stark A-H-antibindendes MO. Je geringer in der ursprünglichen Geometrie (planare AH₃, lineares AH₂) der Energieunterschied zwischen dem σ^* - und dem p-Orbital ist, desto stärker ist die Tendenz zur Winkelung. Für HTITIH gilt im wesentlichen das gleiche, nur daß hier das energetisch höherliegende Orbital (3b_u) p-Charakter hat. Dies kann auf den großen TI-TI-Abstand zurückgeführt werden. Sobald jedoch Abwinkelung und damit Mischung erfolgen, wird dieser Unterschied unwichtig. Im Gegensatz zum isoelektronischen linearen HCCH²[©] liegen in **2** HOMO und LUMO energetisch nahe beieinander, was die höhere Tendenz zur Winkelung erklärt.

Während die Orbitale 2b, und 3b, im Bereich von 180 bis 120° stark wechselwirken und sich dabei der 2b_u-Charakter von stark antibindend nach schwach bindend ändert, zeigt das wesentlichste Tl-Tl-bindende Orbital 2a_g im gleichen Bereich nur eine geringe Wechselwirkung mit Örbitalen derselben Symmetrie, so daß es seinen stark bindenden Charakter beibehält (siehe Abb. 1). Von 120° an nimmt jedoch das Mischen von 2a, mit anderen Niveaus zu, da Orbitale geeigneter Symmetrie ihm energetisch ähnlicher werden. Daher fällt die 2a_g-TI-TI-Überlappungspopulation zur Brückengeometrie hin schnell auf nichtbindend ab. Mit den Liganden in verbrückender Position können 2ag und 2bu als Orbitale für freie Elektronenpaare mit einer nur geringen Überlappungspopulation zwischen den Thalliumatomen betrachtet werden. Aus einem anderen Blickwinkel kann das von Orbitalenergien gesteuerte Mischen dahingehend interpretiert werden, daß es die Möglichkeit für ein stereochemisch aktives freies Elektronenpaar schafft.

Zusammenfassend können wir festhalten, daß HTITIH und CpTITICp eine Abwinkelung am Tl als Ergebnis einer energetischen Fast-Resonanz der Orbitale $2b_u(\sigma^*)$ und $3b_u(\pi)$ anstreben. Die Einflüsse, die eine Abwinkelung begünstigen, sind denen in EL₂, EL₃ (und L₂EEL₂) ähnlich, nur daß die Triebkraft bei HTITIH ausgeprägter ist. Es existiert auf jeden Fall eine Tl¹-Tl¹-Bindung in diesen Verbindungen, die auf das Einmischen formal leerer p-Niveaus in die gefüllten s-Orbital-Kombinationen der formalen s²-s²-Wechselwirkung abgeschlossener Unterschalen zurückzuführen ist. Eine Analyse des ganzen Bereichs von Tl¹-Tl¹-Wechselwirkungen in Molekül- und Festkörperstrukturen wird zur Zeit durchgeführt.

Eingegangen am 4. Juli 1989 [Z 3424]

CAS-Registry-Nummern: TlH, 13763-69-4.

