

1,3-Bis[*tert*-butyl(di-*tert*-butylfluorsilyl)amino]trisulfan – eine Verbindung mit FSiNSSSNSiF-Helix

Uwe Klingebiel*, Frank Pauer, George M. Sheldrick und Dietmar Stalke

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, W-3400 Göttingen

Eingegangen am 5. Juni 1991

Key Words: Disulfane, bis[(fluorosilyl)amino] derivative / Trisulfane, 1,3-bis[(fluorosilyl)amino] derivative / Selane, bis[(fluorosilyl)amino] derivative / Helix structure

1,3-Bis[tert-butyl(di-tert-butylfluorosilyl)amino]trisulfane - a Compound with FSiNSSSNSiF Helix

The lithium derivative of *tert*-butyl(di-*tert*-butylfluorosilyl)amine (1) reacts with sulfur or selenium to give the bis[(fluorosilyl)-amino]di- and -trisulfanes **2**, **3** and -selane **4**, respectively. The trisulfane 3 crystallizes from *n*-hexane and exhibits a helical structure (X-ray analysis).

N-Silylierte Aminosulfane sind sowohl durch Reaktion von Schwefel als auch von Chlorsulfanen mit Silylamiden zugänglich¹⁾. Bis[bis(trimethylsilyl)amino]selan und -tellan wurden kürzlich aus Lithium-bis(trimethylsilyl)amid und Dichlordiselan bzw. TeCl₄ hergestellt und kristallstrukturanalytisch untersucht²⁾. Ebenfalls bekannt ist die entsprechende Schwefelverbindung³⁾.

Unbekannt sind bisher Reaktionen von Chalkogenen mit lithiierten Aminofluorsilanen. Diese Verbindungen zeigen sowohl das Reaktionsverhalten von Silylamiden als auch von Iminosilanen (Schema 1)⁴⁻⁶⁾.

Schema 1

Reaktionen mit Aldehyden, Ketonen⁵⁾, $Al_2Cl_6^{4)}$, THF⁶⁾ führen zu Verbindungen, die als Produkte von intermediär gebildeten Iminosilanen mit den Reaktanden gedeutet werden können.

Im vorliegenden Beitrag beschreiben wir das Reaktionsverhalten des Lithium-Derivats von Di-tert-butyl(tert-butylamino)fluorsilan (1) gegenüber Schwefel und Selen. Da Iminophosphane mit Chalkogenen unter Koordinationsaufweitung reagieren, schlossen wir die vergleichbare Reaktion eines intermediären Iminosilans nicht völlig aus. Jedoch stellten wir fest, daß 1 mit Schwefel und auch Selen als Amid reagiert, d. h. das Chalkogen wird nucleophil unter Abbau des S_8 -Ringes bzw. der Se_n-Ketten angegriffen. Es entstehen die Bis[(fluorsilyl)amino]sulfane 2, 3 und das Selan 4. Während auch in unterschiedlich molaren Ansätzen als Reaktionsprodukte von 1 mit S_8 Bis(fluorsilylamino)di-(2) und -trisulfan (3) isoliert wurden, bildete sich mit Selen ausschließlich das Monoselan 4 (Schema 2). Die große Reaktivität von 1 ermöglichte erstmals den Einsatz von elementarem Selen bei der Synthese eines (Silylamino)selans.

Schema 2

2-4 destillieren im Vakuum unzersetzt. 4 ist bei Raumtemperatur rot und zähflüssig. 3 kristallisiert nach der Destillation aus.

Im Kristall ordnet sich die FSiNS₃NSiF-Kette in einer Helix an (Abb. 1). Die Bindungslängen entsprechen weitgehend den Summen der Kovalenzradien der beteiligten Atome. Die Si-F-Bindungen haben Werte von 160.0 und 160.8 pm ($\Sigma rk = 160.7$ pm); die Werte der Si-N-Bindungen betragen 175.1 bzw. 175.4 pm ($\Sigma rk = 175.3$ pm), die S-N-Abstände sind mit 166.8 und 168.0 pm etwas kürzer als der berechnete Wert (171.5 pm). Andererseits sind die S-S-Bindungen (210.2 und 208.2 pm) marginal länger als der berechnete Wert (208.0 pm)⁷.

