

Sterische Cyclopentadienyl-Äquivalente in der Chemie der f-Elemente: Monomere, homoleptische Lanthanid(III)-tris[N,N'-bis(trimethylsilyl)benzamidinate]

Michael Wedler^a, Friedrich Knösel^a, Ursula Pieper^a, Dietmar Stalke^a, Frank T. Edelmann^{*a} und Hanns-Dieter Amberger^b

Institut für Anorganische Chemie der Universität Göttingen^a, Tammannstraße 4, W-3400 Göttingen

Institut für Anorganische und Angewandte Chemie der Universität Hamburg^b, Martin-Luther-King Platz 6, W-2000 Hamburg 13

Eingegangen am 11. Februar 1992

Key Words: Lanthanides / Benzamidinate ligands / Steric cyclopentadienyl equivalents

Steric Cyclopentadienyl Equivalents in f-Element Chemistry: Monomeric, Homoleptic Lanthanide(III) Tris[N,N'-bis(trimethylsilyl)benzamidinates]

Anhydrous lanthanide trichlorides react with *N*-silylated sodium benzamidinates, Na[4-RC₆H₄C(NSiMe₃)₂], (**1a** - **d**), to give the monomeric, homoleptic lanthanide(III) benzamidinates [4-RC₆H₄C(NSiMe₃)₂]₃Ln (**2**-**23**, R = H, MeO, CF₃, Ph). The molecular structure of [4-MeOC₆H₄C(NSiMe₃)₂]₃Pr (**11**)

Tris(cyclopentadienyl)lanthanide, Cp₃Ln, sind die ältesten Organolanthanid(III)-Komplexe überhaupt^[1]. Wir konnten zeigen, daß sich raumerfüllende Chelatliganden wie $[RC_6H_4-$ C(NSiMe₃)₂]⁻ wie sterische Cyclopentadienyl-Äquivalente verhalten^[2-4]. Die 1987 von Oakley et al.^[5] beschriebenen N,N,N'-Tris(trimethylsilyl)benzamidine (I) haben sich in kürzester Zeit zu äußerst vielseitigen Synthesereagenzien in der anorganischen Chemie entwickelt.

Sie reagieren mit Halogeniden von Haupt- und Nebengruppenelementen zu Amidinatokomplexen und Heterocyclen, aber auch zu unerwarteten Folgeprodukten^[6]. Es war daher von Interesse, auch von den silvlierten Benzamidinatliganden homoleptische Komplexe des Typs [RC₆H₄C-(NSiMe₃)₂]₃Ln zu synthetisieren. In diesen Verbindungen wären die Lanthanidmetalle nur sechsfach koordiniert, während die formale Koordinationszahl in den Cp₃Ln-Derivaten 9 beträgt. Auch war zu erwarten, daß die Lanthanid(III)benzamidinate wegen der sterisch anspruchsvollen SiMe3-Gruppen monomer sein würden. Demgegenüber liegen die lange bekannten Carboxylate der seltenen Erden im Festkörper stets als Oligomere oder Polymere vor^[7,8]. Bei den strukturell untersuchten Dysprosiumbenzoaten Dy(Ph- $CO_{2}_{3}(H_{2}O)_{5}$ und $Dy_{4}(4-NO_{2}C_{6}H_{4}CO_{2})_{12}(H_{2}O)_{10}$ handelt es sich beispielsweise um polymere Spezies mit verbrückenden Carboxylatliganden^[9,10]. Monomere, sechsfach koordinierte Komplexverbindungen sind dagegen nicht allzu häufig. Zu den typischen Beispielen gehören die von Pinkerton et al.

has been determined by X-ray diffraction. Absorption and emission measurements reveal that the three benzamidinate ligands produce an unusually large crystal field which is comparable with that of cyclopentadienyl.

beschriebenen Tris(dicyclohexyldithiophosphinato)lanthanide, $[(C_6H_{11})_2PS_2]_3Ln$ (Ln = Pr, Sm, Dy, Lu)^[11-13]. Eine ganz ähnliche Verbindungsklasse sind die Tris(diethyldithiocarbamato)lanthanide. Schumann et al. beschrieben 1976 die Synthese von homoleptischen Lanthanid(III)-ylidkomplexen^[4,15]. Durch Umsetzung von LnCl₃ mit Me₃P = CH₂ und *n*-Butyllithium erhielt man gemäß Gl. (1) Verbindungen des Typs [Me₂P(CH₂)₂]₃Ln.

Diese Verbindungen beanspruchen besonderes Interesse, da in ihnen die Lanthanidatome nur an Kohlenstoff gebunden sind. ¹H-NMR-Spektren zeigen allerdings, daß in Lösung ein kompliziertes Gleichgewicht zwischen monomeren und oligomeren Spezies vorliegt.

Synthese der Lanthanid-tris[*N*,*N*'-bis(trimethylsilyl)benzamidinate]

Zur Darstellung von Lanthanid-Derivaten mit $[RC_6H_4C-(NSiMe_3)_2]$ -Liganden verwendeten wir anstelle der dreifach silylierten Benzamidine die reaktiveren Natriumsalze der N,N'-Bis(trimethylsilyl)benzamidinat-Anionen $(1\mathbf{a}-\mathbf{d})^{[4]}$. Das bisher nicht beschriebene Biphenylderivat 1d ließ sich in einfacher Weise durch Addition von NaN(SiMe_3)_2 an 4-Cyanbiphenyl gewinnen [91% Ausbeute, Gl. (2)].

Chem. Ber. 1992, 125, 2171-2181 (C) VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992 0009-2940/92/1010-2171 \$ 3.50+.25/0

1d

SiMe3

1d fiel als blaßgelbes, feuchtigkeitsempfindliches Kristallpulver an, das in Toluol und Hexan kaum, in THF aber gut löslich ist.

