Kurzmitteilung / Short Communication

An Uncomplexed 1,2,3-Triborolane Derivative

Anton Meller*, Dietmar Bromm, Walter Maringgele, Andreas Heine, Dietmar Stalke, and George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Received October 18, 1989

Key Words: 1,2,3-Triborolane / Dicyclopentadiene / Dichloro(diisopropylamino)borane, dehalogenation product of / Triborane(5), 1,2,3-tris(diisopropylamino)-

 $(3\alpha,4\beta,4a\beta,7a\beta,8\beta,8a\alpha)-1,2,3$ -Tris(diisopropylamino)-1,2,3,3a,4,4a, 5,7a,8,8a-decahydro-4,8-methanoindeno[5,6-d]-1,2,3-triborol (1) is formed from dicyclopentadiene and dichloro(diisopropylamino)borane upon treatment with sodium/potassium alloy in

Generally, C_2B_3 systems exist in form of carboranes¹), and $C_2B_3H_7$ is known as *nido*-1,2-dicarbapentaborane²). So far C_2B_3 ring systems have been obtained only stabilized as η^5 -ligands in transition-metal complexes³). A triple decker, containing an $(\eta^5-C_5H_5)_2Co_2C_2B_3H_5$ cluster, has been obtained by the reaction of Na[B₅H₈] with CoCl₂ and Na[C₅H₅] upon partial insertion of C₅H₅ into the pentaborane anion⁴). The formation of the species 2,2,3,3,4,4-hexafluoro-2,3,4trisilabicyclo[3.2.2]nona-6,8-diene from the reaction of the difluorocarbene analog SiF₂ has been reported⁵).

We have isolated compound 1, which incorporates the first C_2B_3 ring system without complexation, from the reaction of dicyclopentadiene with dichloro(diisopropylamino)borane upon treatment with sodium/potassium alloy in hexane. Apparently, a diradical $[B(NR_2)]_2B(NR_2)^{2*}$ (R = iPr) is added to one of the double bonds of dicyclopentadiene. If the dehalogenation of Cl_2BNR_2 is performed in 1,2-dimethoxyethane or hexane without an equally reactive partner, 1,2,3-tris(diisopropylamino)triborane(5) (2) is obtained⁶.

The spectroscopic data are consistent with the reported structures (see Experimental). However, for 1 the 1 H- and 13 C-NMR spectra are too complicated to allow unequivocal assignments.

Crystal Structure of 1

The molecular structure of 1 is depicted in Figure 1. Atomic coordinates and equivalent isotropic displacement parameters are

hexane. 1,2,3-Tris(diiso propylamino)triborane(5) (2) was also obtained. 1 is characterized by elemental analyses, spectroscopic data, and by an X-ray structure analysis, 2 by its MS and NMR data.

given in Table 1, selected bond lengths and angles in Table 2. The atoms B1, N1, C3, and C6 lie on a crystallographic mirror plane perpendicular to the B_3C_2 five-membered ring. In this ring the B_3 and BCCB planes form an envelope.

Table 1. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (× 10³) $[Å^2]$ of 1 [U(eq) defined as on third of the trace of the orthogonalized U_{ij} tensor]

	x	У	Z	Ŭ(eq)
B(1)	1356(2)	2500	919(4)	32(1)
B(2)	1933(2)	3229(2)	1439(3)	33(1)
N(1)	747(2)	2500	128(3)	40(1)
N(2)	1846(1)	3791(1)	2544(2)	36(1)
C(1)	2675(1)	2974(2)	793(3)	33(1)
C(2)	2815(1)	3169(2)	-793(3)	43(1)
C(3)	2429(2)	2500	-1577(4)	48(2)
C(4)	3574(2)	2969(2)	-1206(3)	48(1)
C(5)	4146(2)	3192(2)	-193(4)	63(1)
C(6)	4434(2)	2500	397(5)	53(2)
C(7)	408(2)	3225(3)	-417(4)	82(2)
C(8)	-224(2)	3494(3)	355(5)	93(2)
C(9)	704(3)	3639(4)	-1473(9)	210(4)
C(10)	2403(1)	4271(2)	3208(3)	41(1)
C(11)	2786(2)	4787(2)	2130(3)	59(1)
C(12)	2891(2)	3773(2)	4126(3)	59(1)
C(13)	1155(2)	3927(2)	3167(4)	62(1)
C(14)	1122(2)	3738(3)	4738(4)	110(2)
C(15)	893(2)	4765(3)	2847(6)	117(2)