- [2] H. Schumann, C. Janiak, F. Görlitz, J. Loebel, A. Dietrich, J. Organomet. Chem. 363 (1989) 243.
- [3] Für eine zweite Modifikation von 1a siehe H. Schumann, C. Janiak, M. A. Khan, J. J. Zuckerman, J. Organomet. Chem. 354 (1988) 7.
- [4] P. B. Hitchcock, M. F. Lappert, S. J. Miles, A. J. Thorne, J. Chem. Soc. Chem. Commun. 1984, 480, zit. Lit.
- [5] R. W. G. Wyckoff: Crystal Structures, Vol. 1, 2. Aufl., Interscience Publishers, New York 1963. Kürzester TI-TI-Abstand in der hexagonal dichtesten Packung 343.8 pm, im kubisch innenzentrierten Gitter 336.2 pm.
- [6] Siehe z. B. a) J. M. Cassidy, K. H. Whitmire, Inorg. Chem. 28 (1989) 1432, zit. Lit.; b) S. Harvey, M. F. Lappert, C. L. Raston, B. W. Skelton, G. Srivastava, A. H. White, J. Chem. Soc. Chem. Commun. 1988, 1216; c) M. Veith, F. Goffing, V. Huch, Chem. Ber. 121 (1988) 943; d) J. Beck, J. Strähle, Z. Naturforsch. B41 (1986) 1381; e) R. C. Burns, J. D. Corbett, J. Am. Chem. Soc. 103 (1981) 2627; f) L. F. Dahl, G. L. Davis, D. L. Wampler, R. West, J. Inorg. Nucl. Chem. 24 (1962) 357.
- [7] K. H. Whitmire, R. R. Ryan, H. J. Wasserman, T. A. Albright, S.-K. Kang, J. Am. Chem. Soc. 108 (1986) 6831.
- [8] R. Dronskowski, A. Simon, Angew. Chem. 101 (1989) 775; Angew. Chem. Int. Ed. Engl. 28 (1989) 758.
- [9] Die Berechnungen wurden mit dem Extended-Hückel-Formalismus [10] und gewichteten H_{ii}-Elementen [10c] durchgeführt; folgende Atompara-

meter wurden verwendet (H_{ij}, ζ) [11]: TI: 6s: -11.6 eV, 2.3; 6p: -5.8 eV, 1.6 [12]; H: 1s: -13.6 eV, 1.3 [10a]; C: 2s: -21.4 eV, 1.625; 2p: -11.4 eV, 1.625 [10a].

- [10] a) R. Hoffmann, J. Chem. Phys. 39 (1963) 1397; b) R. Hoffmann, W. N. Lipscomb, *ibid.* 36 (1962) 2179; *ibid.* 37 (1962) 2872; c) J. H. Ammeter, H. B. Bürgi, J. C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 100 (1978) 3686.
- [11] Dr. Gordon Miller, Stuttgart, hat uns auf einen weiteren TI-Parametersatz hingewiesen (vgl. [9]), der auf Arbeiten von Timothy Hughbanks (College Station, persönliche Mitteilung) basiert (6s: - 12.8 eV, 2.52; 6p: - 5.1 eV, 1.77). Die Abhängigkeit der Überlappungspopulation von α bleibt bei Verwendung dieses Satzes erhalten, ihr Absolutwert beim 120°-Maximum ist aber nur ungefähr halb so groß.
- [12] T. A. Albright (Houston), persönliche Mitteilung 1988.
- [13] a) P. K. Mehrotra, R. Hoffmann, Inorg. Chem. 17 (1978) 2187; b) K. M. Merz, R. Hoffmann, *ibid.* 27 (1988) 2120.
- [14] A. Dedieu, R. Hoffmann, J. Am. Chem. Soc. 100 (1978) 2074.
- [15] Y. Jiang, S. Alvarez, R. Hoffmann, Inorg. Chem. 24 (1985) 749.
- [16] Siehe a) W. C. Ermler, R. B. Ross, P. A. Christiansen, Adv. Quantum Chem. 19 (1988) 139; b) P. Pyykkö. Chem. Rev. 88 (1988) 563; c) F. Scherbaum, A. Grohmann, G. Müller, H. Schmidbaur, Angew. Chem. 101 (1989) 464; Angew. Chem. Int. Ed. Engl. 28 (1989) 463, zit. Lit.
- [17] a) T. A. Albright, J. K. Burdett, M.-H. Whangbo: Orbital Interactions in Chemistry, Wiley-Interscience, New York 1985; b) B. M. Gimarc: Molecular Structure and Bonding, Academic Press, New York 1979.

