Durch LiF-Eliminierung zu (SiNSiO)-Vierringen – Kristallstruktur eines achtgliedrigen (FLiNSi)-Ringes

Kerstin Dippel, Uwe Klingebiel*, George M. Sheldrick und Dietmar Stalke

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 24. Oktober 1986

1,3-Funktionelle Siloxane [(CMe_3)₂SiR – O – SiR'₂Hal, R = OH, Hal = Cl, $\mathbf{R}' = \mathbf{CHMe}_2$ (3); $\mathbf{R} = \mathbf{NH}_2$, Hal = F, $\mathbf{R}' = \mathbf{CHMe}_2$ (4), $R' = CMe_3$ (5)] werden durch Reaktion der Dihalogensilane mit lithiiertem Diol 1 und Aminosilanol 2 erhalten. Die Lithiumsalze von 3 und 4 verlieren thermisch LiHal unter Bildung achtgliedriger (SiO)- (6) bzw. (SiNSiO)-Ringe (7). Substitutionen von 4 und 5 mit Halogensilanen führen zur Bildung der 1-(Silylamino)disiloxane 8-14. Die Verbindungen 11 und 13 sowie 12 und 14 sind Strukturisomere, die durch 1,3-Silylgruppenwanderung beim lithiierten 4 entstehen. Die durch Anwesenheit von Difluorsilanen katalysierte, intramolekulare Cyclisierung von 8 und 10 stellt eine gezielte Synthese für 1-Oxa-3-aza-2,4-disilacyclobutane (15, 16) dar. Die Lithiumderivate von 9 und 14 - 9a und 14a zeigen keine Tendenz zur LiF-Eliminierung. Nach der Kristallstrukturanalyse ist 14a ein Dimer mit planaren dreifach koordinierten Lithium- und Stickstoffatomen.

Im Vergleich zu Cyclosilazanen $(R_2Si - N)_{2,3,4}$ und Cyclosiloxanen $(R_2Si - O)_{2,3,4}$ sind die gemischten Silicium-Stickstoff-Sauerstoff-Ringe wenig untersucht¹⁾. Ein Verfahren zur gezielten Darstellung viergliedriger Oxa-aza-disilacyclobutane fehlt bisher. Achtgliedrige Oxa-aza-silacyclooctane sind auf mehreren Wegen synthetisiert worden¹⁻⁷⁾. Gängige Verfahren sind die Ammonolyse von 1,3-Dichlordisiloxanen¹⁾ sowie die Hydrolyse von 1,3-Dichlordisiloxanen¹⁾ und Cyclodisilazanen^{2,3)}. Die Reaktion der Bis(alkylamino)trisiloxane mit Dichlorsilanen liefert nicht die zu erwartenden unsymmetrischen, sondern ebenfalls symmetrische SiNSiO-Achtringe⁴⁾. Röntgenstrukturanalytisch sind vier Dioxa-diaza-tetrasilacyclooctane untersucht. Drei dieser Ringe zeigen eine Sesselkonformation⁸⁾. Ein Ring ist planar und besitzt eine nahezu lineare Si-O-Si-Einheit⁹⁾.

Wir befaßten uns in den letzten Jahren mit dem stufenweisen Aufbau von (SiN)- und (SiO)-Ringen und fanden, ausgehend von einem stabilen Aminosilanol, einen Syntheseweg für NH- und SiF-funktionelle Oxa-aza-silacyclooctan-Achtringe⁷.

Heute stellen wir neben der Synthese der isoelektronischen $[(CMe_3)_2Si - O - Si(CHMe_2)_2O]_2$ - und $[(CMe_3)_2-Si - NH - Si(CHMe_2)_2O]_2$ -Ringe ein allgemeingültiges Verfahren für (SiNSiO)-Vierringe vor, das auf der Salz-Eliminierung aus lithiierten 1-Amino-3-fluordisiloxanen beruht.

Ergebnisse und Diskussion

Die funktionellen Siloxane 3, 4 und 5 sind durch Reaktion des lithiierten Diols 1 und Aminosilanols 2 mit DihalogenFour-membered (SiNSiO) Rings by LiF Elimination – Crystal Structure of an Eight-membered (FLiNSi) Ring

1,3-Functional siloxanes $[(CMe_3)_2SiR - O - SiR'_2Hal, R = OH,$ Hal = Cl, \mathbf{R}' = CHMe₂ (3); \mathbf{R} = NH₂, Hal = F, \mathbf{R}' = CHMe₂ (4), $R' = CMe_3$ (5)] are obtained in the reaction of dihalogenosilanes with the lithiated diol 1 and the aminosilanols 2, respectively. The lithium salts of 3 and 4 lose LiHal thermally to give eight-membered (SiO) (6) or (SiNSiO) (7) rings. Substitutions of 4 and 5 with halogenosilanes lead to the formation of the 1-(silvlamino)disiloxanes 8-14. Compounds 11 and 13 as well as 12 and 14 are structural isomers and are formed by 1,3-silyl group migration of lithiated 4. The intramolecular cyclisation of 8 and 10, which is catalysed by the presence of fluorosilanes, is a direct synthesis of 1-oxa-3-aza-2,4-disilacyclobutanes (15, 16). The lithium derivatives of 9 and 14, 9a and 14a, show no tendency to eliminate LiF. The crystal structure determination shows that 14a is a dimer with planar three-coordinated lithium and nitrogen atoms.

diisopropylsilan leicht zugänglich. 3-5 sind stabil und zeigen thermisch keine Tendenz zur H₂O-, HHal- oder NH₃-Abspaltung.