Table 2. Selected bond lengths [Å] and angles $[\circ]$ of 1

B(1)-B(2)	1.724	(4)	B(1)-B(2A)	1.724	(4)
B(2) - C(1)	1.609	(4)	C(1) - C(2)	1.541	(4)
C(1)-C(1A)	1.591	(5)	C(2)-C(3)	1.533	(4)
C(2) - C(4)	1.547	(4)	C(3)-C(2A)	1.533	(4)
C(4)-C(5)	1.500	(4)	C(4)-C(4A)	1.575	(6)
C(5)-C(6)	1.401	(4)	C(6)-C(5A)	1.401	(4)
B(2)-B(1)-N(1)	134.1(1)	B(2)-B(1)-	B(2A)	90.5(3)
N(1) - B(1) - B(1)	2A)	134.1(1)	B(1)-B(2)-	N(2)	127.3(3)
B(1)-B(2)-C(1)	106.1(2)	N(2)-B(2)-	C(1)	124.0(2)
B(1)-N(1)-C(7)	124.0(2)	B(2)-C(1)-	C(2)	117.3(2)
B(2)-C(1)-C(1A)	105.5(1)	C(2)-C(1)-	C(1A)	102.3(1)
C(1)-C(2)-C(3)	102.7(2)	C(1)-C(2)-	-C(4)	111.0(2)
C(3)-C(2)-C	4)	100.3(2)	C(2)-C(3)-	C(2A)	94.2(3)
C(2) - C(4) - C(4)	5)	118.8(3)	C(2)-C(4)	-C(4A)	102.5(2)
C(5)-C(4)-C(4A)	104.5(2)	C(4)-C(5)	·C(6)	109.4(3)
C(5)-C(6)-C(5A)	112.1(4)		/	

The C1-C1A-B2A-B1-B2 ring and the C1-C1A-C2A-C3-C2 ring form a cradle with a distance of 3.115Å between B1 and C3. This may result from steric effects involving the bulky *i*Pr groups. The mirror plane perpendicular to the plane of the C4-C4A-C5A-C6-C5 five-membered ring requires the double bond to be disordered, with an average apparent C-C bond length of 1.40Å. Steric hindrance probably also accounts for the envelope form, because a planar ring with N(*i*Pr)₂ groups at each boron atom would be energetically less favorable.

Figure 1. Molecular structure of 1

Support by the Volkswagenstiftung and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental

Elemental analyses: Mikroanalytisches Laboratorium Beller, Göttingen. – NMR (standards): ¹H, ¹³C (TMS, int.), ¹¹B (Et₂O – BF₃, ext.); Bruker AM 250. – MS: EI (70 eV), FI; Varian AMT CH 5. – Cl₂BN(*i*Pr)₂⁷⁾. – All reactions are performed in dry N₂ and in dry solvents.

 $(3\alpha, 4\beta, 4a\beta, 7a\beta, 8\beta, 8a\alpha) - 1, 2, 3$ - Tris (diisopropylamino) - 1, 2, 3, 3a, 4, 4a, 5, 7a, 8, 8a-decahydro-4, 8-methanoindeno[5, 6-d]-1, 2, 3-triborol (1): Dicyclopentadiene (59.4 g, 0.45 mol) and dichloro(diisopropylamino)borane (82.0 g, 0.45 mol) are dissolved in hexane (250 ml). The mixture is added dropwise with vigorous stirring to a suspension of sodium/potassium alloy (5.75 g Na, 29.33 g K, 1.00 mol) in hexane (1 l) during 30 min. The reaction mixture is stirred for ca. 12 h and heated to reflux for 20 h. After filtration through a glass frit under N₂ pressure and distillation of the hexane, the green residue is kept at 0 °C for 72 h, and colorless crystals are collected by filtration. The yield of 1 (after recrystallization from acetone) is 7.40 g [11% relative to Cl₂BN(*i*Pr)₂], mp 170 °C. – MS (EI): *m/z* (%) = 465 (15); (FI): *m/z* (%) = 465 (100) [M]⁺. – NMR (CDCl₃): $\delta^{11}B = 55 (h_{1/2} \approx 1180 \text{ Hz})$, shoulder at 62. 1,2,3-Tris(diisopropylamino)triborane(5) (2): This is obtained in varying quantities (5–15%) from dehalogenation reactions of Cl₂BN(iPr)₂ in hexane or 1,2-dimethoxyethane together with other products. It crystallizes from distillation fractions bp 50–75 °C/0.1 mbar in colorless needles, mp \leq 30 °C. – MS (EI): m/z = 335; (FI): m/z (%) = 335 (100). – NMR (CDCl₃): $\delta^{11}B =$ 44 ($h_{1/2} =$ 770 Hz) and 58 ($h_{1/2} \approx$ 755 Hz), ratio 2:1; $\delta^{1}H =$ 1.09 (d), 1.11 (d), and 1.12 (d) (${}^{3}J_{HH} =$ 6.75 Hz, 12 CH₃), 3.16 (sept), 3.34 (sept), and 3.60 (sept) (${}^{3}J_{HH} =$ 6.75 Hz 6 CH), 4.8–5.6 (br., 2 BH). – 1R (KBr): v(BH) = 2390 cm⁻¹ (br.).