Die Synthese von homoleptischen Lanthanid(III)-benzamidinaten des Typs [PhC(NSiMe₃)₂]₃Ln gelang durch Umsetzung der Lanthanidtrichloride mit drei Äquivalenten Na[PhC(NSiMe₃)₂] · 0.5 Et₂O (1a) in THF-Lösung. Im Falle des Scandiums, Neodyms und Ytterbiums wurden anstelle der wasserfreien Trichloride auch die THF-Addukte eingesetzt. Diese bieten präparative Vorteile, da sie in THF teilweise löslich sind und frei von Oxychloriden isoliert werden können^[16,17]. So verliefen Reaktionen mit den THF-Addukten in der Regel schneller als mit den wasserfreien Trichloriden.

In allen Fällen wurden nur die trisubstituierten Derivate als einzige Produkte erhalten. Die Komplexe 2-10 zeigen die charakteristischen Farben der jeweiligen Kationen und sind ausnahmslos sehr gut löslich in Kohlenwasserstoffen und Ethern. Die Löslichkeit ist selbst in Hexan oder Pentan so gut, daß die Komplexe aus solchen Lösungen nur schwer wieder zur Kristallisation gebracht werden können. Vollständiges Entfernen des Lösungsmittels im Vakuum führt dann oft zur Bildung öliger Produkte. Die so erhaltenen Öle lassen sich jedoch durch Rühren mit Acetonitril leicht in eine mikrokristalline Form überführen. Die Lanthanid(III)benzamidinate sind mäßig luftempfindlich, aber sehr leicht hydrolysierbar. Die rotbraune Cer(III)-Verbindung 3 zeichnet sich durch eine enorm gesteigerte Oxidationsempfindlichkeit aus und läßt sich daher nur schwer handhaben. Ähnliche Beobachtungen wurden schon von Bradley et al. in der Reihe der Lanthanid-tris[bis(trimethylsilyl)amide], Ln[N-(SiMe₃)₂]₃, gemacht^[18]. Auch hier wird das Cer(III)-Derivat äußerst leicht oxidiert.

Wegen der schon erwähnten Schwierigkeiten mit der Löslichkeit der Komplexe 2-9 wurde auch eine Reihe von *para*substituierten Derivaten synthetisiert. Hauptziel war die Beeinflussung der Löslichkeitseigenschaften und damit die Gewinnung von Einkristallen. Als *p*-Substituenten am Phenylring wurden Methoxy, Trifluormethyl und Phenyl verwendet. Umsetzungen der Natriumsalze 1b-d mit wasserfreien Lanthanidtrichloriden wurden wiederum in THF-Lösung bei Raumtemperatur durchgeführt [Gl. (4)].

Die Komplexe 11–23 sind gut kristallisierende, charakteristisch gefärbte Substanzen (Pr: hellgelb; Nd: hellblau; Eu: leuchtend gelb; Sc, Yb, Lu: farblos). Die Löslichkeit in unpolaren Lösungsmitteln nimmt in der Reihe CF₃ > MeO > Ph deutlich ab. So sind die CF₃-Derivate in Pentan und Hexan nahezu gleich gut löslich wie die unsubstituierten Komplexe. Die Methoxykomplexe lassen sich sehr gut aus Hexan umkristallisieren. Dagegen sind die 4-phenylsubstituierten Derivate 20–23 nahezu unlöslich in Hexan, so daß zur Aufarbeitung der Reaktionsgemische Toluol verwendet werden muß.

Spektroskopische Charakterisierung

Die Lanthanid(III)-benzamidinate verdampfen monomer und zeigen in den EI-Massenspektren die Signale der Molekül-Ionen mit den erwarteten Isotopenmustern (Tab. 5, exp. Teil). Der intensitätsstärkste Peak entspricht zumeist dem Fragment $[4\text{-RC}_6\text{H}_4\text{C}(\text{NSiMe}_3)_2]_2\text{Ln}^+$. Die ¹H-NMR-Spektren der diamagnetischen Spezies 2 und 10 gleichen erwartungsgemäß dem Spektrum des Natriumsalzes 1a (Tab. 4, exp. Teil). Dagegen wird in den ¹H-NMR-Spektren der Komplexe 3–9 die typische paramagnetische Verschiebung der Signale beobachtet^[19]. Nach ihrem Erscheinungsbild lassen sich die Spektren in zwei Gruppen einteilen. Bei den Komplexen der "frühen" Lanthanide Cer, Praseodym und Neodym (3-5) erscheinen die Signale der Phenylprotonen im Bereich $\delta = 8-18$. Für die SiMe₃-Protonen erhält man jeweils ein Singulett bei $\delta = -3$ bis -5. Auffällig ist die starke Separierung der *ortho-*, *meta-* und *para-*Phenylprotonen. Auf diese Signale wirkt der paramagnetische Lanthanidkern sozusagen als intramolekulares Shift-Reagenz. Das schwach paramagnetische Samarium nimmt eine Mit-

Abb. 1. Temperaturabhängige ¹H-NMR-Spektren von 7 (oben) und 9 (unten), δ-Skala

telstellung ein. Im ¹H-NMR-Spektrum von **6** unterscheiden sich die Signallagen nicht mehr sehr stark von denen der Alkali-benzamidinate. Beim Übergang zu den "späten" Lanthaniden Europium, Gadolinium und Ytterbium erfolgt dann eine Umkehr in der Reihenfolge der NMR-Resonanzen. Das relativ breite Singulett der SiMe₃-Protonen erscheint nun stark tieffeldverschoben im Bereich $\delta = 7-15$. Umgekehrt beobachtet man nun eine drastische Hochfeldverschiebung der Phenylprotonen-Signale. Dabei fällt wiederum die sehr starke Aufspaltung der einzelnen Protonensignale auf [z. B. bei 9: $\delta = -1.15$ (para), -3.49 (meta), -21.73 (ortho)]. Auch in diesem Fall erfährt das Signal der ortho-Phenylprotonen die deutlichste Verschiebung.