In Eliminierungsreaktionen erzwingen große Substituenten in der Regel die Bildung kleinerer Ringe. Trotz kinetischer Effekte scheiterten bisher jedoch Versuche, durch Kondensation von Silanolen oder Salzabspaltung aus lithiierten 1-Halogen-3-hydroxysiloxanen viergliedrige SiO-Ringe zu synthetisieren¹⁰, Auch die basenkatalysierte LiCl-Abspaltung aus lithiiertem 3 führt nicht zum Cyclodi- sondern zum Cyclotetrasiloxan (6). Nach LiF-Abstraktion aus lithiiertem 4 in siedendem Toluol entsteht der isoelektronische SiNSiO-Achtring 7.

1-Halogen-3-hydroxysiloxane des Typs 3 sind bifunktionell. Damit entfällt die Möglichkeit, weiteren sterischen Zwang zur Vierringbildung auszuüben. 1-Amino-3-halogensiloxane des Typs 4 und 5 sind trifunktionell, können daher substituiert werden (z. B. mit weiteren Silylgruppen), ohne die Möglichkeit der späteren Cyclisierung einzubüßen.

Die SiO-Vierringbildung durch Salz-Eliminierung, ausgehend von der Verbindungsklasse des Typs 3, erscheint daher unwahrscheinlich, jedoch gelang eine Cyclisierung der Verbindungsklasse des Typs 4. Offenbar begünstigt der grö-Bere sterische Zwang durch vorherige Substitution die anschließende Oxa-aza-disilacyclobutan-Synthese.

Nach Lithiierung reagiert das einzige bisher bekannte Aminosilanol - (CMe₃)₂Si(OH)NH₂ - mit Halogensilanen am Sauerstoff⁷). Dieser Sachverhalt kompliziert sich für die entstandenen 1-Amino-3-halogensiloxane. Hier tritt bei erneuter Lithiierung das Lithiumatom mit der zuletzt gebundenen Silylgruppe in Konkurrenz um den elektronegativen Sauerstoff. Zum Teil wird - ähnlich den lithiierten Bis-(silvl)hydroxylaminen¹¹⁾ – eine 1,3-Silylgruppenwanderung vom Sauerstoff- zum Stickstoffatom beobachtet. Es entstehen, wie am Beispiel von 11, 13 und 12, 14 gezeigt wird, Strukturisomere. Die Silylgruppenwanderung und somit Isomerenbildung kann, da die ²⁹Si-Resonanzen von Si-Ogebundenen Atomen im Gegensatz zu Si-N-gebundenen Atomen eine starke Hochfeldverschiebung erfahren, speziell ²⁹Si-NMR-spektroskopisch gut verfolgt und studiert werden. Abb. 1 veranschaulicht diesen Befund am Beispiel der ²⁹Si-NMR-Spektren der Isomeren 12 und 14. Die Ursache für die $1,3-O \rightarrow N$ -Silylgruppenwanderung wird sowohl sterischer als auch elektronischer Natur sein. Sterische Gründe sollten die FSi(CMe₃)₂-Gruppenwanderung bei der Synthese von 8 und 9 verhindern.

13 entstand bei den Reaktionsbedingungen neben 11 zu ca. 30%; die Strukturisomeren 12 und 14 fielen im Verhältnis 3:2 an.

Zur Synthese von Oxa-aza-disilacyclobutanen durch Salz-Eliminierung wurden 8-10 und 14 mit n-C₄H₉Li in ihre Lithiumsalze übergeführt. In Lösung – z. B. in *n*-Hexan, THF und Toluol – zeigten die Lithiumsalze, selbst in der Siedehitze, keine Tendenz zur Ringbildung. Beim Versuch, 8a mit F₂Si(CHMe₂)₂ zu substituieren, erfolgte spontan eine Reaktion unter LiF-Abspaltung. Isoliert wurde jedoch nicht das Substitutionsprodukt unter intermolekularer, sondern das Oxa-aza-disilacyclobutan 15 unter intramolekularer LiF-Abspaltung. Wiederholte Versuche an 8a und 10a auch mit katalytischen Mengen (ca. 5%) von Difluorsilanen (F_2SiR_2 , R = Ph, CHMe₂, CMe₃) führten jeweils zum Ringschluß, der Bildung von 15 und 16. Gleiche Versuche mit 9a und 14a hingegen verliefen, wahrscheinlich aufgrund zu voluminöser Liganden, erfolglos.

CMe ₃	Me	Me	Ме	Сι
CMe ₃	F	CHMe ₂	CHMe ₂	F
CHMe ₂	F	CHMe ₂	CHMe ₂	F
CHMe ₂	F	F	CHMe ₂	F
CHMe ₂	F	Me	$N(SiMe_3)_2$	F
	CMe ₃ CMe ₃ CHMe ₂ CHMe ₂ CHMe ₂	CMe ₃ Me CMe ₃ F CHMe ₂ F CHMe ₂ F CHMe ₂ F	CMe ₃ Me Me CMe ₃ F CHMe ₂ CHMe ₂ F CHMe ₂ CHMe ₂ F F CHMe ₂ F Me	$\begin{array}{cccc} CMe_3 & Me & Me & Me \\ CMe_3 & F & CHMe_2 & CHMe_2 \\ CHMe_2 & F & CHMe_2 & CHMe_2 \\ CHMe_2 & F & F & CHMe_2 \\ CHMe_2 & F & Me & N(SiMe_3)_2 \end{array}$

612

Abb. 1. ²⁹Si-NMR-Spektren von 12 und 14

Aus den vorgestellten Untersuchungen resultiert ein Syntheseverfahren für Oxa-aza-disilacyclobutane, das von silylsubstituierten Aminosilanolen ausgeht und durch Difluorsilane katalysiert wird.

