Kurzmitteilung / Short Communication

An Uncomplexed 1,2,3-Triborolane Derivative

Anton Meller*, Dietmar Bromm, Walter Maringgele, Andreas Heine, Dietmar Stalke, and George M. Sheldrick
Institut für Anorganische Chemie der Universität Göttingen,
Tammannstraße 4, D-3400 Göttingen

Received October 18, 1989
Key Words: 1,2,3-Triborolane / Dicyclopentadiene / Dichloro(diisopropylamino)borane, dehalogenation product of / Triborane(5), 1,2,3-tris(diisopropylamino)-
($3 \alpha, 4 \beta, 4 a \beta, 7 a \beta, 8 \beta, 8 a \alpha)-1,2,3-T r i s($ diisopropylamino) -1,2,3,3a,4,4a, 5,7a,8,8a-decahydro-4,8-methanoindeno[5,6- d]-1,2,3-triborol (1) is formed from dicyclopentadiene and dichloro(diisopropylamino)borane upon treatment with sodium/potassium alloy in
hexane. 1,2,3-Tris(diiso propylamino)triborane(5) (2) was also obtained. $\mathbf{1}$ is characterized by elemental analyses, spectroscopic data, and by an X-ray structure analysis, 2 by its MS and NMR data.

Generally, $\mathrm{C}_{2} \mathrm{~B}_{3}$ systems exist in form of carboranes ${ }^{11}$, and $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ is known as nido-1,2-dicarbapentaborane ${ }^{2)}$. So far $\mathrm{C}_{2} \mathrm{~B}_{3}$ ring systems have been obtained only stabilized as η^{5}-ligands in transition-metal complexes ${ }^{3}$. A triple decker, containing an $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}_{2} \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ cluster, has been obtained by the reaction of $\mathrm{Na}\left[\mathrm{B}_{5} \mathrm{H}_{8}\right]$ with CoCl_{2} and $\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{H}_{5}\right]$ upon partial insertion of $\mathrm{C}_{5} \mathrm{H}_{5}$ into the pentaborane anion ${ }^{4}$. The formation of the species $2,2,3,3,4,4$-hexafluoro-2,3,4-trisilabicyclo[3.2.2]nona-6,8-diene from the reaction of the difluorocarbene analog SiF_{2} has been reported ${ }^{5)}$.

We have isolated compound 1 , which incorporates the first $\mathrm{C}_{2} \mathrm{~B}_{3}$ ring system without complexation, from the reaction of dicyclopentadiene with dichloro(diisopropylamino)borane upon treatment with sodium/potassium alloy in hexane. Apparently, a diradical $\left[\mathrm{B}\left(\mathrm{NR}_{2}\right)\right]_{2} \mathrm{~B}\left(\mathrm{NR}_{2}\right)^{2 \cdot}(\mathrm{R}=i \mathrm{Pr})$ is added to one of the double bonds of dicyclopentadiene. If the dehalogenation of $\mathrm{Cl}_{2} \mathrm{BNR}_{2}$ is performed in 1,2-dimethoxyethane or hexane without an equally reactive partner, 1,2,3-tris(diisopropylamino)triborane(5) (2) is obtained ${ }^{6}$.

$\mathrm{R}=\mathrm{iPr}$.

2

+ other products

The spectroscopic data are consistent with the reported structures (see Experimental). However, for 1 the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra are too complicated to allow unequivocal assignments.

Crystal Structure of 1

The molecular structure of 1 is depicted in Figure 1. Atomic coordinates and equivalent isotropic displacement parameters are
given in Table 1, selected bond lengths and angles in Table 2. The atoms $\mathrm{B} 1, \mathrm{~N} 1, \mathrm{C} 3$, and C 6 lie on a crystallographic mirror plane perpendicular to the $B_{3} C_{2}$ five-membered ring. In this ring the B_{3} and BCCB planes form an envelope.

