975) 
probably by keeping cardiomyocytes depolarized and refractory 
and thereby block conduction. However, electrical shocks are 
restricted to few milliseconds and conduction block is unlikely 
to be sustained during electrical cardioversion or defibrillation. 
More likely, electrical shocks induce brief depolarization, which 
terminates arrhythmia by a mechanism called “filling of the 
excitable gap.” The excitable gap is the excitable myocardium 
(Figure 1A, green) between the trailing edge of the bypassed 
and the leading edge of the next reentrant wave front (Kleber 
and Rudy, 2004) and can be  activated by the electrical shock 
or by antitachycardia pacing protocols producing a second wave 
front which will collide with the arrhythmic wave front. The 
effectiveness of this mechanism has been documented in clinical 
trials (De Maria et  al., 2017) and depends on the duration 
and location of the excitable gap relative to the pacing site, 
which is rather difficult to predict. The excitable gap can also 
be  reduced by increasing the cardiac wavelength [conduction 
velocity × action potential duration (APD)]. This is considered 
to be  one alternative mechanism of electrical defibrillation 
because it has been shown that electrical shocks can temporally 
increase APD (Dillon, 1991).

Interestingly, also hyperpolarized areas occur in the cardiac 
tissue during an electrical shock because of the presence of 
virtual anodes. In fact the hyperpolarized myocardium is even 
larger in extent than depolarized tissue, because of asymmetric 
non-monotonic influence of the electric shock on myocyte 
membrane potential (Nikolski et  al., 2004; Dosdall et  al., 2010). 
In consequence, cardiac excitation can be  initiated de novo at 
the boundaries of a virtual anode potentially causing re-initiation 
of a re-entry mechanism and failure of defibrillation (Efimov 
et  al., 1998). Mathematical modeling of the ventricles suggests 
that such re-initiation could be  prevented if hyperpolarization 
is strong enough to recover all Na+ channels from inactivation 
allowing the de novo excitations to travel fast enough through 
the virtual anode tissue to collide with the refractory tissue of 
depolarized areas (Cheng et  al., 1998; Dosdall et  al., 2010).

In vitro Experiments on Cardiomyocyte 
Monolayers Predict Optogenetic 
Defibrillation
The idea of optogenetic arrhythmia termination (Knollmann, 
2010) was generated by our early experiments in vitro, which 
showed that continuous illumination prolongs APD and refractory 
period of ChR2 expressing cardiomyocytes. Specifically, high 
intensity illumination led to a constant membrane potential 
above −35 mV, which keeps Na+ and Ca2+ channels inactivated. 
Consequently, we showed that in a monolayer of cardiomyocytes 
constant illumination was able to block electrical excitation 
and wave propagation into the illuminated region (Bruegmann 
et al., 2010), which led to the assumption that such conduction 
blocks can also be  used to block arrhythmic wave fronts in 
the intact heart. This idea was supported by subsequent  

A

B

C

FIGURE 1 | Mechanisms of cardiac arrhythmia and optogenetic termination. The leading edge of the arrhythmic wave front is shown in red, the depolarized and 
refractory tissue in yellow, and the excitable gap in green. The illumination is displayed in blue. (A) A stable rotor of a cardiac arrhythmia is shown at different time 
points during one cycle around a phase singularity. (B) Example for optogenetic arrhythmia termination by conduction block. Sustained illumination starts within a 
depolarized area and keeps the surrounding area depolarized until the next arrhythmic wave front entering this region is blocked by refractory tissue.  
(C) Optogenetic arrhythmia termination by filling of the excitable gap. Brief illumination of the excitable gap generates a second excitation wave front, which travels 
toward the arrhythmic wave front until both are extinguished by their collision.
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in vitro experiments by others with cardiomyocyte monolayers: 
Bingen and colleagues were able to show that low light intensity 
illumination reduces the excitability, slows conduction, and 
thereby terminates rotor wave fronts in a monolayer of atrial 
neonatal rat cardiomyocytes (Bingen et al., 2014). Furthermore, 
the groups of Gil Bub and Emilia Entcheva demonstrated that 
specific illumination patterns can be used to inscribe excitation 
waves in vitro in cardiomyocyte monolayers to control the 
direction of conduction and to destabilize arrhythmic excitation 
patterns (Burton et  al., 2015). The concept was extended by 
real time optogenetic manipulation of the core of spiral waves 
allowing their attraction, anchoring and unpinning (“spiral wave 
dragging”) through controlled displacement of heterogeneities 
in atrial cardiomyocyte monolayers in vitro (Majumder et  al., 
2018). If these approaches using gentle modulation of cardiac 
arrhythmia patterns for self-extinction of planar waves in 
two-dimensional monolayers have an impact on scroll waves 
in the three-dimensional heart remains to be proven. Importantly, 
cores of scroll waves in the intact heart are represented as 
intramyocardial vortex filaments reaching from the epicardium 
to the endocardium, which has been recently visualized using 
high-resolution four-dimensional ultrasound-based strain 
imaging (Christoph et  al., 2018). Thus “spiral wave dragging” 
of curved and non-perpendicular transmural vortex filaments 
with optogenetic approaches (“scroll wave dragging”) seems 
to be  very challenging because of the technical challenge to 
bend light rays with high temporal and spatial flexibility.

