Lithium-N-(fluorsilyl)pentafluoraniline – Synthese und Kristallstruktur

Dietmar Stalke, Uwe Klingebiel* und George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 14. März 1988

Fluorsilylpentafluoraniline [R_2 SiFNHC₆ F_5 , $R = CMe_3$ (1), CHMe₂ (2)] entstehen in der Reaktion der Difluorsilane mit lithiertem Pentafluoranilin. 1 und 2 reagieren mit n-C₄H₉Li zu ihren Lithiumverbindungen (3, 4) und C₄H₁₀. Die Kristallstrukturanalyse von 3 zeigt Lithium mit 2 THF und einem Stickstoff koordiniert; kurze Li - F-Wechselwirkungen werden mit F(Si) und mit einem ortho-F(C) der C₆F₅-Gruppe beobachtet.

Erste Röntgenstrukturuntersuchungen von lithiierten Aminofluorsilanen lieferten folgende Ergebnisse:

a) Aus unpolaren Lösungsmitteln, z. B. aus *n*-Hexan kristallisieren Lithium-Verbindungen der *tert*-Butylaminofluorsilane dimer über die Li – N-Bindung¹). Durch die Lithium-Koordination an das Fluor entstehen Tricyclen (I).

b) Bei der Kristallisation von I aus THF wird pro Dimer ein Molekül THF addiert. Es entstehen Bicyclen mit vierund zweifachkoordiniertem Lithium²). Eine Li-N-Bindung ist in Lösung fluktuierend (II).

c) Lithium-Verbindungen der Arylaminofluorsilane kristallisieren aus THF als LiF-Addukte von Iminosilanen (III)³⁾.

Diese Resultate der Kristallstrukturanalyse beweisen, daß die Verringerung der Basizität des N-Atoms und die Donorwirkung des Solvens eine Schwächung der Li-N-Bindung bewirken. Die vollständige Loslösung des elektropositiven Li-Atoms vom Stickstoff und seine Wanderung zum elektronegativen F-Atom wird bei Arylaminofluorsilanen erreicht und sollte bei Pentafluorphenylgruppen ebenfalls zu

Lithium N-(Fluorosilyl)pentafluoroanilines – Synthesis and Crystal Structure

Fluorosilylpentafluoroanilines [R_2 SiFNHC₆ F_5 , $R = CMe_3$ (1); CHMe₂ (2)] are obtained in the reaction of the difluorosilanes with lithiated pentafluoroanilines. 1 and 2 react with *n*-C₄H₉Li to give their lithium compounds (3, 4) and C₄H₁₀. The crystal structure determination of 3 shows lithium coordinated by two THF and one nitrogen; short Li \cdot F interactions with F(Si) and with an *ortho*-F(C) of the C₆F₅ group were also observed.

beobachten sein. Wir synthetisierten daher Pentafluoranilinofluorsilane und führten die Kristallstrukturanalyse einer lithiierten Verbindung durch.

Isopropyl- und *tert*-Butyldifluorsilane reagieren schon bei tiefen Temperaturen mit lithiiertem Pentafluoranilin unter LiF-Eliminierung zu den Fluorsilylaminen 1 und 2, die im Hochvakuum unzersetzt als farblose Flüssigkeiten destillieren.

Die Lithiierung von 1 und 2 erfolgt bei verminderter Temperatur in n-Hexan/THF mit n-C₄H₉Li.

3 und 4 werden durch Kristallisation erhalten und durch Umkristallisation aus unpolaren Lösungsmitteln gereinigt.

Kristallstruktur der Lithiumverbindung 3

3 wird in ockerfarbenen Kristallen aus *n*-Hexan erhalten. Im Kristall ist 3 monomer (Abb.). Das Lithiumatom ist an das Stickstoffatom des Fluorsilylamins gebunden. Zusätz-

Chem. Ber. 121, 1457-- 1459 (1988) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/0808-1457 \$ 02.50/0

lich koordinieren zwei THF-Moleküle. Das N-Atom und die beiden O-Atome der Solvens-Moleküle bilden mit dem Lithiumatom eine Ebene. Die Spitzen einer verzerrten trigonalen Bipyramide (Tab. 2) um das Li besetzen zwei Fluoratome. F(1), Li, F(2) und N bilden ebenfalls eine Ebene.