Table 1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\times 10^{3}\right)\left[\AA^{2}\right]$ of $\mathbf{1}[U(\mathrm{eq})$ defined as on third of the trace of the orthogonalized $U_{i j}$ tensor]

	\mathbf{x}	\boldsymbol{y}	\mathbf{z}	$\mathrm{U}(\mathrm{eq})$
$\mathrm{B}(1)$	$1356(2)$	2500	$919(4)$	$32(1)$
$\mathrm{B}(2)$	$1933(2)$	$3229(2)$	$1439(3)$	$33(1)$
$\mathrm{N}(1)$	$747(2)$	2500	$128(3)$	$40(1)$
$\mathrm{N}(2)$	$1846(1)$	$3791(1)$	$2544(2)$	$36(1)$
$\mathrm{C}(1)$	$2675(1)$	$2974(2)$	$793(3)$	$33(1)$
$\mathrm{C}(2)$	$2815(1)$	$3169(2)$	$-793(3)$	$43(1)$
$\mathrm{C}(3)$	$2429(2)$	2500	$-1577(4)$	$48(2)$
$\mathrm{C}(4)$	$3574(2)$	$2969(2)$	$-1206(3)$	$48(1)$
$\mathrm{C}(5)$	$4146(2)$	$3192(2)$	$-193(4)$	$63(1)$
$\mathrm{C}(6)$	$4434(2)$	2500	$397(5)$	$53(2)$
$\mathrm{C}(7)$	$408(2)$	$3225(3)$	$-417(4)$	$82(2)$
$\mathrm{C}(8)$	$-224(2)$	$3494(3)$	$355(5)$	$93(2)$
$\mathrm{C}(9)$	$704(3)$	$3639(4)$	$-1473(9)$	$210(4)$
$\mathrm{C}(10)$	$2403(1)$	$4271(2)$	$3208(3)$	$41(1)$
$\mathrm{C}(11)$	$2786(2)$	$4787(2)$	$2130(3)$	$59(1)$
$\mathrm{C}(12)$	$2891(2)$	$3773(2)$	$4126(3)$	$59(1)$
$\mathrm{C}(13)$	$1155(2)$	$3927(2)$	$3167(4)$	$62(1)$
$\mathrm{C}(14)$	$1122(2)$	$3738(3)$	$4738(4)$	$110(2)$
$\mathrm{C}(15)$	$893(2)$	$4765(3)$	$2847(6)$	$117(2)$

Table 2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ of 1

$B(1)-B(2)$	$1.724(4)$	$B(1)-B(2 A)$	1.724	(4)
$B(2)-C(1)$	$1.609(4)$	$C(1)-C(2)$	1.541	(4)
$C(1)-C(1 A)$	$1.591(5)$	$C(2)-C(3)$	$1.533(4)$	
$C(2)-C(4)$	$1.547(4)$	$C(3)-C(2 A)$	$1.533(4)$	
$C(4)-C(5)$	$1.500(4)$	$C(4)-C(4 A)$	$1.575(6)$	
$C(5)-C(6)$	$1.401(4)$	$C(6)-C(5 A)$	$1.401(4)$	
$B(2)-B(1)-N(1)$	$134.1(1)$	$B(2)-8(1)-B(2 A)$	$90.5(3)$	
$N(1)-B(1)-B(2 A)$	$134.1(1)$	$B(1)-B(2)-N(2)$	$127.3(3)$	
$B(1)-B(2)-C(1)$	$106.1(2)$	$N(2)-B(2)-C(1)$	$124.0(2)$	
$B(1)-N(1)-C(7)$	$124.0(2)$	$B(2)-C(1)-C(2)$	$117.3(2)$	
$B(2)-C(1)-C(1 A)$	$105.5(1)$	$C(2)-C(1)-C(1 A)$	$102.3(1)$	
$C(1)-C(2)-C(3)$	$102.7(2)$	$C(1)-C(2)-C(4)$	$111.0(2)$	
$C(3)-C(2)-C(4)$	$100.3(2)$	$C(2)-C(3)-C(2 A)$	$94.2(3)$	
$C(2)-C(4)-C(5)$	$118.8(3)$	$C(2)-C(4)-C(4 A)$	$102.5(2)$	
$C(5)-C(4)-C(4 A)$	$104.5(2)$	$C(4)-C(5)-C(6)$	$109.4(3)$	
$C(5)-C(6)-C(5 A)$	$112.1(4)$			

The $\mathrm{C} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{B} 2 \mathrm{~A}-\mathrm{B} 1-\mathrm{B} 2$ ring and the $\mathrm{C} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-$ $\mathrm{C} 3-\mathrm{C} 2$ ring form a cradle with a distance of $3.115 \AA$ between B 1 and C3. This may result from steric effects involving the bulky $i \mathrm{Pr}$ groups. The mirror plane perpendicular to the plane of the $\mathrm{C} 4-$ $\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 5$ five-membered ring requires the double bond to be disordered, with an average apparent $\mathrm{C}-\mathrm{C}$ bond length of $1.40 \AA$. Steric hindrance probably also accounts for the envelope form, because a planar ring with $\mathrm{N}(i \operatorname{Pr})_{2}$ groups at each boron atom would be energetically less favorable.