Optogenetic Defibrillation  
Using Conduction Block by  
Continuous Depolarization
One major advantage of optogenetic compared to electrical 
stimulation is the ability of constant depolarization by continuous 
illumination, which locks the illuminated region in absolute 
refractoriness and prevents (re-)excitation. Such conduction 
block would extinguish the arrhythmic wave front if conduction 
through the illuminated region was essential for arrhythmia 
maintenance (Figure 1B). However, in contrast to optogenetic 
pacing, which requires only epicardial excitation, effective 
conduction block would require sufficient epicardial illumination 
for transmural depolarization to inhibit mid-myocardial and 
endocardial wave propagation. About 6  years after establishing 
optogenetic pacing of mouse hearts, our group demonstrated 
optogenetic defibrillation in intact mouse hearts using constant 
illumination from the epicardial site, which terminated ventricular 
arrhythmia with a success rate of over 90% (Bruegmann et  al., 
2016). The main challenge was to find experimental conditions 
allowing stable ventricular arrhythmia without self-termination, 
which is difficult in the small mouse heart. We  solved this by 
pharmacological opening of KATP channels to reduce APD and 
lowering the extracellular K+ concentration to slow conduction, 
which both shorten the cardiac wavelength to fit into the small 
mouse heart (Bruegmann et al., 2018). For successful defibrillation, 
sufficient light intensity as well as size of illumination was 
important, suggesting that transmural depolarization of the 
whole myocardial wall is essential in concordance with the 

results from the critical mass theory (Zipes et  al., 1975). 
Furthermore, computational simulations of an infarcted patient 
heart expressing ChR2 in silico by the group of Natalia Trajanova 
helped to understand that sufficient transmural depolarization, 
including endocardial depolarization, to keep Na+ channels 
refractory is key to terminate a ventricular arrhythmia by 
epicardial illumination (Bruegmann et  al., 2016). Similarly, 
experiments in ventricular slices from rat hearts (Watanabe 
et al., 2017) and in monolayers from neonatal rat cardiomyocytes 
revealed that arrhythmia termination in these two-dimensional 
systems requires illumination of one line spanning from the 
core region to the adjacent unexcitable parts (Feola et al., 2017). 
This would correlate to the required transmural depolarization 
in a three-dimensional heart to avoid endocardial wave front 
propagation. Our simulations showed that by epicardial 
illumination this condition can probably only be achieved using 
red light (669 nm) sensitive Channelrhodopsin variants because 
of the low penetrance of blue light (488  nm) in the thick 
human ventricular myocardium (Bruegmann et  al., 2016).

Transmural depolarization to induce conduction block seems 
to be  less challenging in the atria, because of the much thinner 
myocardial walls. In consequence, optogenetic cardioversion 
of atrial arrhythmia was successful in a ChR2 expressing mouse 
model heterozygous for an AF-promoting connexin 40/Gja5 
mutation. This mouse line allowed induction of sustained AF 
episodes by intra-atrial electrical burst stimulation, which could 
be  terminated by epicardial illumination (Bruegmann et  al., 
2018). Optogenetic AF termination was also proven in rats 
during muscarinic receptor stimulation to mimic vagal AF 
(Nyns et  al., 2019). Because in both cases AF termination 
rates were highest at pulse duration >30 ms (Bruegmann et al., 
2018) or  >100  ms (Nyns et  al., 2019), which is longer than 
the AF cycle time, it can be speculated that localized transmural 
conduction block and not filling of the excitable gap is the 
underlying mechanism.