Ein solcher Gang der chemischen Verschiebungen in den ¹H-NMR-Spektren von Lanthanidkomplexen ist nicht neu. So untersuchten Pinkerton et al. die Reihe der Tris(dicyclohexyldithiophosphinato)lanthanid(III)-Komplexe, $[(C_6H_{11})_2PS_2]_3Ln$, und fanden eine ganz ähnliche Umkehr der isotropen Verschiebungen beim Übergang von den frühen zu den späten Lanthaniden^[11-13]. Im Einklang mit den ¹H-NMR-Spektren stehen auch die ²⁹Si-NMR-Daten der Lanthanid(III)-benzamidinate. Die Verbindungen 2--6 zei-

Abb. 2. Temperaturabhängigkeit der ¹H-NMR-Spektren von 7 (oben) und 9 (unten) (Auftragung δ gegen 1/T)

gen ²⁹Si-NMR-Signale im Bereich von $\delta = -1$ bis -6. Für die Ytterbiumverbindung 9 findet man dagegen einen Wert von $\delta = 31.6$.

Am Beispiel der Komplexe 7 und 9 wurde auch die Temperaturabhängigkeit der paramagnetischen Verschiebungen untersucht (Abb. 1). In den abgebildeten Spektren wird ganz deutlich, wie sich der Einfluß des paramagnetischen Metallkerns am stärksten auf die *ortho*-Phenylprotonen auswirkt, die räumlich dem Metall besonders nahekommen. Abb. 2 zeigt, daß die Temperaturabhängigkeit der ¹H-NMR-Signale dem Curie-Weiss-Gesetz gehorcht. Bei Auftragung von δ gegen die reziproke absolute Temperatur ergibt sich eine lineare Abhängigkeit.

¹H-NMR-spektroskopisch lassen sich auch die Komplexe 11–23 aufgrund des Shift-Effekts der paramagnetischen Zentralatome (außer Sc und Lu) leicht charakterisieren. Besonders schön zeigt sich die Aufspaltung der Signale der aromatischen Protonen in den Biphenyl-Derivaten 20-23. Für den Ytterbiumkomplex 23 beobachtet man fünf Signale für die Phenylprotonen, die über einen Bereich von ca. 26 ppm verteilt sind.

In gleicher Weise wie bei den Verbindungen 2-9 wurde an einer Reihe von substituierten Lanthanidbenzamidinaten die Temperaturabhängigkeit der paramagnetischen Verschiebungen im Bereich von -60 bis +60 °C untersucht. Als typisches Beispiel sei hier das Spektrum der Verbindung 21 gezeigt. Die Abbildungen 3 und 4 machen deutlich, daß sich die substituierten Komplexe ganz ähnlich wie die Stammverbindungen verhalten. Auch hier gehorcht die Temperaturabhängigkeit von δ dem Curie-Weiss-Gesetz (Abb. 4).

Kristallstrukturanalyse von [4-MeOC₆H₄C(NSiMe₃)₂]₃Pr (11)

Die Kristallstrukturanalyse von 11 bestätigt das Vorliegen eines solvatfreien, monomeren, homoleptischen Lanthanid(III)-benzamidinats (Abb. 5, Tab. 1, 6).

Die asymmetrische Einheit enthält zwei nahezu identische, kristallographisch unabhängige Moleküle. Diese unterscheiden sich vor allem in den Torsionswinkeln der Phenylgruppen relativ zu den Chelatringen sowie in der Orientierung der Methoxy- und Trimethylsilylsubstituenten. Aufgrund der unterschiedlichen Orientierung der Methoxysubstituenten besitzt das Molekül keine D_3 -Symmetrie. Die Koordinationssphäre des Praseodyms entspricht einem verzerrten Oktaeder (Koordinationszahl 6 an Pr). Mit 118.3(5)° (Mittelwert) sind die N-C-N-Winkel der Liganden größer als in den bisher untersuchten Übergangsmetallkomplexen der N,N'-Bis(trimethylsilyl)benzamidinate

Abb. 3. Temperaturabhängiges ¹H-NMR-Spektrum von 21, δ-Skala

Abb. 4. Temperaturabhängigkeit der ¹H-NMR-Spektren von 21 (oben) und 23 (unten) (Auftragung δ gegen 1/T)

Abb. 5. Molekülstruktur von 11 (eines von zwei kristallographisch unabhängigen Molekülen)

(ca. 114°). Die Torsionswinkel der Phenylringe mit den N-C-N-Ebenen liegen zwischen 66.9 und 88.6°. Sie sind damit immer noch viel zu groß, um eine Konjugation der π -Systeme mit den Chelateinheiten zu ermöglichen. Bemerkenswert ist der sehr kurze Pr - N-Abstand in 11 (Mittelwert 248 pm). Bisher wurden sieben Verbindungen mit Praseodym-Stickstoff-Koordination strukturell untersucht^[20]. In diesen Komplexen sind die Pr - N-Abstände um ca. 15-30