Figure 1. Molecular structure of 1

Support by the Volkswagenstiftung and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental

Elemental analyses: Mikroanalytisches Laboratorium Beller. Göttingen. - NMR (standards): ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (TMS, int), ${ }^{11} \mathrm{~B}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ BF_{3}, ext.); Bruker AM 250. - MS: EI (70 eV), FI; Varian AMT CH 5 . $-\mathrm{Cl}_{2} \mathrm{BN}(\mathrm{iPr})_{2}{ }^{7}$. - All reactions are performed in dry N_{2} and in dry solvents.
($3 \alpha, 4 \beta, 4 a \beta, 7 a \beta, 8 \beta, 8 a \alpha$)-1,2,3-Tris(diisopropylamino)-1,2,3,3a, 4,4a,5,7a,8,8a-decahydro-4,8-methanoindeno [5,6-d J-1,2,3-triborol (1): Dicyclopentadiene ($59.4 \mathrm{~g}, 0.45 \mathrm{~mol}$) and dichloro(diisopropylamino)borane ($82.0 \mathrm{~g}, 0.45 \mathrm{~mol}$) are dissolved in hexane (250 ml). The mixture is added dropwise with vigorous stirring to a suspension of sodium/potassium alloy ($5.75 \mathrm{~g} \mathrm{Na}, 29.33 \mathrm{~g} \mathrm{~K}, 1.00 \mathrm{~mol}$) in hexane (11) during 30 min . The reaction mixture is stirred for ca. 12 h and heated to reflux for 20 h . After filtration through a glass frit under N_{2} pressure and distillation of the hexane, the green residue is kept at $0^{\circ} \mathrm{C}$ for 72 h , and colorless crystals are collected by filtration. The yield of $\mathbf{1}$ (after recrystallization from acetone) is $7.40 \mathrm{~g}\left[11 \%\right.$ relative to $\left.\mathrm{Cl}_{2} \mathrm{BN}(i \mathrm{Pr})_{2}\right], \mathrm{mp} 170^{\circ} \mathrm{C} . \operatorname{MS}(\mathrm{EI}): m / z$ $(\%)=465(15) ;(\mathrm{FI}): m / z(\%)=465(100)[\mathrm{M}]^{+} .-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $\delta^{11} \mathrm{~B}=55\left(h_{1 / 2} \approx 1180 \mathrm{~Hz}\right)$, shoulder at 62.

$$
\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{~B}_{3} \mathrm{~N}_{3}(465.19) \quad \text { Calcd. C } 72.29 \text { H } 11.70 \text { B } 6.97 \mathrm{~N} 9.04
$$

$$
\text { Found C } 72.86 \text { H } 12.12 \text { B } 6.57 \text { N } 8.48
$$

1,2,3-Tris(diisopropylamino) triborane(5) (2): This is obtained in varying quantities $(5-15 \%)$ from dehalogenation reactions of $\mathrm{Cl}_{2} \mathrm{BN}\left(i \mathrm{Pr}_{2}\right.$ in hexane or 1,2-dimethoxyethane together with other products. It crystallizes from distillation fractions bp $50-75^{\circ} \mathrm{C} / 0.1$ mbar in colorless needles, $\mathrm{mp} \leq 30^{\circ} \mathrm{C} .-\mathrm{MS}(\mathrm{EI}): m / z=335$; (FI): $m / z(\%)=335(100) .-\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta^{11} \mathrm{~B}=44\left(h_{1 / 2}=770\right.$ Hz) and $58\left(h_{1 / 2} \approx 755 \mathrm{~Hz}\right)$, ratio $2: 1 ; \delta^{\prime} \mathrm{H}=1.09(\mathrm{~d}), 1.11(\mathrm{~d})$, and 1.12 (d) $\left({ }^{3} J_{\mathrm{HH}}=6.75 \mathrm{~Hz}, 12 \mathrm{CH}_{3}\right), 3.16$ (sept), 3.34 (sept), and 3.60 (sept) $\left({ }^{3} J_{\mathrm{HH}}=6.75 \mathrm{~Hz} 6 \mathrm{CH}\right), 4.8-5.6$ (br., 2 BH$) .-\mathrm{IR}(\mathrm{KBr}):$ $v(\mathrm{BH})=2390 \mathrm{~cm}^{-1}$ (br.).