Synthese und Struktur eines 1H-Diphosphirens**

Von Edgar Niecke*, Rainer Streubel, Martin Nieger und D. Stalke

Professor Gerhard Fritz zum 70. Geburtstag gewidmet

Phosphirene sind in den letzten Jahren sowohl in der 1*H*-Form I (*Mathey* et al.^[11]) als auch in der thermodynamisch weniger günstigen 2*H*-Form II (*Regitz* et al.^[21]) bekannt geworden. Der Ersatz einer Methingruppe von I und II durch ein zweifach koordiniertes Phosphoratom führt zu den bislang unbekannten Diphosphirenen III bzw. IV (Schema 1). Wie Untersuchungen an α -funktionellen Ami-

Schema 1. Phosphirene und Diphosphirene; die Striche symbolisieren Bindungen zu beliebigen Substituenten.

nophosphanen gezeigt haben, reagieren Halogen(silyl)phosphane wie 1 und Verbindungen mit polaren Doppelbindungen unter Dreiringbildung^[3]. Durch Ausweitung dieses Syntheseprinzips auf das P-C-Dreifachbindungssystem gelangten wir nun zu 3, dem ersten 1*H*-Diphosphiren III^[4].

Das bei der Reaktion zwischen dem funktionalisierten Aminophosphan 1^[5] und dem Phosphaalkin 2^[6] unter schonenden Bedingungen zugängliche 3 wird als extrem luftemp-

Anorganisch-chemisches Insitut der Universität Gerhard-Domagk-Straße 1, D-5300 Bonn 1 Dr. D. Stalke Institut für Anorganische Chemie der Universität

Tammannstr. 4, D-3400 Göttingen [**] Vorgestellt auf der 11th International Conference on Phosphorus Chemi-

H. Schumann, C. Janiak, J. Pickardt, U. Börner, Angew. Chem. 99 (1987) 788; Angew. Chem. Int. Ed. Engl. 26 (1987) 789.

^[*] Prof. Dr. E. Niecke, Dipl.-Chem. R. Streubel, Dr. M. Nieger

^{**}J vorgestellt auf der 11^{sc} International Conterence on Prosphörus Chemistry, Tallinn, UdSSR, Juli 1989. – Diese Arbeit wurde vom Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen und vom Fonds der Chemischen Industrie gefördert.

findliche tiefrote Flüssigkeit erhalten. Durch Tieftemperaturkristallisation aus Pentan kann 3 als kristalliner Feststoff (Fp = -12 bis -10 °C) erhalten werden.

Zusammensetzung und Konstitution der Verbindung sind durch Elementaranalyse, Massen-[7], ³¹P-, ¹H- und ¹³C-NMR-Spektren^[8] sowie durch Röntgenbeugungsanalyse belegt. Die beiden Signalpaare im ³¹P-NMR-Spektrum sprechen für das Vorliegen eines Diastereomerenpaars (Verhältnis 3:1). Die Lage des Aminophosphan-Phosphorsignals $(\delta = -118.7 (-116.3))$ entspricht der von vergleichbar substituierten 1H-Phosphirenen^[9]. Ungewöhnlich hingegen ist die Hochfeldlage des σ^2 -Phosphoratomsignals (14.9(4.6)) im Vergleich zu den Signallagen anderer Dreiringsysteme mit einem Phosphaalken-Strukturelement^[2, 10]. Dies deutet darauf hin, daß für die Beschreibung des Grundzustandes von 3 neben der Grenzstruktur A auch die Grenzstruktur B wesentlich ist. Jedenfalls legt ein Vergleich mit der Abschirmung des ³¹P-Kerns in 2-Amino-1,3-diphosphapropenen^[11] eine derartige Interpretation nahe. Zudem würde die auf eine Beteiligung von B zurückzuführende gehinderte Rotation um die exocyclische C-N-Bindung auch das Auftreten des in den NMR-Spektren erkennbaren Diastereomerenpaars erklären.