Die Produktbildung ist kinetisch gesteuert. Lithiierte 1-Amino-3-fluordisiloxane reagieren intermolekular zu Achtringen, lithiierte 1-(Silylamino)-3-fluordisiloxane cyclisieren aufgrund sterischer Effekte intramolekular zu Vierringen. Sind die Substituenten zu voluminös, erfolgt kein Ringschluß, die Reaktion endet auf der Stufe der Lithiumsalze.

Interessant sind die starken Tieffeldverschiebungen der ²⁹Si-NMR-Signale der Ring-Siliciumatome von 15 ($\delta = 15.22$) und 16 ($\delta = 14.7, 12.4$) gegenüber offenkettigen Ausgangsverbindungen 8 ($\delta = -17.8, -9.25$) und 10 ($\delta = 14.7, 12.4$) segenüber offenkettigen Ausgangsverbindungen 8 ($\delta = -17.8, -9.25$) und 10 ($\delta = -10.8, -9.25$) und 10 ((\delta = -10.8, -9.25))

-8.1, -14.4). Für ein (SiOSiN)₂-Achtringsystem, welches den röntgenstrukturanalytischen Daten zufolge eine planare Struktur mit großen Si-O-Si-Winkeln (178°) und kurzen Si-O-Bindungen einnimmt, wurde eine Hochfeldverschiebung ($\delta = -12.16$, -13.40) gefunden⁷. Vergleichbare ²⁹Si-NMR-Resonanzen werden für 7 erhalten. Die Tieffeldverschiebung ist daher ein Indiz für lange Si-O-Bindungen, verursacht durch einen relativ kleinen Si-O-Si-Bindungswinkel.

Abb. 2. Kristallstruktur von 14a

Tab. 1. Atomkoordinaten (× 10⁴) und äquivalente isotrope thermische Parameter U (berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors (pm² × 10⁻¹)) in **14a**

	x	у	Z	U
	605(1)	5812(1)	7377(1)	40(1)
Si(3)	3018(1)	3318(1)	7632(1)	47(1)
SI(2)	2741(2)	984(1)	7470(1)	77(1)
Si(1)	4529(2)	2097(1)	6119(1)	78(1)
0(1)	1999(3)	4525(2)	7168(2)	48(1)
N(1)	3372(4)	2145(3)	7082(2)	48(1)
Si(5)	416(1)	6830(1)	9125(1)	43(1)
F(2)	524(3)	5930(2)	10003(1)	57(1)
F(1)	1858(3)	3168(2)	8468(1)	60(1)
C(4)	-1294(5)	5649(4)	7113(2)	56(2)
N(2)	518(3)	5987(2)	8392(2)	41(1)
C(42)	-1066(6)	4997(5)	6325(3)	91(3)
C(6)	-1500(5)	8010(4)	9411(3)	64(2)
C(62)	-1830(6)	9167(4)	8882(4)	103(3)
C(41)	-1869(5)	4938(4)	7842(3)	76(2)
C(43)	-2623(5)	6838(4)	7011(3)	87(3)
C(3)	477 7(5)	3352(4)	8064(3)	88(3)
C(61)	-2926(5)	7604(4)	9490(3)	78(2)
C(5)	1274(5)	6905(3)	6636(2)	50(2)
C(7)	2131(5)	7320(4)	9208(3)	57(2)
C(53)	3012(5)	6677(4)	6746(3)	69(2)
C(72)	3697(6)	6296(5)	9188(4)	95(3)
C(51)	329(5)	8168(4)	6823(3)	78(2)
C(52)	1152(6)	6778(5)	5705(3)	84(3)
C(11)	6498(6)	954(5)	6166(4)	127(3)
C(71)	1935(6)	7996(5)	9978(3)	94(3)
C(21)	3631(9)	-310(5)	6872(4)	150(4)
C(13)	4834(8)	3492(5)	5815(4)	157(4)
C(23)	3431(9)	444(5)	8527(4)	150(5)
C(12)	3492(9)	1873(7)	5273(4)	164(5)
Li	431(9)	4534(6)	9034(4)	59(3)
C(22)	557(7)	1440(6)	7537(5)	166(5)

Hochfeldverschoben treten die ²⁹Si-NMR-Signale des Lithiumsalzes **9a** im Vergleich zu denen der NH-Verbindung **9** auf. Umgekehrt verhalten sich die ¹⁹F-NMR-Verschiebungen. Dieser Befund wird verständlich durch eine Röntgenstrukturanalyse von **14a**, die zeigt, daß – wie beim