Nach der VSEPR-Theorie sollte der S-S-S-Winkel etwas kleiner als der Tetraederwinkel sein. Dies trifft mit 104.7° zu. Die N-Atome (Σ N1: 359.3°, Σ N2: 359.8°) besitzen eine planare Umgebung. Die S-S-N-Winkel (110.0 und 110.3°) sind gegenüber dem Tetraederwert leicht aufgeweitet.

Abb. 1. Struktur von 3 im Kristall; ausgewählte Bindungslängen [pm] und -winkel [°]: S (1)-S(2) 210.2(1), S(1)-N(1) 166.8(2), S(2)-S(3) 208.2(1), S(3)-N(2) 168.0(2), N(1)-Si(1) 175.1(2), Si(1)-F(1) 160.8(2), N(2)-Si(2) 175.4(2), Si(2)-F(2) 160.0(2); S(2)-S(1)-N(1) 110.0(1), S(1)-S(2)-S(3) 104.7(1), S(2)-S(3)-N(2) 110.3(1), S(1)-N(1)-Si(1) 107.5(1), N(1)-Si(1)-F(1) 103.4(1), S(3)-N(2)-Si(2) 107.8(1), N(2)-Si(2)-F(2) 105.2(1)

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Experimenteller Teil

Strukturbestimmung von 3: Datensammlung bei -120 °C auf einem STOE-Siemens-AED-Diffraktometer, graphitmonochromatisierte Mo-K_a-Strahlung ($\lambda = 71.073$ pm). Strukturlösung mit Direkten Methoden⁸, Kleinste-Quadrate-Rechnungen. Anisotrope Verfeinerung der Nichtwasserstoffatome, H-Atome geometrisch ideal positioniert und mit festen Auslenkungsparametern nach dem Reitermodell (dCH = 98 pm) verfeinert. η -Verfeinerung: $\eta =$ 1.1(1).

C₂₄H₅₄F₂N₂S₃Si₂, Molmasse 561.1 g mol⁻¹; orthorhombische Raumgruppe P2₁2₁2₁; *a* = 894.6(1), *b* = 1572.2(1), *c* = 2319.8(2) pm; *V* = 3.263 nm³; *Z* = 4; ρ_{ber} = 1.155 Mgm⁻³; μ = 0.32 mm⁻¹; STOE-Vierkreisdiffraktometer AED, Mo-K_α, *T* = -120 °C; Profiloptimierte 2Θ-ω-Abtastungen; Kristallgröße 0.4 × 0.4 × 0.4 mm; 3706 Reflexe bis 2Θ_{max} = 45° gemessen, davon 3260 symmetrieunabhängige und mit $|F_0| > 3\sigma(|F_0|)$ beobachtete Reflexe *m* = 3131; verfeinerte Parameter *n* = 298; Übereinstimmungsgüte $[\Sigma\omega(|F_0| - |F_c|)^2/(m-n)]^{0.5} = 1.51$; *R* = $\Sigma||F_0| - |F_c||/\Sigma|F_0| =$ 0.0264; $\omega R = R_g = [\Sigma\omega(|F_0| - |F_c|)^2 \Sigma\omega|F_0|^2]^{0.5} = 0.0325$; Wichtungsschema $\omega^{-1} = \sigma^2 |F_0| + 0.0002 |F_0|^2$; Restelektronendichte $[10^6$ -pm⁻³]: Max/min 2.7/2.0; Programm SHELXS-86⁸, SHELX-76⁹. Tab. 1 enthält die Atomparameter und U(eq)-Werte.

Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55667, der Autorennamen und des Zeitschriftenzitats angefordert werden. Darstellung der Bis[(fluorsilyl)amino]di- und -trisulfane 2, 3 sowie des Bis[(fluorsilyl)amino]selans 4: 4.7 g (0.02 mol) 1 und 2.5 g (0.01 mol) S_8 bzw. 4 g (0.05 mol) graues Sc in 70 ml n-Hexan/30 ml THF werden unter Rückfluß erhitzt und gerührt. Der Reaktionsfortschritt wird¹⁹F-NMR-spektroskopisch verfolgt. Die Umsetzung mit Schwefel verläuft exotherm und ist nach ca. 2 h beendet, die mit Selen nach ca. 48 h. 2 und 3 entstehen auch bei unterschiedlich molaren Ansätzen nebeneinander. Destillativ wurden 2 und 3 nicht vollständig voneinander getrennt. Durch Kristallisation aus n-Hexan konnte 3 jedoch rein isoliert werden. 4 ist nach der Vakuumdestillation analysenrein.