$\mathrm{C}_{18} \mathrm{H}_{44} \mathrm{~B}_{3} \mathrm{~N}_{3}$ (335.02) Calcd. C 64.53 H 13.24 B 9.68 N 12.54 Found C 64.50 H 13.05 B 9.60 N 12.41

Crystal Data for $C_{28} H_{54} B_{3} N_{3}{ }^{81}$: Single crystals were obtained from a solution of 1 in acetone. A crystal ($0.7 \times 0.7 \times 0.7 \mathrm{~mm}$) was mounted on a Stoe-Siemens four-circle diffractometer. Orthorhombic, space group Pnma with $a=9.342(1), b=16.793(2), c=$ $19.248(2) \AA, V=3020 \AA^{3}$, molecular mass $465.2 \mathrm{~g} / \mathrm{mol}, Z=4$, $D_{\text {calcd. }}=1.023 \mathrm{~g} / \mathrm{cm}^{3}, \mu=0.05 \mathrm{~mm}^{-1}, F(000)=1032$. Data were collected at $-85^{\circ} \mathrm{C}$ using Mo- K_{α} radiation ($\bar{\lambda}=0.71073 \AA$) and a 2Θ range of $8-50^{\circ} .3156$ reflections were measured of which 2731 were independent, and 1971 considered observed with $F \geq 4 \sigma(F)$ were used in the refinement. Absorption corrections were unnecessary. The structure was determined by direct methods (SHELXS$86)^{99}$. All non-hydrogen atoms were refined anisotropically. A riding model with idealized hydrogen geometry was employed for H -atom refinement, and the hydrogen thermal parameters were refined isotropically with those of atoms bonded to the same carbon atom constrained to be equivalent. The disorder involving the $\mathrm{C}=\mathrm{C}$ bond was modelled successfully be refining the C5-C6 unit using partially occupied H atoms at C 5.160 parameters were refined, and a weighting scheme $\left[w^{-1}=\sigma^{2} \cdot\left(\left|F_{0}\right|\right)+g \cdot\left|F_{0}\right|^{2} ; g=0.0007\right]$ was used. The final values for R and R_{w} were 0.077 and 0.082 , respectively, with the final Fourier difference map showing a maximum of 0.32 and a minimum of -0.28 e \AA^{-3}.

CAS Registry Numbers

1: 124442-69-9 / 2: 124442-70-2 / $\mathrm{Cl}_{2} \mathrm{BNiPr}_{2}$: 44873-49-6/dicyclopentadiene: 77-73-6
${ }^{1)}$ Gmelin, Handbook of Inorganic Chemistry. New Suppl. Ser., Boron Compounds 2, Berlin-Heidelberg-New York 1974.
${ }^{2)}$ D. A. Franz, R. N. Grimes, J. Am. Chem. Soc. 92 (1970) 1438.
${ }^{3)}$ R. N. Grimes, Acc. Chem. Res. 11 (1978) 420, and literature cited therein.
${ }^{4}$) J. R. Pipal, R. N. Grimes, Inorg. Chem. 17 (1978) 10.
${ }^{\text {s) }}$ P. L. Timms, D. D. Stump, R. A. Kent, J. L. Margrave, J. Am. Chem. Soc. 88 (1966) 940.
${ }^{6}$ D. Bromm, Diplomarbeit, Universität Göttingen 1986; H. Nöth, private communication.
${ }^{7)}$ K. Niedenzu, H. Beyer, J. W. Dawson, H. Jenne, Chem. Ber. 96 (1963) 2653.
${ }^{8)}$ Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH , D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-54263, the names of the authors, and the journal citation.
${ }^{9)}$ G. M. Sheldrick, SHELXS-86, Göttingen, 1986.