Tab. 2. Ausgewählte Bindungsabstände (pm) und -winkel (°) von 14a

Si(4)-O(1)	167.8(2)	Si(4)-C(4)	190.4(5)
Si(4)-N(2)	167.3(3)	Si(4)-C(5)	191.0(4)
Si(3)-O(1)	159.7(2)	Si(3)-N(1)	169.9(4)
Si(3)-F(1)	164.7(2)	Si(3)-C(3)	182.9(6)
Si(2)-N(1)	174.6(4)	Si(5)-N(2)	164.0(3)
Si(1)-N(1)	176.7(3)	Si(5)-C(7)	187.9(5)
Si(5)-F(2)	168.8(2)	F(1)-Li	196.6(7)
Si(5)-C(6)	187.1(4)	N(2)-Li	198.3(8)
F(2)-Li	182.4(7)	Li-F(2')	182.4(7)
O(1) - Si(4) - C(4)	103.2(2)	O(1)-Si(4)-N(2) 109.2(1)
C(4) - Si(4) - N(2)	110.7(2)	O(1)-Si(4)-C(5) 103.2(1)
C(4)-Si(4)-C(5)	114.1(2)	N(2)-Si(4)-C(5) 115.3(2)
O(1)-Si(3)-N(1)	113.5(2)	O(1)-Si(3)-F(1) 103.7(1)
N(1) - Si(3) - F(1)	106.7(2)	0(1)-Si(3)-C(3) 114.4(2)
N(1)-Si(3)-C(3)	113.8(2)	F(1)-Si(3)-C(3) 103.2(2)
Si(4) - O(1) - Si(3)	140.5(2)	Si(3)-N(1)-Si	(2) 122.2(2)
Si(3) - N(1) - Si(1)	117.1(2)	Si(2)-N(1)-Si	(1) 120.6(2)
F(2)-Si(5)-N(2)	103.0(1)	F(2)-Si(5)-C(5) 98.9(2)
N(2) - Si(5) - C(6)	120.0(2)	F(2)-Si(5)-C(7) 100.3(2)
N(2) - Si(5) - C(7)	119.5(2)	C(6)-Si(5)-C(7) 110.1(2)
Si(5)-F(2)-Li'	149.9(2)	Si(3)-F(1)-Li	121.0(3)
Si(4) - N(2) - Si(5)	148.9(2)	Si(4)-N(2)-Li	108.1(3)
Si(5)-N(2)-Li	103.0(3)	F(1)-Li-N(2)	110.0(3)
F(1)-Li-F(2')	110.3(4)	N(2)-Li-F(2)	139.7(4)

LiF-Addukt eines Silaimins – das Lithium die Koordination zum Fluoratom sucht. Das Resultat ist eine Verkürzung der Si-N- und Streckung der Si-F-Bindungslänge.

Kristallstruktur der Lithiumverbindung 14a: Das Lithiumsalz 14a kristallisiert in farblosen Nadeln im triklinen System der Raumgruppe $P\bar{1}$ als Dimer. Im Schwerpunkt des zentralen (FLiNSi)₂-Achtringes (Abb. 2) befindet sich das Inversionszentrum. Lithium und Stickstoff sind in der Struktur dreifach koordiniert und zeigen eine vollkommen planare Umgebung. Zwei Koordinationsstellen des Lithiums werden von einem Stickstoff- bzw. einem Fluoratom des einen Moleküls, und die dritte Stelle wird von einem Fluoratom des zweiten Moleküls besetzt.

Bemerkenswert ist, daß die Verbindung ein THF-freies Produkt mit Lithium in dreifach koordinierter Form darstellt, obwohl zur Lithiierung THF als Lösungsmittel verwendet wurde.

Koordination, Bindungslängen und -winkel sind den Tabellen zu entnehmen.

Die Si(5) – N(2)-Bindung ist mit 164.0(3) pm auffällig kurz. Auch die Si(4) – N(2)-Bindung ist mit 167.3(3) pm noch kürzer als alle anderen bekannten Si – N-Bindungen in Aminosilanen. Die Li – F(1)-Bindung ist mit 196.6(7) pm um 14.2 pm länger als die Li – F(2')-Bindung. Diese ist mit 182.4(7) pm nahezu genauso lang wie die Li – F-Bindung im LiF-Addukt des Iminosilans [182.2(12) pm]¹².

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

Massenspektren: CH 5-Spektrometer, Varian. – NMR-Spektren: 30proz. Lösungen in CH₂Cl₂/CDCl₃, TMS, C₆F₆ int., Bruker WP 80-Kernresonanzgerät. – Die Reinheit von 3, 4 und 8–14 wurde NMR-spektroskopisch und gaschromatographisch überprüft.

Siloxane 3 und 4: 50 mmol 1 bzw. 2 in 100 ml THF werden zu 50 mmol Hal₂SiR₂ (Hal = Cl, R = CHMe₂ für 3; Hal = F, R = CHMe₂ für 4; R = CMe₃ für 5⁷ in 50 ml *n*-Hexan getropft. Das Reaktionsgemisch wird 2 h zum Sieden erhitzt. 3 und 4 werden destillativ gereinigt.

1,1-Di-tert-butyl-3-chlor-1-hydroxy-3,3-diisopropyldisiloxan (3): Sdp. 60°C/0.01 mbar, Ausb. 8.5 g (52%). – MS: m/z (%) = 267 (70) $[M - C_4H_9]^+$. – ¹³C-NMR: δ = 15.69 C₂C, 16.61, 16.65 C₂C, 19.94 C₃C, 27.29 C₃C. – ²⁹Si-NMR: δ = –15.01 SiOH, 5.52 SiCl.