Defibrillation Using Filling of the Excitable 
Gap by Optogenetic Pacing
In contrast to creating a conduction block by continuous 
transmural optogenetic depolarization, filling of the excitable 
gap requires only brief (~few ms) depolarization of epicardial 
cardiomyocytes above the action potential threshold. In 
consequence, required light energy (intensity × duration) would 
be much lower and similar to optogenetic cardiac pacemaking. 
This concept was proven by the group of Leonardo Sacconi 
using patterned light stimulation to terminate VT with one 
specific reentrant wave front (Crocini et al., 2016). The authors 
did not use constant illumination but repetitive short light 
pulses to confined regions, which eventually activate the excitable 
gap creating a new wave front that collides with the arrhythmic 
wave front (Figure 1C). However, similar to electrical 
antitachycardia pacing, successful defibrillation using localized 
stimulation requires to know the extent of the excitable gap 
in time and space, otherwise the local conduction block 
mechanism would be  more effective. We  have demonstrated 
this recently in optogenetic AF termination by comparing the 
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light intensities required for atrial pacing to those required 
for complete block of local electrical activity. AF termination 
efficacy was only ~50% using pacing light intensities, most 
likely because of random failure of stimulating the excitable 
gap. In contrast, application of higher light intensities, which 
are able to block electrical activity, terminated AF in all cases 
(Bruegmann et  al., 2018).

The need for identification of the excitable gap in time and 
space can be  circumvented using global pulsed illumination 
of the whole heart, which was shown in computer simulations 
on a human heart in silico (Karathanos et al., 2016). Furthermore, 
within this Research Topic article collection, Richter and 
colleagues showed experimentally on intact mouse hearts that 
indeed light pulses of low light intensity are sufficient for VT 
termination if ventricles are globally illuminated from all sites 
(Quinonez Uribe et  al., 2018).

Because global homogeneous epicardial illumination of the 
human heart will be challenging, it will be important to compare 
defibrillation effectiveness by localized filling of the (previously 
identified) excitable gap using brief light pulses with localized 
conduction blocks by sustained illumination. Experimentally, 
this could be enabled by the recent development of an all-optical 
heart platform, combining epicardial voltage mapping with 
spatially defined optogenetic stimulation using a digital-mirror 
device in a closed-loop feedback system (Scardigli et al., 2018). 
Such a system would allow the on-line identification of reentrant 
wave fronts with excitable gaps and subsequent real-time 
illumination of the leading or trailing edge (Figure 1) as well 
as the rotor cores for potential “spiral/scroll wave dragging” 
(Majumder et  al., 2018).

Defibrillation by Optogenetic 
Hyperpolarization
The interplay between de- and hyperpolarized areas during 
defibrillation as well as specific effects of hyperpolarization 
alone cannot be  experimentally addressed by electrical shocks 
with non-controllable (virtual) anodes and cathodes. In contrast, 
optogenetic methods allow selective hyperpolarization using 
light-driven H+ or Cl− pumps. Within this Research Topic 
article collection, we  report an optogenetic strategy to analyze 
the effects of hyperpolarization within the intact heart and to 
determine the potential mechanism for defibrillation (Funken 
et  al., 2019). By expressing the light-inducible proton pump 
ArchaerhodopsinT in cardiomyocytes of transgenic mice, we were 
able to prove that hyperpolarization per se can terminate VA. 
Importantly, we  identified a completely new VA termination 
mechanism by enhancing the electrical sink of the excitable 
gap presumably leading to conduction failure of high frequency 
wavelets with weak electrical source (source-sink mismatch). 
Unfortunately, the overall success rate was lower compared to 
conduction block by continuous depolarization with ChR2, 
which can be  explained by the low efficiency of light-driven 
pumps as well as by simultaneous VA stabilizing mechanisms 
of hyperpolarization (increased Na+ channel availability resulting 
in enhanced electrical source of the arrhythmic wave front). 
For future clinical perspectives, more effective optogenetic tools 

for hyperpolarization would be  necessary. Unfortunately, the 
recently presented K+ channel-based optogenetic approaches 
have very slow kinetics in the range of minutes (Alberio et  al., 
2018; Bernal Sierra et al., 2018). This would result in prolonged 
silencing of the ventricular activity even after defibrillation 
has occurred without reestablishment of blood circulation.