Das Vorliegen eines Vierelektronen-Dreizentren-PCN- p_{π} -Bindungssystems wird durch das Ergebnis der Röntgenstrukturanalyse nachdrücklich untermauert (Abb. 1). Die

Abb. 1. Struktur von 3 im Kristall mit ausgewählten Bindungslängen [pm] und -winkeln [°]: P(1)-C(1) 170.2(4), P(2)-C(1) 178.7(4), P(1)-P(2) 221.8(1), P(2)-N(2) 170.2(3), N(1)-C(1) 135.0(4); P(2)-P(1)-C(1) 52.3(1), P(1)-P(2)-C(1) 48.9(1), P(1)-P(2)-N(2) 111.5(1) [13].

annähernd planare Anordnung der Atome P(1)-C(1)-N(1)-Si(1) (Diederwinkel: 178.6°) ermöglicht eine effektive π -Donation des Aminostickstoffatoms, für die auch die Verkürzung der C(1)-N(1)-Bindung (135.0(4) pm) und die Dehnung der P(1)-C(1)-Bindung (170.2(4) pm) sprechen. Eine derartige Bindungssituation ist auch von dem 2-Amino-1,3diphosphapropen PhP = C(PPhSiMe₃)-N(o-ClC₆H₄)SiMe₃ bekannt, das eine mit der von **3** vergleichbare P-C-Bindungslänge (170.2 pm) aufweist^[11].

Der durch den exocyclischen π -Donor hervorgerufenen Dehnung der P-C-Doppelbindung steht eine Verkürzung der P(2)-C(1)-Bindung auf 178.7(4) pm gegenüber. Diese Angleichung beider P-C-Bindungslängen sowie die Verkürzung der exocyclischen C-N-Bindung deuten den Übergang des Amino-1*H*-phosphirens in das thermodynamisch stabilere Diphosphiranimin C an^[12].

Arbeitsvorschrift

3: 1.2 g (6.94 mmol) 2 werden bei 0 °C vorgelegt und unter Rühren langsam mit 1.37 g (5.71 mmol) 1 versetzt. Dann gibt man drei Tropfen Hexamethylphosphorsäuretriamid (HMPT) hinzu und entfernt die Kühlung. Man läßt ca. 1.5 h bei Raumtemperatur rühren und entfernt dann alle flüchtigen Bestandteile im Hochvakuum. Den roten, öligen Rückstand nimmt man in wenig *n*-Pentan auf und erhält nach 1 d bei - 80 °C orange Kristalle von 3, die bei tiefer Temperatur isoliert werden (1.18 g, 67.9%). Der Schmelzpunkt liegt bei - 12 bis - 10 °C.

Eingegangen am 3. Juli 1989 [Z 3421]

CAS-Registry-Nummern:

1, 123542-38-1; 2, 118375-89-6; 3, 123542-39-2.