Tab. 1. Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter [$pm^2 \times 10^{-1}$] von 3.

	x	У	z	Ü(eq)*
S(1)	8818(1)	319(1)	523(1)	29(1)
S(2)	9932(1)	1194(1)	1057(1)	35(1)
S(3)	8243(1)	1960(1)	1392(1)	29(1)
N(1)	9198(3)	525(1)	-167(1)	27(1)
C(5)	8315(4)	1185(2)	-510(1)	34(1)
C(51)	7451(5)	747(2)	-990(2)	61(1)
C(52)	9381(5)	1825(2)	-755(2)	82(2)
C(53)	7205(5)	1632(2)	-131(2)	69(1)
Si(1)	10487(1)	-238(1)	-402(1)	26(1)
F(1)	10581(2)	-75(1)	-1086(1)	40(1)
C(1)	9726(4)	-1369(2)	-339(1)	35(1)
C(11)	9965(5)	-1788(2)	251(1)	60(1)
C(12)	10481(5)	-1935(2)	-795(1)	58(1)
C(13)	8047(4)	-1357(2)	-469(2)	56(1)
C(2)	12461(4)	-30(2)	-143(1)	37(1)
C(21)	12783(4)	917(2)	-213(2)	61(1)
C(22)	12807(4)	-286(3)	481(1)	64(1)
C(23)	13542(4)	-527(2)	-539(2)	61(1)
N(2)	7719(3)	1605(1)	2045(1)	26(1)
C(6)	6627(3)	870(2)	2083(1)	30(1)
C(61)	5689(4)	932(2)	2628(1)	49(1)
C(62)	7501(5)	37(2)	2089(2)	56(1)
C(63)	5558(4)	884(2)	1575(1)	56(1)
Si(2)	8535(1)	2271(1)	2564(1)	25(1)
F(2)	7968(2)	1912(1)	3171(1)	43(1)
C(3)	7700(4)	3384(2)	2527(1)	37(1)
C(31)	6013(5)	3286(2)	2456(2)	87(2)
C(32)	7988(6)	3856(2)	3089(1)	75(2)
C(33)	8256(6)	3932(2)	2038(2)	70(2)
C(4)	10637(3)	2165(2)	2631(1)	31(1)
C(41)	11585(4)	2578(2)	2159(1)	46(1)
C(42)	11122(4)	2554(2)	3212(1)	51(1)
C(43)	11001(4)	1209(2)	2659(2)	49(1)

 Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors

2 : Sdp. 140–150 °C/0.01 mbar. Ausb. 1.0 g (20%). – MS (FJ-Messung): m/z (%) = 528 (22) [M⁺], 264 (100) [1/2 M⁺]. – ¹H-NMR (CDCl₃): δ = 1.17 [d, 9 H, SiC(CH₃)₃, ⁴J_{HF} = 1.8 Hz], 1.18 [d, 9 H, SiC(CH₃)₃, ⁴J_{HF} = 1.8 Hz], 1.40 [d, 9 H, NC (CH₃)₃, ⁵J_{HF} = 2.3 Hz]. – ¹³C-NMR (CDCl₃): δ = 21.71 (d, ²J_{CF} = 13.3 Hz, SiC), 22.33 (d, ²J_{CF} = 13.6 Hz, SiC), 28.74 (d, ³J_{CF} = 0.9 Hz, SiCC₃), 29.44 (d, ³J_{CF} = 1.3 Hz, SiCC₃), 31.19 (d, ⁴J_{CF} = 4.7 Hz, NCC₃), 59.80 (d, ³J_{CF} = 2.4 Hz, NC). – ¹⁹F-NMR (CDCl₃, C₆F₆): δ = 12.7. – ²⁹Si-NMR (CDCl₃): δ = -6.13 (d, J_{SiF} = 309.7 Hz.)