1-Amino-1,1-di-tert-butyl-3-fluor-3,3-diisopropyldisiloxan (4): Sdp. 60°C/0.01 mbar, Ausb. 9.5 g (62%). - MS: m/z (%) = 307 (2) M⁺, 250 (100) [M - C₄H₂]⁺. - IR (kapillar): 3510, 3430 cm⁻¹ (NH₂). - ¹³C-NMR: δ = 12.75 CC₂ (²J_{CF} = 16.9 Hz), 16.86, 16.90 CC₂, 19.88 CC₃, 27.84 CC₃. - ¹⁹F-NMR: δ = 13.5. - ²⁹Si-NMR: δ = -14.2 SiF (J_{SiF} = 300.5 Hz), -10.8 SiNH₂.

Cyclosiloxane 6, 7: 20 mmol 3 bzw. 4 in 40 ml *n*-Hexan werden mit 20 mmol n-C₄H₉Li (15proz. in *n*-Hexan) lithiiert. Anschließend werden 10 ml THF zugegeben, und es wird 2 h zum Sieden erhitzt. 6 und 7 sublimieren nach Abtrennen des LiHal i. Vak. Durch Umkristallisation aus *n*-Hexan erfolgt eine zusätzliche Reinigung.

2,2,6,6-Tetra-tert-butyl-4,4,8,8-tetraisopropyl-1,3,5,7-tetraoxa-2,4,6,8-tetrasilacyclooctan = 2,2,6,6-Tetra-tert-butyl-4,4,8,8-tetraisopropylcyclotetrasiloxan (6): Schmp. 300 °C, Ausb. 2.3 g (40%). – MS: m/z (%) = 561 (1) [M – CH₃]⁺, 533 (6) [M – CHMe₂]⁺, 519 (100) [M – CMe₃]⁺. – ¹³C-NMR: δ = 16.69 CC₂, 18.42 CC₂, 20.37 CC₃, 27.95 CC₃. – ²⁹Si-NMR: δ = -21.67 SiCMe₃, -27.6, SiCHMe₂.

> C₂₈H₆₄O₄Si₄ (576.2) Ber. C 58.27 H 11.18 Gef. C 58.03 H 11.01

2,2,6,6-Tetra-tert-butyl-4,4,8,8-tetraisopropyl-1,5-dioxa-3,7-diaza-2,4,6,8-tetrasilacyclooctan (7): Schmp. 210°C, Ausb. 3.4 g (60%). – MS (FJ-Messung): m/z (%) = 531 (40) [M – C₃H₈]⁺, 517 (100) [M – C₄H₁₀]⁺. – ¹³C-NMR: δ = 16.57 CC₂, 18.52, 18.83 CC₂, 20.78 CC₃, 28.61 CC₃. – ²⁹Si-NMR: δ = -13.1 SiCHMe₂, -14.1 SiCMe₃.

C₂₈H₆₆N₂O₂Si₄ (575.2) Ber. C 58.47 H 11.57 Gef. C 58.21 H 11.39

1-(Silylamino)disiloxane 8–14: 20 mmol 4 bzw. 5 werden mit 20 mmol n-C₄H₉Li (15proz. in *n*-Hexan) lithiiert. Die Reaktionstemperatur wird auf < 30 °C gehalten. Anschließend wird 3 h bei Raumtemp. gerührt. Nach Zugabe von 20 mmol der entsprechenden Halogensilane werden 5 ml THF zugetropft, und die Reaktionslösung wird 2 h zum Sieden erhitzt. Sowohl die Lithiierung von 4 und 5 als auch die Reaktion mit den Halogensilanen wird ¹⁹F-NMR-spektroskopisch verfolgt. 8–14 werden destillativ gereinigt. 9 kristallisiert nach der Destillation aus.

1,1,3,3-Tetra-tert-butyl-3-fluor-1-[(trimethylsilyl)amino]disiloxan (8): Sdp. 70°C/0.01 mbar, Ausb. 4.2 g (52%). – MS: m/z (%) = 392 (5) [M – CH₃]⁺, 350 (100) [M – C₄H₉]⁺. – IR (kapillar): 3340 cm⁻¹ (NH). – ¹H-NMR: δ = 0.15 SiMe₃, 1.05 Si-CMe₃, 1.08 FSiCMe₃ (⁴J_{HF} = 1.0 Hz). – ¹⁹F-NMR: δ = 10.25. – ²⁹Si-NMR: δ = -17.8 SiF (J_{SiF} = 311.7 Hz), -9.2 NHSiCMe₃, 1.3 SiMe₄.