Die Li-F-Abstände (Tab. 2) sind bei Li-F(1) mit 238.6 pm und bei Li-F(2) mit 227.3 pm verhältnismäßig groß. Die Bindung ist vorwiegend elektrostatischer Natur. Die Di-*tert*-butylfluorsilylgruppe ordnet sich auch aus sterischen Gründen gestaffelt zum Phenylring an, doch sucht das elektropositive Lithiumatom die Koordination zu beiden elektronegativen Fluoratomen.

Abb. Struktur von 3 im Kristall

Tab. 1. Atomkoordinaten $[\times 10^4]$ und äquivalente isotrope Thermalparameter $[pm^2]^{a}$

	x	У	z	U(eq)
Si	911(2)	3314(2)	8601(1)	237(8)
N	730(5)	4755(6)	8507(3)	301(27)
F(1)	-265(5)	2901(4)	8046(2)	396(19)
Li	-837(16)	4910(18)	7878(8)	556(67)
0(1)	-1045(6)	4899(7)	6921(3)	625(21)
C(15)	-2122(16)	5372(16)	6506(8)	1372(63)
C(16)	-1973(15)	5268(15)	5840(9)	1332(62)
C(17)	-936(12)	4497(12)	5788(6)	859(44)
C(18)	-307(10)	4313(10)	6508(6)	604(34)
0(2)	-2501(6)	5036(6)	8047(3)	528(20)
C(19)	-3112(10)	6030(10)	8272(6)	635(35)
C(20)	-4034(11)	5578(10)	8671(6)	813(42)
C(21)	-3895(13)	4316(12)	8666(7)	1014(50)
C(22)	-3310(12)	4065(12)	8058(7)	868(44)
C(9)	1299(8)	5763(8)	8715(4)	246(33)
C(10)	2453(8)	5912(8)	9117(5)	303(34)
C(11)	2970(9)	6970(8)	9307(5)	388(37)
c(12)	2380(9)	8004(8)	9093(5)	399(38)
c(13)	1239(9)	7927(8)	8707(5)	343(38)
C(14)	755(8)	6855(8)	8517(5)	266(34)
F(2)	-354(5)	6816(5)	8123(3)	434(21)
F(3)	614(5)	8909(5)	8494(3)	513(24)
F(4)	2893(6)	9050(5)	9269(3)	602(26)
F(5)	4080(5)	7031(5)	9691(3)	585(25)
F(6)	3088(5)	4932(5)	9358(3)	479(23)
ciii	511(8)	2726(8)	9411(5)	347(36)
C(2)	438(9)	1376(8)	9406(5)	439(40)
C(3)	1371(10)	3131(9)	10025(5)	557(44)
C(4)	-769(9)	3164(9)	9457(6)	535(44)
C(5)	2264 (9)	2629(8)	8297(5)	276(35)
C(6)	1899(10)	1549(9)	7865(5)	550(45)
C(7)	3309(9)	2245(8)	8849(5)	398(40)
C(8)	2786(9)	3530(9)	7851(5)	450(40)

^{a)} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} -Tensors.

Aus diesem Grund kommt es zu keiner eindeutigen Li-F-Bindung mit dem Fluoratom der Silylgruppe wie bei anderen Fluorsilylaminen. Durch die zusätzliche Wechselwirkung mit dem F(2)-Atom des Rings ist das Lithiumatom über dem N "eingespannt". Die Si – N-Bindung (Tab. 2) ist mit 166.2 pm gegenüber einer Si – N-Einfachbindung deutlich verkürzt, und der Si – N – C(9)-Winkel (Tab. 2) ist mit 140.1° in Richtung Iminosilanwinkel³⁾ aufgeweitet.