3: Sdp. 150 °C/0.01 mbar. – MS (FJ-Messung): m/z = 560 (100)[M⁺]. – ¹H-NMR (CDCl₃): $\delta = 1.10$ [d, 9 H, SiC(CH₃)₃, ⁴J_{HF} = 1.2 Hz], 1.11 [d, 9 H, SiC(CH₃)₃, ⁴J_{HF} = 1.2 Hz], 1.38 [d, 9 H, NC(CH₃)₃, ⁵J_{HF} = 1.8 Hz]. – ¹³C-NMR (CDCl₃): $\delta = 21.17$ (d, ²J_{CF} = 13.8 Hz, SiC), 22.85 (d, ²J_{CF} = 12.9 Hz, SiC), 28.75 (d, ³J_{CF} = 1.1 Hz, SiCC₃), 29.68 (d, ${}^{3}J_{CF} = 1.3$ Hz, SiCC₃), 32.18 (d, ${}^{4}J_{CF} =$ 4.5 Hz, NCC₃), 59.10 (d, ${}^{3}J_{CF} = 2.4$ Hz, NC). $- {}^{19}F$ -NMR (CDCl₃, C_6F_6): $\delta = 10.8. - {}^{29}Si-NMR$ (CDCl₃): $\delta = -4.30$ (d, $J_{SiF} =$ 308.4 Hz).

4: Sdp. 160 °C/0.01 mbar. – MS (FJ-Messung): m/z = 544 (3) $[M^+]$, 311 (100). – ¹H-NMR (CDCl₃): $\delta = 1.03$ [d, 18H, Si- $C(CH_3)_3$, ${}^4J_{HF} = 1.1 Hz$], 1.78 [d, 9 H, NC(CH₃)₃, ${}^5J_{HF} = 0.9 Hz$]. - ¹⁹F-NMR (CDCl₃, C₆F₆): $\delta = 9.0. -$ ²⁹Si-NMR (CDCl₃): $\delta =$ -42.60 (d, $J_{\rm SiF} = 274.6$ Hz).

> C₂₄H₅₄F₂N₂SeSi₂ (543.5) Ber. C 53.04 H 9.94 Gef. C 52.43 H 9.36

CAS-Registry-Nummern

1: 58802-37-2 / 2: 135740-63-5 / 3: 135740-64-6 / 4: 135740-65-7 / $\mathrm{S_8}\colon10544\text{-}50\text{-}0$ / Se: 7782-49-2

- ¹⁾ O. J. Scherer, Angew. Chem. 81 (1969) 871; Angew. Chem. Int. Ed.Engl. 8 (1969) 861.
- Ed. Engl. 8 (1969) 601.
 ²⁾ M. Björgvinsson, H. W. Roesky, F. Pauer, D. Stalke, G. M. Sheldrick, *Inorg. Chem.* 29 (1990) 5140.
 ³⁾ G. Schubert, G. Kiel, G. Gattow, Z. Anorg. Allg. Chem. 575 (1990) 420.
- (1989) 129.
- ⁴⁾ U. Klingebiel in Silicon Chemistry (J. Y. Corey, E. R. Corey, P. P. Gaspar, Hrsg.), Bd. 31, S. 337, Ellis Horwood Ltd., Chichester, England, 1988.
- ⁵⁾ S. Vollbrecht, U. Klingebiel, D. Schmidt-Bäse, Z. Naturforsch., Teil B 46 (1991) 709.
- ⁶⁾ S. Walter, U. Klingebiel, D. Schmidt-Bäse, J. Organomet. Chem., im Druck.
- ¹⁷ C. Pauling, Die Natur der chemischen Bindung, VCH Verlagsgesellschaft, Weinheim 1968.
 ⁸¹ G. M. Sheldrick, Acta Crystallogr., Sect. A, 46 (1990) 467.
 ⁹¹ G. M. Sheldrick, SHELX-76, erweiterte Version, Universität C. J. 1976.
- Cambridge 1976.

[224/91]