Chem. Ber. 120, 611-616 (1987)

1,1,3,3-Tetra-tert-butyl-3-fluor-1-[(fluordiisopropylsilyl)amino]disiloxan (9): Sdp. 120 °C/0.01 mbar, Schmp. 50 °C, Ausb. 6.1 g (65%). – MS: m/z (%) = 452 (1) [M – CH₃]⁺, 410 (100) [M – C₄H₉]⁺. – IR (kapillar): 3345 cm⁻¹ (NH). – ¹³C-NMR: δ = 13.89 CC₂ (²J_{CF} = 16.3 Hz), 17.26 CC₂ (³J_{CF} = 2.8 Hz), 17.66 CC₂ (³J_{CF} = 0.8 Hz), 20.16 FSiCC₃ (²J_{CF} = 16.0 Hz), 20.99 NSiCC₃ (⁴J_{CF} = 0.5 Hz), 27.56 FSiCC₃ (³J_{CF} = 0.6 Hz), 27.99 NSiCC₃ (⁵J_{CF} = 1.45; 1.0 Hz). – ¹⁹F-NMR: δ = 9.9 FSiO, 11.8 FSiNH (³J_{HF} = 7.6 Hz). – ²⁹Si-NMR: δ = -17.4 FSiCMe₃ (J_{SiF} = 312 Hz), -8.1 OSiCMe₃, 2.0 FSiCHMe₂ (J_{SiF} = 294.2 Hz).

1,1-Di-tert-butyl-3-fluor-1-[(fluordiisopropylsilyl)amino]-3,3-diisopropyldisiloxan (10): Sdp. 95 °C/0.01 mbar, Ausb. 5.3 g (60%). – MS: m/z (%) = 396 (5) [M – CHMe₂]⁺, 382 (100) [M – C₄H₉]⁺. – IR (kapillar): 3350 cm⁻¹ (NH). – ¹³C-NMR: δ = 13.70 SiCC₂ (²J_{CF} = 16.5 Hz), 13.91 SiCC₂ (²J_{CF} = 16.3 Hz), 17.13 SiCC₂ (³J_{CF} = 2.2 Hz), 17.34 Si(CC₂)₂, 17.67 SiCC₂, 21.18 SiCC₃, 28.11 SiCC₃. – ¹⁹F-NMR: δ = 10.0 FSiNH (³J_{HF} = 8 Hz), 16.7 FSiO. – ²⁹Si-NMR: δ = -14.4 FSiO (J_{SiF} = 301.4 Hz), -8.1 SiCMe₃, 3.4 FSiN (J_{SiF} = 294,1 Hz).

1,1-Di-tert-butyl-1-[(difluorisopropylsilyl)amino]-3-fluor-3,3-diisopropyldisiloxan (11): Sdp. 75 °C/0.01 mbar, Ausb. 5.2 g (63%). – MS: m/z (%) = 372 (2) [M – CHMe₂], 358 (100) [M – C₄H₉]⁺. – IR (kapillar): 3360 cm⁻¹ (NH). – ¹³C-NMR: δ = 11.16 NHSiF₂CC₂ (³J_{CF} = 20.9 Hz), 12.97 OSiF(CC₂)₂ (²J_{CF} = 16.4 Hz), 16.44 OSiFCC₂, 16.82 NSiF₂CC₂ (³J_{CF} = 1.4 Hz), 16.97 OSiFCC₂ (³J_{CF} = 1.2 Hz), 20.71 SiCC₃, 27.6 SiCC₃ (⁵J_{CF} = 0.7 Hz). – ¹⁹F-NMR: δ = 14.6 OSiF (⁶J_{FF} = 1.4 Hz), 24.7 HNSiF₂ (³J_{HF} = 6 Hz). – ²⁹Si-NMR: δ = -34.62 NSiF₂ (J_{SiF} = 280.6 Hz), –13.65 OSiF (J_{SiF} = 302.0 Hz), –8.4 SiCMe₃.

1-{[[Bis(trimethylsily])amino]fluormethylsilyl]amino}-1,1-ditert-butyl-3-fluor-3,3-diisopropyldisiloxan (12): Sdp. 120°C/0.01 mbar, Ausb. 4.8 g(45%). - MS: m/z (%) = 513 (18) [M - CH₃]⁺, 485 (12) [M - CHMe₂]⁺, 471 (100) [M - C₄H₉]⁺. - IR (kapillar): 3345 cm⁻¹ (NH). - ¹³C-NMR: δ = 2.78 FSiCH₃ (²J_{CF} = 26.9 Hz), 4.43 FSiNSiC₃ (⁴J_{CF} = 2.1 Hz), 13.34 OSiFCC₂ (²J_{CF} = 16.5 Hz), 13.41 OSiFCC₂ (²J_{CF} = 16.5 Hz); 17.02, 17.24 OSiFCC₂, 20.80, 20.86 OSiCC₃, 27.87 OSiCC₃. - ¹⁹F-NMR: δ = 16.13 OSiFCHMe₂ (⁶J_{FF} = 1.1 Hz), 49.78 NHSiFMe. - ²⁹Si-NMR: δ = -19.5 SiFNH (J_{SiF} = 261.3 Hz), -14.5 OSiF (J_{SiF} = 301.4 Hz), -9.4 SiCMe₃, 2.8 NSiMe₃ (³J_{SiF} = 4.7 Hz).

1,1-Di-tert-butyl-3,3-difluor-1-[(fluordiisopropylsilyl)amino]-3isopropyldisiloxan (13): Sdp. 76°C/0.01 mbar, Ausb. 1.7 g (20%). – MS: m/z (%) = 372 (2) [M – CHMe₂]⁺, 358 (100) [M – C₄H₉]⁺. – IR (kapillar): 3370 cm⁻¹ (NH). – ¹⁹F-NMR: δ = 7.4 HNSiF (³J_{HF} = 6 Hz), 22.3 OSiF₂ (⁶J_{FF} = 1.9 Hz). – ²⁹Si-NMR: δ = -63.08 OSiF₂ (J_{SiF} = 281.9 Hz), -5.61 SiCMe₃, 4.18 FSi-CHMe₂ (J_{SiF} = 294.6 Hz).