Tab. 1. Ausgewählte Bindungsabstände [pm] und -winkel [°] von Verbindung 11

Molekül 1		Molekül 2		
Pr(1)-N(1) 2	247.3 (4)	Pr(1A)-N(1A)	250.2	(4)
Pr(1) - N(2) 2	251.5 (4)	Pr(1A)-N(2A)	250.0	(4)
Pr(1) - N(3) 2	246.3 (4)	Pr(1A)-N(3A)	243.9	(4)
Pr(1) - N(4) 2	249.7 (4)	Pr(1A)-N(4A)	252.6	(4)
Pr(1)-N(5) 2	253.0 (4)	Pr(1A)-N(5A)	248.9	(4)
Pr(1)-N(6) 2	244.5 (4)	Pr(1A)-N(6A)	246.1	(4)
N(1) D-(1) N(2)	5/ 7/1)	$\mathbf{N}(1\mathbf{A}) = \mathbf{D}_{\mathbf{a}}(1\mathbf{A})$	N7 / O A N	E/ //1 \
N(1) = PI(1) = N(2) N(1) = Pr(1) = N(3)	104.7(1)	N(1A) - PT(1A) - N(1A)	N(2A)	54.6(L)
N(1) = FI(1) = N(3) $N(2) = D_{m}(1) = N(3)$	104.7(1)	$N(1A) - FI(1A) - N(2A) = D_{m}(1A)$		113.0(1)
N(2) - Pr(1) - N(3)	35.4(1)	N(2A) - PI(1A) - N(1A) - Dr(1A)	N(JA)	90.0(1)
N(1) = P1(1) = N(4) N(2) = Pr(1) = N(4)	105.0(1)	N(1R) - FI(1R) - N(2R)	N(4A)	100.0(1)
N(2) = FI(1) = N(4) $N(2) = D_{m}(1) = N(4)$	105.0(1)	N(2A) - Pr(1A) - N(2A) - Dr(1A)	N(4A)	106.6(1)
N(3) = I(1) = N(4) $N(1) = P_{2}(1) = N(5)$	107.5(1)	N(3A) - FI(1A) - N(1A)	N(4A)	10(1(1))
$N(2) D_{T}(1) N(5)$	107.3(1)	N(1A) - PI(1A) - N(2A) = Dr(1A)	N(JA)	106.1(1)
N(2) = II(1) = N(3) $N(3) = D_{m}(1) = N(5)$	139.9(1)	N(2A) - FI(1A) - N(2A) - Dra(1A)	N(JA)	100.1(1)
N(3) - FI(1) - N(3) $N(4) = P_{2}(1) = N(5)$	90.0(1)	N(3A) - Pr(1A) - N(4A) = Dr(1A)	N(JA)	102.6(1)
N(4) - Pr(1) - N(3)	94.0(1)	N(4A) - rr(1A) - N(1A)	N(SA)	94.4(1)
$N(2) P_{2}(1) N(6)$	77.0(1)	N(1A) - FI(1A) - N(2A) = Dm(1A)	N(OA)	95.4(1)
N(2) - Pr(1) - N(0)	1/4.3(1)	$N(2A) - FI(1A) - N(2A) - D_{m}(1A)$	N(GA)	100.9(1) 140.1(1)
N(4) - Pr(1) - N(6)	140.9(1) 105.9(1)	N(JA) - FI(IA) - N(JA) = N(JA)	N(OA)	140.1(1)
N(5) - Pr(1) - N(6)	54 0(1)	$N(4A) - \Gamma \Gamma(1A) - N(5A) D_{T}(1A)$	N(GA)	5(-7(1))
N(1) = C(1) = N(2)	117 7(4)	N(1A) - C(1A) - N	(24)	J4./(L)
N(3) = C(2) = N(4)	118 3(4)	N(2A) C(2A) N	(2n) (4A)	110.3(4)
N(5) = C(3) = N(6)	110.0(4)	N(3A) = O(2A) = N N(5A) = O(2A) = N	(44)	117.6(4)
W(2)-0(2)-W(0)	119.0(3)	M(JA)-C(JA)-N	(OA)	11/.0()

pm länger als in 11. Typische Beispiele sind die Verbindungen [Pr(bipy)₆](ClO₄)₃ (Pr-N: 273.5-276.8 pm)^[21] und [Pr(terpy)Cl(H₂O)₅]Cl₂ (Pr-N: 262.5, 263.5 pm)^[22].

Mit der Synthese der Komplexe 2-23 konnte gezeigt werden, daß Benzamidinat-Analoga der lange bekannten Tris(cyclopentadienyl)lanthanide leicht zugänglich sind. Die monomeren Moleküle fallen solvatfrei an und zeichnen sich durch hervorragende Löslichkeit in unpolaren Lösungsmitteln aus. Die Analogie zwischen Cyclopentadienyl- und Benzamidinatliganden wird auch durch optische Untersuchungen untermauert. Absorptions- und emissionsspektroskopische Messungen belegen, daß die Ligandenfeldstärke der silylierten Benzamidinatliganden mit der von Cyclopentadienylliganden vergleichbar ist.

Kristallfeld (KF)-theoretische Betrachtungen

Allgemeines

Sowohl wegen ihres energetisch ausreichend isolierten Grundzustands als auch ihres Lumineszenzvermögens wird üblicherweise die Eu(III)-Verbindung einer KF-theoretisch zu analysierenden Substanzklasse der Lanthanide für eine erste grobe Abschätzung der KF-Parameter herangezogen^[23]. In Absorption sind bei 4 K (flüssiges Helium) bevorzugt Übergänge der Natur $\Gamma_1(^7F_0) \rightarrow \Gamma_i(^5D_{0,1,2,3})$ und in Emission Übergänge ausgehend von den Multipletts ${}^5D_{0,1,2}$ zu KF-Folgezuständen der Mannigfaltigkeiten ${}^7F_J(J =$ 0-6) zu beobachten^[23,24]. Bei Verwendung polarisierter elektromagnetischer Strahlung und orientierter Einkristalle (bei Molekülkomplexen müssen die Hauptachsen der individuellen Moleküle der Elementarzelle parallel oder antiparallel ausgerichtet sein) werden die Auswahlregeln erheblich schärfer, und die beobachteten Übergänge können häufig zugeordnet werden^[23,25,26].

Auf Grund der vergleichsweise großen Elektronenaffinität des Eu³⁺-Zentralions besteht jedoch bei Existenz leicht oxidierbarer Liganden die Möglichkeit, daß die Absorptionsübergänge zu den ⁵D_J-Mannigfaltigkeiten durch tiefliegende Charge-Transfer-Übergänge der Natur [f⁶; Ligandensystemⁿ] \rightarrow [f⁷; Ligandensystemⁿ⁻¹] vollkommen verdeckt werden, und Fluoreszenzübergänge überhaupt nicht mehr beobachtbar sind (wie z. B. beim tiefschwarzen Cp₃Eu · CNC₆H₁₁^[27] oder beim dunkelroten Eu[N(SiMe₃)₂]₃^[28]).