- A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Chem. Soc. Chem. Commun. 1984, 45.
- [2] O. Wagner, G. Maas, M. Regitz, Angew. Chem. 99 (1987) 1328; Angew. Chem. Int. Ed. Engl. 26 (1987) 1257.
- [3] R. Streubel, Diplomarbeit, Universität Bonn 1987, vorgestellt auf der 11th Int. Conf. Phosphorus Chem. (Tallinn, UdSSR, Juli 1989).
- [4] Kürzlich wurde über die Synthese eines λ⁵-Diphosphirens berichtet: E.
 Niecke, D. Barion, *Tetrahedron Lett.* 30 (1989) 459.
- [5] E. Niecke, M. Nieger, H. Westermann, unveröffentlicht.
- [6] R. Appel, M. Poppe, Angew. Chem. 101 (1989) 70; Angew. Chem. Int. Ed. Engl. 28 (1989) 53.
- [7] MŠ (30 °C/50 eV): m/z 304 (M^{\odot} , 6%), 261 (94), 231 (16), 204 (39), 162 ($iPr_2NP_2^{\odot}$, 100).
- [8] Numerierung der Atome gemäß Abbildung 1. 32 MHz.³¹P{¹H}-NMR(C₆D₆): Hauptisomer: $\delta = 14.9$ (P(1)), -118.7 (P(2)); ¹J(P,P) = 104.8 Hz: Nebenisomer: $\delta = 4.6$ (P(1), -116.3 (P(2)); ¹J(P,P) = 108.8 Hz. -400 MHz.¹H-NMR(C₆D₆): Hauptisomer: $\delta = 0.26$ (s, 9H, Si(CH₃)₃), 1.07 (d, ³J(H,H) = 7.2 Hz, 6H, CH(CH₃)₂), 1.08 (d, ³J(H,H) = 7.2 Hz, 6H, CH(CH₃)₂), 1.33 (d, ³J(H,H) = 7.2 Hz, 3H, N(1)CHCH₃), 1.51 (d, ³J(H,H) = 7.2 Hz, 3H, N(1)CHCH₃), 3.15 (sept. ³J(H,H) = 7.2 Hz, 2H, N(2)CH), 3.81 (sept. ³J(H,H) = 7.2 Hz, 1H, N(1)CH; Nebenisomer: $\delta = 0.32$ (s, 9H, Si(CH₃)₃), 0.93 (d, ³J(H,H) = 7.2 Hz, 3H, N(1)CHCH₃), 1.19 (d, ³J(H,H) = 7.2 Hz, 3H, N(1)CHCH₃), 1.23 (d, ³J(H,H) = 7.2 Hz, 6H, CH(CH₃)₂), 1.25 (d, ³J(H,H) = 7.2 Hz, 6H, CH(CH₃)₂), 3.17 (sept. ³J(H,H) = 7.2 Hz, 2H, N(2)CH), 3.89 (sept. ³J(H,H) = 7.2 Hz, 1H, N(1)CH). - 100 MHz - ¹³C{¹H}-NMR(C₆D₆): Hauptisomer: $\delta = 0.8$ (d, ⁴J(P,C) = 4.9 Hz, Si(CH₃)₃), 18.7 (d, ⁴J(P,C) = 6.1 Hz, N(1)CHCH₃) 19.6 (d, ⁴J(P,C) = 3.8 Hz, N(1)CHCH₃), 23.7 (d, ³J(P,C) = 4.1 Hz, CH(CH₃)₂), 24.0 (d, ³J(P,C) = 13.3 Hz, CH(CH₃)₂), 43.8 (d, ²J(P,C) = 6.2 Hz, N(2)CH), 53.4 (s, N(1)CH), 196.8 (dd, ¹J(P,C) = 83.4, 79.6 Hz, C(1)); Nebenisomer: $\delta = 0.2$ (d, ⁴J(P,C) = 7.6 Hz, N(1)CHCH₃), 43.4 (d, ²J(P,C) = 6.6 Hz, N(2)CH), 55.5 (s,N(1)CH), 202.6 (dd, ¹J(P,C) = 87.7, 80.7 Hz, C(1)).
- [9] O. Wagner, M. Ehle, M. Regitz, Angew. Chem. 101 (1989) 227; Angew. Chem. Int. Ed. Engl. 28 (1989) 225.

- [10] A. Schäfer, M. Weidenbruch, W. Saak, S. Pobl, Angew. Chem. 99 (1987) 806; Angew. Chem. Int. Ed. Engl. 26 (1987) 776.
- [11] R. Appel, B. Laubach, Tetrahedron Lett. 21 (1980) 2497; R. Appel, F. Knoll, I. Ruppert, Angew. Chem. 93 (1981) 771; Angew. Chem. Int. Ed. Engl. 20 (1981) 731.
- [12] M. Baudler, J. Simon, Chem. Ber. 120 (1987) 421.
- [13] Röntgenstrukturanalyse von 3 ($C_{13}H_{30}N_3P_2Si$. $M_r = 304.4$): Raumgruppe $P_{2_12_12_1}$ (Nr. 19), a = 946.3(1), b = 1324.3(2), c = 1493.8(2) pm, V = 1.872 nm³. Z = 4, $\varphi_{ber.} = 1.08$ g cm⁻³, $\mu(Mo_{K_2}) = 0.28$ mm⁻¹, T = 188 K; 3283 symmetrieunabhängige Reflexe ($2\theta_{max} = 50^{\circ}$), davon 2897 Reflexe mit $|F| > 4\sigma(F)$ zur Strukturfösung (Direkte Methoden) und -verleinerung (163 Parameter) verwendet; Nicht-Wasserstoffatome anisotrop, H-Atome mit einem "riding"-Modell verfeinert; R = 0.061($R_x = 0.059$, $w^{-1} = \sigma^2(F) + 0.0010$ F^2). Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53969, der Autoren und des Zeitschriftenzitats angefordert werden.