1-[Bis(trimethylsilyl)amino]-3,3-di-tert-butyl-1-fluor-3-[(fluor-diisopropylsilyl)amino]-1-methyldisiloxan (14): Sdp. 121 °C/0.01 mbar, Ausb. 1.7 g (16%). – MS: *m/z* (%) = 513 (10) [M – CH₃], 471 (42) [M – C₄H₉]⁺. – ¹³C-NMR: δ = 1.14 FSiCH₃ (²J_{CF} = 26.2 Hz), 4.38 FSiNSiC₃ (⁴J_{CF} = 2.3 Hz), 13.92 NSiFCC₂ (²J_{CF} = 16.1 Hz), 14.05 NSiFCC₂ (²J_{CF} = 16.1 Hz), 17.39, 17.70 NSiFCC₂; 20.99, 21.14 SiCC₃; 28.05, 28.15 SiCC₃. – ¹⁹F-NMR: δ = 9.25 FSiNH (³J_{HF} = 8.4, ⁶J_{FF} = 1.5 Hz), 48.08 OSiFMe. – ²⁹Si-NMR: δ = -39.4 OSiF (J_{SiF} = 256.6 Hz), -7.3 SiCMe₃, 3.0 FSiNH (J_{SiF} = 293.2), 3.4 SiMe₃ (³J_{SiF} = 5.4 Hz).

Oxa-aza-disilacyclobutane 15, 16: 10 mmol 8 bzw. 10 werden in 50 ml *n*-Hexan und 2 ml THF gelöst und mit der äquimolaren Menge *n*-C₄H₉Li (15proz. in *n*-Hexan) lithiiert. Nach Zugabe katalytischer Mengen eines Difluorsilans wird ca. 2 h zum Sieden erhitzt. Der Reaktionsfortschritt wird ¹⁹F-NMR-spektroskopisch verfolgt. Die Verbindungen 15 und 16 werden durch Kristallisation aus n-Hexan gereinigt.

2,2,4,4-Tetra-tert-butyl-3-(trimethylsilyl)-1-oxa-3-aza-2,4-disilacyclobutan (15): Schmp. 100°C, Ausb. 2.3 g (60%). - MS: m/z $(\%) = 372 (2) [M - CH_3]^+, 330 (100) [M - C_4H_9]^+, - {}^{1}H_{-}$ NMR: $\delta = 0.18 \text{ SiMe}_3$, 1.21 CMe₃. $- {}^{13}\text{C-NMR}$: $\delta = 4.4 \text{ SiC}_3$, 23.6 SiCC₃, 30.4 SiCC₃. $- {}^{29}\text{Si-NMR}$: $\delta = -6.1 \text{ SiMe}_3$, 15.2 SiCCMe₃. C₁₉H₄₅NOSi₃ (387.8) Ber. C 58.84 H 11.70

Gef. C 58.49 H 11.56

2,2-Di-tert-butyl-3-(fluordiisopropylsilyl)-4,4-diisopropyl-1-oxa-3-aza-2,4-disilacyclobutan (16): Schmp. 110°C, Ausb. 2.6 g (62%). --MS (FJ-Messung): m/z (%) = 419 M⁺. - ¹³C-NMR: δ = 16.13 $FSiCC_2$ (${}^2J_{CF} = 16.7 \text{ Hz}$), 17.43 $OSiCC_2$, 17.65 $FSiCC_2$ (${}^3J_{CF} =$ 2.2 Hz), 18.04 Si(CC₂)₂, 18.07 Si-CC₂, 22.65 SiCC₃, 27.96 SiCC₃. -¹⁹F-NMR: $\delta = 14.17. - {}^{29}\text{Si-NMR}$: $\delta = -2.8 \text{ SiF} (J_{\text{SiF}} =$ 277.1 Hz), 12.4 OSiN (${}^{3}J_{SiF} = 2.7$ Hz), 14.7 OSiN (${}^{3}J_{SiF} = 1.0$ Hz). C₂₀H₄₆FNOSi₃ (419.8) Ber. C 57.22 H 11.04 Gef. C 56.98 H 10.78

Lithiumsalze 9a, 14a: 10 mmol 9 bzw. 14 in 50 ml n-Hexan und 2 ml THF werden mit 10 mmol n-C₄H₉Li (15proz. in n-Hexan) lithiiert. Die Lithiumsalze kristallisieren bei Raumtemperatur nach ca. 24 h aus.