 $\begin{array}{rl} C_{18}H_{44}B_3N_3 \ (335.02) & Calcd. \ C \ 64.53 \ H \ 13.24 \ B \ 9.68 \ N \ 12.54 \\ Found \ C \ 64.50 \ H \ 13.05 \ B \ 9.60 \ N \ 12.41 \end{array}$

Crystal Data for $C_{28}H_{54}B_3N_3^{(8)}$: Single crystals were obtained from a solution of 1 in acetone. A crystal (0.7 \times 0.7 \times 0.7 mm) was mounted on a Stoe-Siemens four-circle diffractometer. Orthorhombic, space group *Pnma* with a = 9.342(1), b = 16.793(2), c = 16.793(2)19.248(2)Å, V = 3020Å³, molecular mass 465.2 g/mol, Z = 4, $D_{\text{caled.}} = 1.023 \text{ g/cm}^3$, $\mu = 0.05 \text{ mm}^{-1}$, F(000) = 1032. Data were collected at $-85 \,^{\circ}\text{C}$ using Mo- K_{α} radiation ($\bar{\lambda} = 0.71073 \,\text{Å}$) and a 2Θ range of $8-50^{\circ}$. 3156 reflections were measured of which 2731 were independent, and 1971 considered observed with $F \ge 4\sigma(F)$ were used in the refinement. Absorption corrections were unnecessary. The structure was determined by direct methods (SHELXS-86)⁹⁾. All non-hydrogen atoms were refined anisotropically. A riding model with idealized hydrogen geometry was employed for H-atom refinement, and the hydrogen thermal parameters were refined isotropically with those of atoms bonded to the same carbon atom constrained to be equivalent. The disorder involving the C = C bond was modelled successfully be refining the C5-C6 unit using partially occupied H atoms at C5. 160 parameters were refined, and a weighting scheme $[w^{-1} = \sigma^2 \cdot (|F_o|) + g \cdot |F_o|^2; g = 0.0007]$ was used. The final values for R and R_w were 0.077 and 0.082, respectively, with the final Fourier difference map showing a maximum of 0.32 and a minimum of $-0.28 \text{ e}\text{Å}^{-3}$.

CAS Registry Numbers

1: 124442-69-9 / 2: 124442-70-2 / $Cl_2BNiPr_2:$ 44873-49-6 / dicy-clopentadiene: 77-73-6

- ³ R. N. Grimes, Acc. Chem. Res. 11 (1978) 420, and literature cited therein.
- ⁴⁾ J. R. Pipal, R. N. Grimes, Inorg. Chem. 17 (1978) 10.
- ⁵⁾ P. L. Timms, D. D. Stump, R. A. Kent, J. L. Margrave, J. Am. Chem. Soc. 88 (1966) 940.
- ⁶⁾ D. Bromm, *Diplomarbeit*, Universität Göttingen 1986; H. Nöth, private communication.
- ⁷⁾ K. Niedenzu, H. Beyer, J. W. Dawson, H. Jenne, *Chem. Ber.* **96** (1963) 2653.
- ⁸⁾ Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-54263, the names of the authors, and the journal citation.
- ⁹⁾ G. M. Sheldrick, SHELXS-86, Göttingen, 1986.

[341/89]

 $[\]begin{array}{c} C_{28}H_{54}B_3N_3 \ (465.19) \\ Found \ C \ 72.29 \ H \ 11.70 \ B \ 6.97 \ N \ 9.04 \\ Found \ C \ 72.86 \ H \ 12.12 \ B \ 6.57 \ N \ 8.48 \end{array}$

¹⁾ Gmelin, Handbook of Inorganic Chemistry, New Suppl. Ser., Boron Compounds 2, Berlin-Heidelberg-New York 1974.

²⁾ D. A. Franz, R. N. Grimes, J. Am. Chem. Soc. **92** (1970) 1438.