Bei den Benzamidinaten von Eu(III) sind bei Raumtemperatur die Absorptionsübergänge zu den Mannigfaltigkeiten ${}^{5}D_{0,1,2}$ der abfallenden Flanke eines intensiven, breiten Charge-Transfer-Übergangs "aufgesetzt" und Übergänge zu höheren Multipletts sind überhaupt nicht zu verzeichnen. Bei 90 K wird die Charge-Transfer-Bande erheblich schmaler, und die Übergänge ${}^{7}F_{0} \rightarrow {}^{5}D_{0,1}$ sind ohne größere Beeinträchtigungen zu beobachten. Dagegen ist der Übergang ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ weiterhin auf der abfallenden Flanke der Charge-Transfer-Bande zu verzeichnen.

Wegen der mutmaßlich ungünstigen Kristallstruktur von 13 (die entsprechende Pr-Verbindung 11 kristallisiert in der Raumgruppe PI mit vier nicht einheitlich ausgerichteten Molekülen pro Elementarzelle) haben Polarisationsmessungen unter Verwendung orientierter Einkristalle keinen zusätzlichen Informationsgehalt, so daß zweckmäßigerweise Lösungen vermessen wurden.

Bei Raumtemperatur sind nur diffuse Lumineszenzspektren zu beobachten, die jedoch bei Abkühlung der Probe erheblich intensiver werden. Bei ca. 200 K und Verwendung geringer Laserleistung stimmten die Lumineszenzspektren von reinem 13 und gelöst in 2-Methyltetrahydrofuran (MeTHF) im wesentlichen überein. Um etwaige Konzentrationsauslöschungen und eine zu große thermische Belastung der Probe durch die Erregerstrahlung zu vermeiden, bevorzugten wir Lumineszenzmessungen in Form glasartig erstarrter MeTHF-Lösungen.

Für geradzahlige fⁿ-Systeme (wie das hier analysierte f⁶-System 13), die Kristallfeldern der Symmetrie D₃ ausgesetzt sind, wurden von Görller-Walrand et al. die Auswahlregeln für erzwungene elektrische und magnetische Dipolstrahlung angegeben^[25]. Angesichts der bei 13 beobachteten Spektren ist hier lediglich von Belang, daß in Lösung die Übergänge $A_1 \rightarrow A_2$, E erlaubt und die Übergänge $A_1 \rightarrow A_1$ verboten sind.

Absorptionsspektrum von [4-MeOC₆H₄C(NSiMe₃)₂]₃Eu (13)

Bei Verwendung von 1-cm-Küvetten und nahezu gesättigter MeTHF-Lösungen ist bei Raumtemperatur der symmetrieverbotene Übergang $A_1({}^{7}F_0) \rightarrow A_1({}^{5}D_0)$ nur andeutungsweise erkennbar, während die Übergänge ${}^{7}F_0 \rightarrow {}^{5}D_1$ und ${}^{7}F_0 \rightarrow {}^{5}D_2$ deutlicher beobachtbar sind.

Bei einer Probentemperatur von etwa 90 K ließ sich der an sich verbotene Übergang $A_1({}^7F_0) \rightarrow A_1({}^5D_0)$ überraschenderweise intensiv bei 17286 cm⁻¹ beobachten, und die beiden gruppentheoretisch vorhergesagten Signale des Übergangs ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ wurden bei 19001 und 19051 cm⁻¹ verzeichnet. Außerdem traten anstelle der beiden erwarteten Banden des Übergangs ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ drei Signale bei 21450, 21505 und 21556 cm⁻¹ auf (Abb. 6).

Abb. 6. Tieftemperatur-Absorptionsspektrum (ca. 90 K) von 13 in den Bereichen 460-470, 510-540 und 570-590 nm

Die oben erwähnten "kalten" Übergänge sind (im Raumtemperatur-Spektrum) auf der langwelligen Seite häufig von "heißen" Banden mit Energieseparationen von ca. 200, 450 und 900 cm⁻¹ begleitet, was den Schluß gestattet, daß die beiden KF-Komponenten des angeregten Multipletts ⁷F₁ ca. 200 bzw. 450 cm⁻¹ und die energetisch am niedrigsten gelegene KF-Komponente der Mannigfaltigkeit ⁷F₂ ca. 900 cm⁻¹ vom KF-Grundzustand separiert sind.

Lumineszenzspektrum von $[4-MeOC_6H_4C(NSiMe_3)_2]_3Eu$ (13)

Die erhaltenen Tieftemperatur-Lumineszenzspektren (ca. 120 K) waren im wesentlichen von der Wahl der Erregerlinien eines Ar⁺-Lasers unabhängig. Eine nähere Analyse der Spektren ergab, daß offenbar nur das Multiplett ⁵D₀ fluoresziert, und die Übergänge bei den Mannigfaltigkeiten ⁷F₄ (J = 0-6) enden.

Das Lumineszenzspektrum läßt scharfe intensive Signale mutmaßlich elektronischer Herkunft erkennen, die häufig von schwächeren Seitenbanden mutmaßlich vibronischer

Abb. 7. Tieftemperatur-Lumineszenzspektrum (ca. 120 K) von 13 im Bereich 16000-17500 cm⁻¹

Natur begleitet werden. Ähnlich wie der inverse Übergang $A_1({}^7F_0) \rightarrow A_1({}^5D_0)$ im Tieftemperatur-Absorptionsspektrum ist der bei Vorliegen von D_3 -Symmetrie verbotene Emissionsübergang $A_1({}^5D_0) \rightarrow A_1({}^7F_0)^{[25]}$ deutlich zu beobachten, und ähnlich wie im Absorptionsspektrum ist dieser rein elektronische Übergang bei 17271 cm⁻¹ von zwei vibronischen Seitenbanden flankiert.

Der Übergang ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ hat bei Eu(III)-Verbindungen üblicherweise magnetischen Dipolcharakter^[23,24]. Gemäß den Auswahlregeln^[25] werden zwei Übergänge erwartet, die bei 17071 bzw. 16819 cm⁻¹ beobachtet werden. Die Bande bei 16819 cm⁻¹ ist geringfügig in zwei Komponenten aufgespalten. Da nur die zweifach entartete E-Komponente bei einer geringfügigen Symmetrieerniedrigung in zwei Komponenten aufspalten kann, deutet dieser Befund darauf hin, daß der KF-Zustand $|\pm 1\rangle$ bei höherer Energie liegt als der Zustand $|0\rangle$. Dieses Ergebnis ist mit dem Schwerpunktsatz von Caro^[29] vereinbar, daß der gewichtete Schwerpunkt von ${}^{7}F_{1}$ 370–385 cm⁻¹ (hier 371 cm⁻¹; bei umgekehrter Zuordnung 268 cm⁻¹) über ${}^{7}F_{0}$ liegen sollte.