Erste Isolierung von Allenylaziden**

Von Klaus Banert* und Manfred Hagedorn

Während für Vinylazide zahlreiche Synthesemethoden existieren^[11], sind bisher alle Versuche gescheitert, Allenylazide zu isolieren^[2-4]. Kürzlich konnten wir zeigen, daß Propargylazide von Typ I durch Wanderung der Azidgruppe zu den Allenylaziden 2 isomerisieren^[5]. Diese erweisen sich als kurzlebige Zwischenstufen und cyclisieren rasch zu den Triazafulvenen 3, die sich mit Nucleophilen wie Methanol^[6] als 1,2,3-Triazole vom Typ 4 abfangen lassen. Die Überführung von Propargyl- in Allenylazide gelingt nicht nur durch Verschiebung der Azidgruppe, sondern auch durch Basenkatalyse (prototrope Umlagerung)^[7]. Hierbei entstehen – ähnlich wie bei den Folgereaktionen des Azidobutatriens^[8] Tabelle 1. Einige physikalische Daten von 2a-f, 5 und 6 [a].

2a: IR (CCl₄): $\tilde{v} = 2170$, 2110, 1330, 1255, 900. ¹H-NMR (CD₃OD): $\delta = 5.46$ (d, J = 6.4, 2H), 6.01 (br. t, $J \approx 6$, 1H). ¹³C-NMR (CD₃OD): $\delta = 88.0$ (td, J = 170, 6.5; C-3), 100.5 (dt, J = 194, 9; C-1), 204.8 (s; C-2). GC-MS: $m/z \, 81$ (M^{\oplus} , 94%), 53 ([$M - N_2$]^{\oplus}, 44), 52 (100). UV (Ether): $\lambda_{max} = 240$ nm ($\varepsilon \approx 6700$) **2b**: IR (CDCl₃): $\tilde{v} = 2110$, 1435, 1420, 1280, 1250, 1130. ¹H-NMR (CD₃OD): $\delta = 1.78$ (t, J = 3.3, 3H), 5.34 (q, J = 3.3, 2H). ¹³C-NMR (CDCl₃): $\delta = 17.2$ (q; C-4), 86.2 (t; C-1), 108.8 (s; C-3), 201.3 (s; C-2). GC-MS: m/z 95 (M^{\odot} , 45%), 66 (100), 52 (51)

2c: farblose Flüssigkeit. IR (CDCl₃): $\tilde{\nu} = 2120$. ¹H-NMR (CDCl₃): $\delta = 3.37$ (s, 3H), 3.95 (t, J = 2.0, 2H), 5.47 (t, J = 2.0, 2H). ¹³C-NMR (CD₃OD): $\delta = 57.3$ (q; OCH₃), 71.7 (t; C-4), 87.4 (t; C-1), 110.4 (s; C-3), 202.6 (s; C-2) **2d**: farblose Flüssigkeit. IR (CCl₄): $\tilde{\nu} = 2120, 1270, 1245, 890$. ¹H-NMR (CDCl₃): $\delta = 4.02$ (t, J = 1.8, 2H), 5.55 (t, J = 1.8, 2H). ¹³C-NMR (CDCl₃, -30°C): $\delta = 43.3$ (t; C-4), 89.2 (t; C-1), 109.9 (s; C-3), 200.4 (s; C-2). UV (Cyclohexan): $\lambda_{max} = 242$ nm ($\varepsilon = 5300$)

2e: ¹H-NMR (CD₃OD): δ = 4.01 (t, J = 2.3, 2H), 5.49 (t, J = 2.3, 2H). ¹³C-NMR (CD₃OD): δ = 61.8 (t, J = 147; C-1), 87.9 (t; J = 170, C-4), 114.0 (s; C-2), 201.8 (s; C-3)