1,1,3,3-Tetra-tert-butyl-1-fluor-3-[(fluordiisopropylsilyl)lithioamino]disiloxan (9a): Schmp. 170°C, Ausb. 4.3 g (92%). - MS: m/z (%) = 410 (100) [M - Li, - C₄H₈]⁻. - ¹³C-NMR: δ = 16.82 FSiCC₂ (${}^{2}J_{CF} = 24.4 \text{ Hz}$), 19.12 FSiCC₂, 19.32 FSiCC₂ $({}^{3}J_{CF} = 1.2 \text{ Hz}), 20.68 \text{ FSi}CC_{3} ({}^{2}J_{CF} = 17.3 \text{ Hz}), 22.48 \text{ Si}CC_{3}, 28.29,$ 30.32 SiCC₃. - ¹⁹F-NMR: $\delta = 11.2$ FSiO, 16.1 FSiCC₂. - ²⁹Si-NMR: $\delta = -19.8$ SiCMe₃, -11.9 FSiCMe₃ ($J_{SiF} = 302.9$ Hz, -8.2 $FSiCHMe_2 (J_{SiF} = 248.6 \text{ Hz}).$

Kristallstrukturanalyse von 14a¹³⁾. Für die Datensammlung wurde ein $0.5 \times 0.6 \times 0.6$ mm großer Einkristall ausgewählt. Der äußerst luft- und wasserempfindliche Kristall wurde unter Argon in einer Kapillare montiert. Zur Datensammlung wurde ein Stoe-Siemens-AED-Diffraktometer mit graphitmonochromatisierter Mo- K_x -Strahlung ($\lambda = 71.069$ pm) benutzt. Die Daten wurden bei Raumtemperatur gesammelt. Zur Verfeinerung wurden 3773 Reflexe mit $F > 4\sigma(F)$ im Bereich $7^{\circ} < 2\Theta < 50^{\circ}$ benutzt. Die Struktur wurde mit direkten Methoden (SHELXTL) gelöst. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. Die Wasserstoffatome wurden geometrisch positioniert [C-H-Abstand 96 pm, H-C-H-Winkel 109.5°, $U(H) = 1.5 U_{eq}(C); U_{eq}(C) = 1/3$ (Spur des orthogonalen U_{ii} -Tensors)], die Wasserstoffatome der sekundären Kohlenstoffatome der Isopropyl-Gruppe mit den gleichen Parametern, jedoch mit $U(H) = 1.2 U_{ec}(C)$.

Kristallographische Daten: Raumgruppe = P1, Z = 2; a =905.1(5); b = 1231.0(8); c = 1620.7(7) pm; $\alpha = 83.25(4)^{\circ}$, $\beta =$ 83.11(4)°, $\gamma = 69.10(4)^\circ$; $V = 1.669 \text{ nm}^3$, $\mu(\text{Mo-}K_{\alpha}) = 0.23 \text{ mm}^{-1}$, $R = 0.0615, R_{w} = 0.0589$ [wobei $w^{-1} = (\sigma^{2}(F) + 0.0005 F^{2})$].

Maximaler Peak der letzten Differenz-Fourier-Synthese 337 e nm⁻³. Maximales Tal der letzten Differenz-Fourier-Synthese 286 e nm⁻³. Anzahl der verfeinerten Parameter: 289.

CAS-Registry-Nummern

1: 106211-26-1 / 2: 106211-27-2 / 3: 106211-28-3 / 4: 106211-29-4 / 5: 102729-06-6 / 6: 106211-30-7 / 7: 106211-31-8 / 8: 106211-32-9 / 9: 106211-33-0 / 9a: 106211-41-0 / 10: 106211-34-1 / 11: 106211-35-2 / 12: 106211-36-3 / 13: 106211-37-4 / 14: 106211-38-5 / 14a: 106211-42-1 / 15: 106211-39-6 / 16: 106211-40-9 / CISiMe₃: 75-77-4 / $F_3SiCHMe_2$: 421-65-8 / $F_2Si(CHMe_2)_2$: 426-05-1 / $F_2Si(Me)$ - $N(SiMe_3)_2$: 54882-28-9 / $Cl_2Si(CHMe_2)_2$: 7751-38-4

- ¹⁾ H. Haiduc, The Chemistry of Inorganic Ring Systems, Teil I, Wiley Interscience, London 1970.
- ²⁾ R. P. Bush, C. A. Pearce, J. Chem. Soc. A 1969, 808.
 ³⁾ K. A. Andrianov, G. V. Kotrelev, V. V. Kazakova, N. A. Tebeneva, Dokl. Adad. Nauk SSSR 233 (1977) 353 [Chem. Abstr. 87 (1977) 39578 r].
- ⁴⁾ R. Rabet, U. Wannagat, Z. Anorg. Allg. Chem. **384** (1971) 114. ⁵⁾ U. Wannagat, F. Rabet, H.-J. Wismar, Monatsh. Chem. **102** (1971) 1429
- ⁶⁾ H. W. Roesky, B. Kuhtz, Chem. Ber. 109 (1976) 3958.
- ⁷⁾ O. Graalmann, U. Klingebiel, M. Meyer, Chem. Ber. 119 (1986) 872.
- ⁸¹ P. Clare, D. B. Sowerby, J. Haiduc, J. Organomet. Chem. 236 (1982) 293.
- ⁹⁾ E. Egert, M. Haase, U. Klingebiel, C. Lensch, D. Schmidt, G.
- M. Sheldrick, J. Organomet. Chem. 315 (1986) 19. ¹⁰⁾ O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Sheldrick, Chem. Ber. 117 (1984) 2988.
- ¹¹¹ D. Bentmann, U. Klingebiel, Z. Naturforsch., Teil B, 36 (1981) 1356.
- ¹²⁾ R. Boese, U. Klingebiel, J. Organomet. Chem. 315 (1986) C 17. ¹³⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinter-legungsnummer CSD 52197, des Autors und des Zeitschriftenzitats angefordert werden.

[268/86]