Neben mehreren schwächeren Signalen mutmaßlich vibronischer Natur zeigt der erzwungene elektrische Dipolübergang ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ die zwei erwarteten starken Banden bei 16387 und 15975 cm⁻¹.

Die schon erwähnten Lumineszenzübergänge ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 3-6) sollen hier nicht weiter diskutiert werden, da sie vorläufig noch nicht zugeordnet werden können.

Zinner et al. haben die Energiematrizen (Störansatz 1. Ordnung) für die KF-Aufspaltungen der Multipletts ⁷F₁ und ⁷F₂ von Eu(III)-Verbindungen der Symmetrie C_{3v}/D_3 aufgestellt^[30]. Unter Verwendung der Aufspaltungsmatrix für ⁷F₁ errechnet sich der phänomenologische Aufspaltungsparameter B_0^2 von 13 zu -857 cm⁻¹. Durch Anpassung der offenen KF-Parameter der oben erwähnten Aufspaltungsmatrix der Mannigfaltigkeit ⁷F₂ an die experimentellen Daten lassen sich Schätzwerte für die phänomenologischen Parameter B_0^4 und B_3^4 erhalten. Unter der Voraussetzung, daß die Komponente $|\pm 1 > (^7F_2)$ energetisch tiefer liegt als $|\pm 2 > (^7F_2)$, ergeben sich B_0^4 und B_3^4 zu -943 bzw. ± 1887 cm⁻¹. Der Parameter

$$\frac{N_{\rm v}}{\sqrt{4\pi}} = \sqrt{\sum_{k,q} \frac{1}{2k+1} (B_q^k)^2}$$

wird üblicherweise als ein Maß für die Ligandenfeldstärke betrachtet^[31]. Die Einsetzung der oben abgeleiteten Parameter in diese Relation ergibt $N_v/\sqrt{4\pi} = 800.8 \text{ cm}^{-1}$.

Da Cunha et al. haben während der letzten Jahre die Aufspaltungsmuster der Mannigfaltigkeiten ${}^{7}F_{1}$ und ${}^{7}F_{2}$ von 30 Eu(III)-Komplexen der mutmaßlichen Symmetrie C_{3v} analysiert und fanden dabei einen Maximalwert von $N_{v}/\sqrt{4\pi} = 652.8 \text{ cm}^{-1} {}^{(32)}$. Offenbar ist mit dem Benzamidinatliganden eine ungewöhnlich große Ligandenfeldstärke verbunden. Ähnlich große Aufspaltungseffekte wurden jedoch bei einigen mit Eu(III) dotierten Festkörpern wie Lu₂-(SiO₄)O:Eu⁽³³⁾ oder LnOCl:Eu (Ln = Y, Gd, La)⁽³⁴⁾ beobachtet.

Tab. 2. Darstellung und Eigenschaften der Komplexe 2-23

Tab. 4. IR- (Nujol/KBr, cm⁻¹,), ¹H-NMR-(C₆D₆, TMS ext, δ -Werte, Hz) und ¹⁹F-NMR-Daten der Komplexe **2–23**

Nr.	Aufarb	Ausb.	Farbe	Schmp.
	Variante	[g] (%)	(fest)	[•c]
2	В	1.70 (51)	farblos	195
3	Α	2.12 (57)	rotbraun	108
4	В	1.49 (40)	blaβgelb	167
5	В	3.06 (82)	hellblau	180
6	Α	1.67 (44)	farblos	190-193
7	В	2.45 (65)	gelb	194
8	В	2.08 (55)	farblos	188-190
9	Α	1.47 (38)	blaβrosa	220
10	Α	1,61 (42)	farblos	228
11	Α	2.22 (54)	hellgelb	145
12	Α	2.43 (59)	hellblau	185
13	Α	2.18 (53)	gelb	175
14	С	3.51 (83)	blaβrosa	200-203
15	Α	3.18 (75)	rosa	212
16	В	1.78 (30)	farblos	190
17	в	1.12 (24)	hellgelb	160
18	В	1.50 (50)	hellblau	165
19	Α	3.15 (69)	gelb	128
20	С	2.96 (64)	blaßgelb	260 (Zers.)
21	Α	1.81 (39)	blau	280
22	Α	3.37 (72)	gelb	295 (Zers.)
23	С	3.70 (78)	hellgelb	130 (Zers.)