Tab. 2. Ausgewählte Bindungsabstände [pm] und -winkel [°]

Si-N	166.2	(7)	Si-F(1)	164.1	(5)
Si-C(1)	188.8	(10)	Si-C(5)	188.7	(10)
N-Li	198.3	(18)	N-C (9)	134.5	(11)
Li-0(1)	190.8	(18)	L1-0(2)	194.2	(20)
Li - F(1)	238.6	(10)	Li - F(2)	227.3	(10)
C(9)-C(10)	140.8	(12)	C(9) - C(14)	141.2	(12)
C(10)-C(11)	136.2	(13)	C(10)-F(6)	136.6	(10)
C(11)-C(12)	138.3	(13)	C(11)-F(5)	134.4	(11)
C(12)-C(13)	137.5	(13)	C(12)-F(4)	134.3	(11)
C(13)-C(14)	136.5	(13)	C(13)-F(3)	135.0	(11)
C(14)-F(2)	135.1	(10)			
F(1)-Si-N		97.9(3)	C(1)-Si-N		114.1(4)
C(1) - Si - F(1)		102.2(3)	C(5)-Si-N		117.4(4)
C(5)-Si-F(1)		104.2(3)	C(5)-Si-C(1)		116.9(4)
Li-N-Si		103.7(7)	C(9)-N-Si		140.1(6)
C(9)-N-Li		116.1(8)	O(1)-Li-N		126.2(11
O(2)-Li-N		130.9(10)	O(2)-Li-O(1)		102.8(8)
C(14) - C(9) - C(10)	111.2(8)	C(11)-C(10)-C	(9)	124.7(8)
F(6)-C(10)-C(9)	118.2(7)	F(6)-C(10)-C(11)	117.1(7)
C(12)-C(11)-C	(10)	120.8(8)	F(5)-C(11)-C(10)	120.7(8)
F(5)-C(11)-C(12)	118.5(8)	C(13)-C(12)-C	(11)	117.7(9)
F(4)~C(12)-C(11)	121.1(8)	F(4)-C(12)-C(13)	121.2(8)
C(14)-C(13)-C	(12)	120.0(8)	F(3)-C(13)-C(12)	120.2(8)
F(3)~C(13)-C(14)	119.7(8)	C(13)-C(14)-C	(9)	125.4(8)
F(2)-C(14)-C(9)	116.3(7)	F(2)-C(14)-C(13)	118.2(8)
F(1)~Li~F(2)		147.1(6)	O(1) - Li - F(1)		97.0(4)
O(2)-Li-F(1)		106.6(6)	O(1) - Li - F(2)		102.1(4)
O(2) - Li - F(2)		95.1(4)			

Die Atomkoordinaten und ausgewählte Bindungslängen und -winkel sind in Tab. 1 und 2 zusammengestellt.

Das ¹⁹F-Tieftemperatur-NMR-Spektrum von **4** liefert Hinweise auf folgendes Gleichgewicht.

Die "Koaleszenz" dieses Gleichgewichts ist bei -70 °C erreicht. Bei -90 °C liefert das SiF ein breites Signal bei ca. -1 ppm und C₆F₅ drei scharfe Signale bei 3.70, -4.20 und -27.52 ppm. Dieser Befund spricht für die Form A, da die N-C(9)-Bindung frei drehbar ist.

In Form **B** liefert das Si*F* ein scharfes Signal bei -3.25 ppm, und die C₆F₅-Signale sind sehr breit (-6.5, -8.3, -19.5 ppm). Diese Verbreiterung der C₆F₅-Signale zeigt, daß in **B** die Rotation um die N-C(9)-Bindung bereits eingeschränkt ist, die Si-N-Bindung jedoch frei drehbar ist. Tiefere Temperaturen als -90° C wurden nicht erreicht. ⁶Li-, ⁷Li- und ¹³C-NMR-Spektren bei -70° C zeigen zwar eine Verbreiterung der Signale, doch nicht äquivalente Liund C-Kerne können nicht unterschieden werden.

Der Stiftung Volkswagenwerk und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

Massenspektren: CH-5-Spektrometer, Varian. – NMR-Spektren: 30%ige Lösungen in C_6H_6/C_6D_6 , TMS, C_6F_6 int., Bruker WP-80- oder AM-250-Kernresonanzgerät. Die Molmassen von 1 und 2 wurden massenspektrometrisch bestimmt. – Die Reinheit von 1-4 wurde NMR-spektroskopisch überprüft.