CLINICAL IMPLICATIONS OF 
OPTOGENETIC DEFIBRILLATION

Characteristics of Different Cardiac 
Arrhythmia Termination Mechanisms
In summary, we  have identified two possible mechanisms for 
optogenetic termination of VA that can now be put into clinical 
context and be  compared with current treatment strategies. 
(1) Optogenetic pacing to fill the excitable gap could be  used 
for energy-reduced arrhythmia termination but requires either 
global illumination (Quinonez Uribe et  al., 2018) or triggered 
localized illumination after mapping of the excitable gap by 
epicardial electrograms. (2) Generating a transmural conduction 
block by continuous optogenetic depolarization requires more 
light energy but only in predefined anatomical regions that 
are essential for arrhythmia re-entry (infarct border zone, area 
of slow conduction). Transmural depolarization must 
be facilitated using red light-sensitive channelrhodopsin variants 
such as the novel Chrimson mutants (Mager et  al., 2018; Oda 
et  al., 2018) because of the deeper tissue penetration. Also 
longer lasting Channelrhodopsin variants with 200–500  ms 
deactivation kinetics could be  envisioned in which one or two 
brief light pulses would result in longer depolarization for low 
light energy conduction block and optogenetic defibrillation.

Clinical Perspectives of Implantable 
Optogenetic Defibrillators
Since publication of the first landmark-trials in the early 2000s 
(Moss et  al., 2002; Bardy et  al., 2005), implantation of an ICD 
has been a cornerstone in the treatment of patients with high 
risk for ventricular arrhythmia due to heart failure (Ponikowski 
et  al., 2016), cardiac channelopathies, or previously survived 
sudden cardiac arrest (Priori et  al., 2015). Upon detection of 
a potentially life-threatening ventricular arrhythmia, ICDs apply 
antitachycardia pacing protocols and subsequently high energy 
electrical shocks (up to 40  J) to terminate the arrhythmia. 
Electrical shocks are painful due to stimulation of nerve fibers 
and direct excitation of skeletal muscles and even low energy 
shocks for internal cardioversion of AF require sedation 
(Murgatroyd et al., 1995). Thus, inappropriate electrical shocks, 
which occur in 4–8% of patients, for example, due to false 
detection of supraventricular tachycardia (Tan et  al., 2014; 
Kober et  al., 2016), have a profound impact on the quality 
of life including anxiety, depression, and posttraumatic stress 
syndrome (Kamphuis et  al., 2003). Furthermore, sub-studies 
of the SCD-HEFT trial (Poole et  al., 2008) as well as a 
comparison of successful antitachycardia pacing with electrical 
shocks for arrhythmia termination (Sweeney et al., 2010) clearly 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sasse et al. Optogenetic Termination of Cardiac Arrhythmia

Frontiers in Physiology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 675

showed increased mortality in patients receiving inappropriate 
or appropriate ICD shocks. Implanted devices for early AF 
detection and termination with low energy electrical shocks 
have been clinically evaluated but were not tolerated because 
of pain during cardioversion (Geller et  al., 2003).

Using specific virus capsids (Zacchigna et  al., 2014) or 
promoters (Werfel et  al., 2014) for selective expression of 
optogenetic actuator proteins in cardiomyocytes would allow 
in principle painless optogenetic defibrillation and cardioversion. 
Although yet not proven, it can be  anticipated that optogenetic 
defibrillation by a few seconds of epicardial illumination is less 
harmful to the heart than electrical shocks. Moreover, sequential 
light pulses can be applied repetitively, as charging of capacitors 
to generate ICD electrical shocks is not required. The flexibility 
of using spatially and temporally shaped light patterns for 
defibrillation could also be  used to minimize secondary 
pro-arrhythmic effects, which are discussed to be a major cause 
for electrical defibrillation failure (Charteris and Roth, 2011).