Tab. 3. Charakterisierung der neuen Komplexe

	Molmasse		~		
2			0	H	N
-	C3 9 H6 9 N6 ScSi6	Ber.	56.1	8.3	10.1
	835.4	Gef.	54.2	8.1	9.6
3	C39H69CeN6Si6	Ber.	50.3	7.5	9.0
	930.7	Gef.	48.0	7.5	7.8
4	C39H69N6PrSi6	Ber.	50.3	7.5	9.0
	931.4	Gef.	48.6	7.7	8.8
5	C39H69N6NdSi6	Ber.	50.1	7.4	9.0
_	934.7	Gef.	50.5	7.8	8.6
6	C39H69N6Si6Sm	Ber.	49.8	7.4	8.9
_	940.9	Gef.	47.7	7.4	8.6
7	C39H69EuN6Si6	Ber.	49.7	7.4	8.9
	942.5	Gef.	48.8	7.1	8.8
8	C39H69GdN6Si6	Ber.	49.4	7.3	8.9
	947.8	Gef.	48.5	7.1	8.9
9	C39H69N6Si6Yb	Ber.	48.6	7.2	8.7
	963.6	Gef.	47.7	7.9	8.7
10	C39H69LuN6Si6	Ber.	48.5	7.2	8.7
	965.5	Gef.	47.3	7.2	7.3
11	C4 2 H7 5 N6 O3 PrSi6	Ber.	49.4	7.4	8.2
	1021.5	Gef.	51.3	8.0	8.2
12	C4 2 H7 5 N6 NdO3 Si6	Ber.	49.2	7.4	8.2
	1024.9	Gef,	49.8	7.5	8.0
13	C4 2 H7 5 EuN6 O3 Si6	Ber.	48.9	7.3	8.1
	1032.6	Gef.	48.6	6.9	7.8
14	C4 2 H7 5 N6 O3 Si6 Yb	Ber.	47.9	7.2	8.7
	1053.7	Gef.	47.2	7.0	7.7
15	C4 2 H7 5 LuN6 O3 Si6	Ber.	47.8	7.2	8.0
	1055.6	Gef.	47.0	7.1	8.3
16	C4 2 H6 6 F9 N6 ScS16	Ber.	48.5	6.4	8.1
	1039.5	Gef.	46.1	6.4	8.1
17	C4 2 H6 6 F9 N6 PrSi6	Ber.	44.4	5.8	7.4
	1134.3	Gef.	44.4	5.8	7.3
18	C4 2 H6 6 F9 N6 NdS 16	Ber.	44.3	5.8	7.3
	1137.7	Gef.	42.6	5.8	7.3
19	U4 2 H6 6 EUF9 N6 S16	Ber.	44.0	5.8	7.3
	1146.5	Geľ.	43.0	5.9	7.0
20	C57H81N6PrS16	Ber.	59.0	7.0	7.3
. 1	1109.7	Gef.	57.9	7.2	6.9
51	U57H81N6N0S16	Ber.	58.9	7.0	7.2
	1163.1	Gef.	59.1	7.4	7.1
4 Z	U57H81EUN6S16	Ber.	58.5	7.0	7.2
••	1170.3	Gef.	58.2	5.8	7.5
53	U57H81N6S16YD	Ber.	57.4	6.9	7.0
	1101 0	Get.	57 A	6 8	66

Nn		8/Siller	S(Db/Colle)	S(Subat)
NP	cm ⁻¹	(S1Me3) (S)	(m)	o(Subst.)
2	1663 9 1246 9 983 9	0.21	7 36-7 54 19	u)
-	836 vs, 786 s, 753 s,	0.21	7.04 (6H)	,
•	700 s, 491 s	0 66	12 10 (811 -	DL)
3	918 s, 826 vs, 783 s,	-2,00	9.43 (6H, <i>m</i> -	Ph)
	755 s, 722 s, 700 s,		8.79 (3H, p-	Ph)
4	680 s, 554 s 1663 s. 1243 vs. 974 s.	-4.75	17.37 (6H. o-	Ph)
•	831 vs, 782 s, 756 s,		11.25 (6H, m~	Ph)
E	701 s, 472 s	2 60	10.02 (3H, p-	Ph)
5	842 vs. 784 s. 756 s.	-3.60	14.17 (6H, <i>o</i> -	Ph)
	700 s		9.00 (3H, p-	Ph)
6	1663 m, 1245 s, 1073 m, 978 vg 951 vg 931 vg	-1.27	10.27 - 10.47 (6H)
	785 s, 757 s, 700 s,		7.51- 0.20 (<i>5</i> n)
~	474 s			
7	1664 m, 1247 s, 979 s, 917 m, 845 vs, 758 s,	6.00	4.40 (3H, p- 2.22 (6H, m-	Ph) Ph)
	723 s, 701 s, 474 s		-3.92 (6H, o-	Ph)
8	1663 s, 1247 s, 1156 m,	Wegen st	arker Signalver	breiterung
	758 s, 723 m, 701 m	keine ei	indentige Zuoran	ung mogrich
9	1663 m, 1248 s, 1074 m,	13.84	-1.51 (3H, p-	Ph)
	985 s, 917 s, 861 vs, 831 vs. 786 s. 700 s.		-3.49 (6H, m-	Ph) Ph)
	478 s		Line (on, o	,
10	1663 m, 1247 s, 1074 m,	0.17	7.26-7.48 (6	H)
	759 s, 700 s, 479 s		0.38-1.18 (9	н)
11	1607 s, 1510 s, 1291 s,	-4.95	17.13 (6H,	5.22 (9H)
	1240 vs, 1168 s, 977 s, 838 vs. 755 s		0-C6H4)	
	000 vs, 100 s		m-C6H4)	
12	1608 s, 1512 s, 1248 vs,	-3.38	13.96 (6H,	4.64 (9H)
	1170 s, 978 s, 840 vs, 756 s		9.62 (6H.	
			m-C6H4)	
13	1609 vs, 1511 s, 1247 vs	, 5.94	.1.98 (6H,	1.04 (9H)
	844 vs, 757 s, 722 s		-3.70 (6H,	
	1600 - 1511 - 1001 -	10 57	0-C6H4)	1 50 (011)
14	1609 s, 1511 s, 1291 s, 1246 vs. 1170 s. 989 vs.	13.57	-3.79 (6H, m-C6H4)	-1.78 (9H)
	834 vs, 760 s		-21.15 (6H,	
			0-C6 H4)	
15	1610 vs, 1512 s, 1243 vs	3, 0.22	7.30 (6H,	3.25 (9H)
	761 s, 644 s, 626 s,		6.70 (6H,	
	501 s	• • • •	m-C6H4)	
10	1400 s, 1325 s, 1247 s, 1170 s, 1135 s, 1104 s,	0.09	7.32 (12H)	-62.4(19F
	1065 s, 982 s, 840 vs,			
17	759 s, 745 s, 534 s	-4 10	17 02 /64	. 50 0/19 F
17	1320 vs, 1245 vs, 1062 a	-4.10 3,	o-C6H4)	-59.6(-°F
	970 s, 840 vs, 650 s,		11.43 (6H,	
18	1660 s. 1575 s. 1325 s.	-3.03	m-C6H4) 13.83 (6H.	-60.3(19F
	1248 vs, 1170 vs,		0-C6 H4)	(F
	1132 vs, 973 s, 840 vs,		10.25 (6H,	
19	1660 s, 1324 s, 1249 s,	6.09	2.42 (6H,	-65.8(¹⁹ F
	1135 s, 1066 s, 976 s,		m-C6 H4)	· -
	803 S		-4.08 (6H, 0-CaHa)	
20	1655 s, 1260 s, 1249 s,	-4.76	17.48 (6H,	9.58 (6H)
	975 s, 847 vs, 766 s, 724 m		0-C6H4)	8.33 (6H)
	16т Щ		л.от (он, m-C6H4)	0.04 (JH)
21	1652 m, 1246 s, 976 s,	3.56	14.28 (6H,	8.93 (6H)
	801 VS, 766 S, 727 m		о-СеН4) 10.42 (бн.	7.50-8.15 (9µ)
_			m-C6H4)	(011)
22	1657 m, 1244 s, 978 s,	6.17	2.37 (6H,	6.22 (3H)
	754 m, 725 s, 505 s		ш-С6Н4) -4.18 (6Н,	5.01 (6H)
	1040 - 000 054	10	0-C6H4)	
23	1246 s, 986 s, 854 vs, 764 s, 728 s	13,82	-3.15 (6H, m-CeH4)	4.81 (3H) 4.31 (6H)
			-21.43 (6H,	1.72 (6H)
			0-C6 H4)	
	•			