Anilinofluorsilane 1 und 2: In einem 250-ml-Dreihalskolben mit Rückflußkühler und Innenthermometer werden 0.1 mol Difluorsilan in 50 ml n-Hexan mit 0.1 mol lithiiertem Pentafluoranilin in 100 ml n-Hexan/THF bei -50 °C versetzt. Nach erfolgter Zugabe wird das Reaktionsgemisch unter Rühren innerhalb 1 h auf Raumtemp. erwärmt und anschließend 30 min unter Rückfluß erhitzt. 1 und 2 werden durch Destillation bei 0.01 mbar über eine 30-cm-Vigreuxkolonne gereinigt.

N-(*Di*-tert-butylfluorsilyl)pentafluoranilin (1): Sdp. 61 °C/0.01 mbar, Ausb. 31.9 g (93%). -- MS: m/z (%) = 343 (18) [M⁺]. -- IR (kapillar): 3380 cm⁻¹ (NH). -- ¹H-NMR: δ = 0.92 (d, ⁴J_{HF} = 1.1 Hz, CH₃), 3.05 (NH). -- ¹³C-NMR: δ = 20.87 (d, ²J_{CF} = 14.5 Hz, SiC), 27.12 (CC₃), 121.7, 135.7, 137.4, 140.4 (C₆). -- ¹⁹F-NMR: δ = 9.27 (*o*-C₆F₂), -3.05 (*m*-C₆F₂), -6.35 (*p*-C₆F), -3.34 (SiF). -- ²⁹Si-NMR: δ = -1.0 (d, J_{SiF} = 311.3 Hz).

C14H19F6NSi (343.4) Ber. C 48.97 H 5.58 Gef. C 48.83 H 5.43

N-(*Fluordiisopropylsilyl*) *pentafluoranilin* (2): Sdp. 54 °C/0.01 mbar, Ausb. 27.7 g (88%). – MS: m/z (%) = 315 (55) [M⁺]. – IR (kapillar): 3400 cm⁻¹ (NH). – ¹H-NMR: δ = 0.96 (CH₃), 3.44 (SiCH), 3.70 (NH). – ¹³C-NMR: δ = 12.69 (dt, ²*J*_{CF} = 15.6 Hz, ⁵*J*_{CF} = 3.5 Hz, SiC), 16.68, 16.83 (CC₂), 121.6, 132.8, 138.5, 138.9 (C₆). – ¹⁹F-NMR: δ = 6.02 (*o*-C₆F₂), –3.42 (*m*-C₆F₂), –9.13 (*p*-C₆F), 2.20 SiF (t, ⁵*J*_{FF} = 12.4 Hz). – ²⁹Si-NMR: δ = 2.0 (d, *J*_{SiF} = 303.3 Hz).

C12H15F6NSi (315.3) Ber. C 45.71 H 4.79 Gef. C 45.68 H 4.73

Lithium-Verbindungen 3 und 4: Im 100-ml-Schlenkkolben mit Claisen-Aufsatz, Rückflußkühler und Septum werden 0.05 mol 1 bzw. 2 in ca. 30 ml *n*-Hexan vorgelegt und bei -40 °C durch das Septum unter ständigem Rühren mit 0.05 mol $n-C_4H_9Li$ (15% in *n*-Hexan) versetzt. Anschließend wird durch das Septum so viel THF zugegeben, bis sich die Lithium-Verbindungen in der Hitze lösen. Bei Raumtemp. kristallisieren 3 ud 4 aus dem *n*-Hexan/THF-Gemisch. Durch erneute Kristallisation aus *n*-Hexan werden sie rein erhalten.