Technical Challenges Toward Optogenetic 
Arrhythmia Termination
Before optogenetic therapies can be  suggested to patients, the 
proof-of-concept studies mentioned above have to be  verified 
in preclinical large animal models with human-like anatomy 
and arrhythmia. Furthermore, long lasting virus-based gene 
transfer without immunological reactions against viruses or 
the non-human optogenetic proteins must be established. Toward 
this aim, we  were able to prove that optogenetic defibrillation 
of VT and cardioversion of AF is also possible in wild-type 
mouse hearts after systemic injection of AAV (Bruegmann 
et al., 2016, 2018). Quite surprisingly for the episomal persisting, 
non-integrating AAV, we found that ChR2 expression was stable 
for periods of up to 15  months. Optogenetic defibrillation of 
VT was also confirmed in rats, at least for a period of up to 
6 weeks after systemic AAV injection to express a red light-
activated ChR2 variant (Nyns et  al., 2017). As an alternative 
to systemic AAV injection, which might infect cells in other 
organs, gene painting by application of AAV in fibrin clots 
to the epicardium of the right atrium of rats was shown to 
result in very localized and highly effective gene transfer 
sufficient for optogenetic termination of AF (Nyns et al., 2019). 
Importantly, 4 weeks after gene painting, ~80% cardiomyocytes 
of the right atrium of immunosuppressed (rapamycin) rats 
expressed the ChR2 variant compared to only <40% of atrial 
myocytes >6  months after systemic AAV injection in mice 
(Bruegmann et al., 2016, 2018). However, long-term stable and 
transmural ChR2 expression in large animals without 
immunosuppression remains to be proven. Furthermore, because 
of the thick left ventricular wall of humans, it is questionable 
if epicardial gene painting results in sufficient transmural gene 
expression for optogenetic termination of VT/VF or if systemic 
or intracoronary infusion of AAV is better suited in this case.

Finally, sufficient transmural illumination must be  achieved, 
e.g., by injectable cellular scale optoelectronics (Kim et al., 2013; 
Montgomery et  al., 2015), LEDs in flexible biocompatible 
membranes (Xu et  al., 2014), or μLED arrays (Gossler et  al., 

2014). Combining illumination systems with radio-frequency 
energy harvesters (Park et  al., 2015) or with batteries will allow 
fully implantable illumination devices for chronic optogenetic 
stimulation of hearts in vivo. Recently, a hybrid system for 
automated AF detection and optogenetic cardioversion in 
anesthetized rats was described combining surface ECG leads, 
an external cardiac rhythm monitor, and an implanted atrial 
LED with a PDMS light guide (Nyns et  al., 2019). Such an 
approach could be  extended toward mechanistic investigations 
of AF-induced fibrotic remodeling of the atria in vivo (“AF 
begets AF”) using fully implantable miniaturized bio-optoelectronic 
devices for closed-loop optogenetic control in freely moving 
rats in vivo (Mickle et  al., 2019).

Patients Suited for Optogenetic 
Arrhythmia Termination
Most likely, first patients to benefit from painless and gentle 
optogenetic defibrillation would be those with recurrent episodes 
of electrical storm. Electrical storm is defined by three or 
more sustained episodes of VT/VF with appropriate ICD 
therapies within 24  h, and the incidence is ranging from 4 
to 28% in ICD patients (Huang and Traub, 2008). Mortality 
is high, and therapeutic options are very limited including 
interventional catheter ablation from the endocardial or the 
epicardial side. VT recurrence rates following ablation of 
sustained VT are high, especially in patients with non-ischemic 
dilated cardiomyopathy (62  ±  4%) compared to those with 
ischemic cardiomyopathy (46 ± 4%, median follow-up of 6 years) 
(Kumar et  al., 2016). Patients with ischemic cardiomyopathy 
typically have a more clearly defined subendocardial or transmural 
scar, which can be identified as anatomical substrate for re-entry 
mechanism and thus can be  well targeted by endocardial 
ablation. Patients with non-ischemic dilated cardiomyopathy, 
however, often have a diffuse mid-myocardial and epicardial 
fibrosis and frequently require an epicardial ablation procedure 
(Kumar et  al., 2016). Similar to the discussed transmural 
depolarization for optogenetic defibrillation, the generation of 
transmural lesions is a key factor for effective ablation, but 
this cannot always be  achieved in the thick ventricular 
myocardium. In such patients, optogenetic defibrillation would 
be  advantageous, given that transmural depolarization could 
be  achieved with red-shifted optogenetics (see above).

In summary, patients suffering from frequent appropriate 
and inappropriate ICD shocks despite optimal medical therapy 
or with ineffective ablation due to diffuse fibrosis from 
non-ischemic dilated cardiomyopathy could benefit from 
implantable optogenetic defibrillation devices. Furthermore, an 
implantable optogenetic “atrioverter” to terminate AF on-demand 
might be  useful to prevent or even revert AF-induced fibrotic 
remodeling of the atria (“AF begets AF”) (Wijffels et al., 1995).
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