2f: ¹H-NMR (CDCl₃): δ = 3.72 (br. t, $J \approx 2$, 2H), 5.57 (t, J = 2.1, 2H). ¹³C-NMR (CDCl₃): δ = 50.6 (t; C-4), 88.4 (t; C-1), 108.5 (s; C-3), 200.3 (s; C-2) **5**: ¹H-NMR (CD₃OD): δ = 3.06 (t, J = 2.5, 1H), 4.72 (s, 2H), 5.33 (d, J = 2.5, 2H), 7.77 (s, 1H). ¹³C-NMR (CD₃OD): δ = 39.08 (t, J = 148), 43.30 (t, J = 146), 76.50 (dt, J = 52, 9), 76.54 (dt, J = 254, 4), 133.93(s), 134.83 (d, J = 196)

6: farblose Flüssigkeit. IR (CCl₄): $\tilde{v} = 3300$, 2100. ¹H-NMR (CD₃OD): $\delta = 3.09$ (t, J = 2.5, 1 H), 4.47 (s, 2 H), 5.31 (d, J = 2.5, 2 H), 8.14 (s, 1 H). ¹³C-NMR (CD₃OD): $\delta = 40.63$ (t, J = 148), 45.94 (t, J = 145), 76.75 (dt, J = 51, 10), 76.78 (dt, J = 254, 4), 124.59 (d, J = 196), 144.02(s)

[a] ¹H-NMR bei 80 und 400 MHz, ¹³C-NMR bei 100.6 MHz, J in Hz; \tilde{v} in cm⁻¹; GC-MS bei 70 eV.

Signale der Allenylazide **2a** ($\leq 3\%$), **2b** ($\leq 1\%$), **2c** ($\leq 3\%$), **2d** ($\leq 7\%$) und **2e** ($\leq 8\%$) nachweisen (Tabelle 1). In allen Fällen bleibt das Verhältnis **1/2** im Laufe der Reaktion näherungsweise konstant; **2** ist also eine kurzlebige (quasistationäre) Zwischenstufe. Der Donorsubstituent R=Me be-

Wir berichten hier über den erstmaligen spektroskopischen Nachweis und die Isolierung von Allenylaziden, die damit den Status einer postulierten Zwischenstufe verlieren. Verdünnte Lösungen der Propargylazide^[9] $1a - e^{[9a, 10, 7, 8, 12, 5]}$ in CDCl₃ oder [D₄]Methanol ergeben bei 40 °C polymere Triazole bzw. monomeres 4. Verfolgt man die Reaktionen ¹H- und ¹³C-NMR-spektroskopisch, so lassen sich die schleunigt offensichtlich den Ringschluß zu **3b**, wodurch sich nur eine kleine Konzentration an **2b** aufbauen kann. Dagegen reichert sich **2d**, das den schwachen Acceptorsubstituenten $R = CH_2Cl$ trägt, stärker an. In konzentrierter Lösung neigt insbesondere **1a** zur 1,3-dipolaren Cycloaddition¹¹³; dabei entstehen die Dimere **5** und **6** etwa im Verhältnis $1/3^{114}$. Ausgehend von $1f^{(15)}$ kann das Allen **2f** ($\leq 0.8\%$) nachgewiesen werden, das nicht zu **3f** cyclisiert, sondern in einer raschen Folgeumlagerung zu 7 führt. Damit ist **2f** erstmals als Zwischenstufe der bekannten^(15, 16) Reaktion **1f** \rightarrow 7 belegt.

Durch präparative Gaschromatographie $(25-50 \,^{\circ}\text{C})$ lassen sich die Azide **2a**-e von den isomeren Propargylverbin-

^[*] Dr. K. Banert, M. Hagedorn Fachbereich 8, Organische Chemie II der Universität – Gesamthochschule Adolf-Reichwein-Straße, D-5900 Siegen

^[**] Rcaktionen ungesättigter Azide, 9. Mitteilung. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft gefördert. Wir danken Frau E. Reißaus und Herrn K. Vrohel für sorgfältige Mitarbeit. – 8. Mitteilung: [8].