Lithium-N-(di-tert-butylfluorsilyl)pentafluoranilin (3): Schmp. 71 °C (Zers.), Farbe: ocker, Ausb. 21.9 g (89%). – ¹H-NMR: δ = 1.22 (d, ⁴J_{HF} = 1.24 Hz, CH₃), 1.37, 3.45 [O(CH₂CH₂)₂, nach Integration 2 THF]. – ⁷Li-NMR: δ = 0.35. – ¹³C-NMR: δ = 22.29 (d, ${}^{2}J_{CF} = 19.1$ Hz, SiC), 28.54 (q, ${}^{3}J_{CF} = 1.9$ Hz, CH₃), 25.39, 68.26 (OC₂C₂), 128.4, 134.4, 139.1, 141.8 (C₆). $- {}^{19}$ F-NMR: $\delta = -2.43$ (o-C₆F₂), -7.33 (m-C₆F₂), -26.23 (p-C₆F), 5.06 (t, ${}^{5}J_{FF} = 1.8$ Hz, SiF). $- {}^{29}$ Si-NMR: $\delta = -2.35$ (d, $J_{SiF} = 248.9$ Hz). $- C_{22}H_{34}F_{6}$ Li-NO₂Si (493.5).

Lithium-N-(fluordiisopropylsilyl) pentafluoranilin (4): Schmp. 38 °C (Zers.), Farbe: hellgrün, Ausb. 20.9 g (90%). - ¹H-NMR: δ = 1.13, 1.18 (d, CHCH₃), 1.29, 3.28 [O(CH₂CH₂)₂, (nach Integration 2 THF]. - ⁷Li-NMR: δ = 0.58. - ¹³C-NMR: δ = 14.92 (d, ²J_{CF} = 20.3 Hz, SiC), 17.84 (CC₂), 25.28, 68.34 (OC₂C₂), 131.7, 134.1, 139.1, 142.6 (C₆). - ¹⁹F-NMR: δ = -2.19 (o-C₆F₂), -7.24 (m-C₆F₂), -23.61 (p-C₆F), 0.86 SiF. - ²⁹Si-NMR: δ = 2.2 (d, J_{SiF} = 245.3 Hz). - C₂₀H₃₀F₆LiNO₂Si (465.5).

Kriställstrukturanalyse von 3: Für die Datensammlung wurde ein $0.6 \times 0.3 \times 0.8$ mm großer Einkristall ausgewählt und unter Argon in einer Kapillare montiert. Die Datensammlung wurde auf einem Stoc-Siemens-AED-Diffraktometer bei -80° C mit Mo- K_{α} -Strahlung ($\lambda = 71.069$ pm, Graphitmonochromator) durchgeführt. Zur Verfeinerung wurden 1769 Reflexe mit $F > 4\sigma(F)$ im Bereich $7^{\circ} < 2\Theta < 45^{\circ}$ benutzt. Die Struktur wurde mit direkten Methoden (SHELXS-86) gelöst. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. Die Wasserstoffatome wurden geometrisch ideal positioniert und nach einem "Reitermodell" in die Verfeinerung einbezogen, 248 Parameter. Das "tiefste Tal" der letzten Differenz-Fourier-Synthese beträgt 750 e $^{\Theta}$ nm⁻³, der größte Peak 890 e $^{\Theta}$ nm⁻³.

Kristallographische Daten: Raumgruppe = $P 2_1/n$, Z = 4; a = 1111.9(5), b = 1140.2(4), c = 2019.5(6) pm; β = 99.72(3)°; V = 2.524 nm³, μ (Mo- K_{α}) = 0.125 mm⁻¹, R = 0.098, R_w = 0.088 [wobei $w^{-1} = \sigma^2(F) + 0.0005 \cdot F^2$]. Weitere Einzelheiten zu der Strukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52987, der Autorennamen und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1: 114674-95-2 / 2: 114674-96-3 / 3: 114674-97-4 / 4: 114674-98-5 / LiHNC_6F_5: 60623-52-1 / (Me_3C)_2SiF_2: 558-63-4 / (Me_2CH)_2SiF_2: 426-05-1

- ¹⁾ D. Stalke, N. Keweloh, U. Klingebiel, M. Noltemeyer, G. M. Sheldrick, Z. Naturforsch., Teil B, **42** (1987) 137.
- ²¹ D. Stalke, U. Klingebiel, G. M. Sheldrick, J. Organomet. Chem. 344 (1988) 37.
- ³⁾ R. Boese, U. Klingebiel, J. Organomet. Chem. 315 (1986) C17.

[66/88]