Die Energie des angeregten Multipletts 5D_0 sowie die energetischen Schwerpunkte der KF-Folgezustände der Mannigfaltigkeit 5D_1 und 5D_2 von 13 sind nahezu identisch mit denen von LaCl₃: Eu^[23] oder LaF₃: Eu^[35]. Dieser Befund gestattet den Schluß, daß nephelauxetische Effekte und damit kovalente Wechselwirkungen zwischen der 4f-Funktion und den Benzamidinatliganden weitgehend auszuschließen sind.

Experimenteller Teil

Alle Umsetzungen wurden in ausgeheizten Schlenk-Apparaturen unter trockenem, nachgereinigtem Stickstoff durchgeführt. Die verwendeten Lösungsmittel waren sorgfältig getrocknet und N₂-gesättigt. – IR: Perkin-Elmer 180 und 325. – UV/Vis: Varian Cary 17. – Lumineszenz: Jobin Yvon U 1000, Erregerlichtquelle: Ar⁺-Laser Spectra Physics. – ¹H- und ¹⁹F-NMR: Bruker WP 80 SY, Standard TMS (ext.) bzw. CFCl₃ (ext.). – MS: Varian MAT CH 5. – Schmelz- und Zersetzungspunkte: Büchi 510, in abgeschmolzenen Kapillaren unter N₂. – Elementaranalysen: Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. – Ausgangsverbindungen: $1a - c^{[4,5]}$, ScCl₃(THF)₃^[36], LnCl₃ (Ln = Ce, Pr, Sm, Eu, Gd, Lu)^[37], NdCl₃(THF)₂^[16], YbCl₃(THF)_{3.5}^[16], NaN(SiMe₃)₂^[38].

1. Natrium-4-phenyl-N,N'-bis(trimethylsilyl)benzamidinat \cdot 1.5 THF (1d): Zu 14.67 g (80 mmol) NaN(SiMe₃)₂ in 160 ml THF gibt man 14.34 g (80 mmol) 4-Cyanbiphenyl und läßt 48 h bei Raumtemp. rühren. Man filtriert über eine dünne Schicht Celite und wäscht den Rückstand mit 120 ml THF. Das THF wird i. Vak. vollständig entfernt, der Rückstand mit 2 × 60 ml Hexan gewaschen und i. Vak. getrocknet. Blaßgelber, mikrokristalliner Feststoff.

Tab. 5. Auszug aus den EI-Massenspektren von 2-23 (70 eV, rel. Int. in %)

Nr.	<u>m/z</u>	rel. Int.	Fragment	Nr.	<u>m/z</u>	rel. Int.	Fragment
2	834	3	M+	14	1053	6	M*
	571	100	[PhC(NSiMe3)2]2Sc ⁺		760	100	[MeOC6H4C(NSiMe3)2]2Yb*
	308	17	PhC(NSiMe3)2Sc ⁺		467	15	MeOC6H4C(NSiMe3)2Yb*
3	929	11	M*		293	9	MeOC6H4C(NSiMe3)2+
	826	20	(M - PhCN)+	15	1054	38	M+
	666	48	[PhC(NSiMe3)2]2Ce*		762	100	[MeOC6H4C(NSiMe3)2]2Lu*
	403	9	PhC(NSiMe3)2Ce+		468	74	MeOC6H4C(NSiMe3)2Lu ⁺
	263	15	PhC(NSiMe3)2 *		146	10	Si2Me6 •
	146	100	Si2Me6 ⁺	16	1038	2	M+
4	930	6	M+		707	100	[CF3C6H4C(NSiMe3)2]2Sc+
	667	100	[PhC(NSiMe3)2]2Pr ⁺		171	28	CF3 C6 H4 CN+
	403	56	PhC(NSiMe3)2Pr ⁺		73	48	SiMe3*
	263	38	PhC(NSiMe3)2+	17	1135	4	M+
	146	91	Si2 Me6 +		803	100	[CF3C6H4C(NSiMe3)2]2Pr*
5	933	2	M+		471	30	CF3C6H4C(NSiMe3)2Pr ⁺
	670	36	[PhC(NSiMe3)2]2Nd+		331	13	CF3 C6 H4 C (NSiMe3)2*
	407	9	PhC(NSiMe3)2Nd ⁺		171	32	CF3 C6 H4 CN ⁺
	263	45	PhC(NSiMe3)2+	18	1137	6	M+
	146	100	SizMes*		806	100	[CF3 C6 H4 C(NSiMe3)2]2Nd*
6	943	6	M+		47.5	20	CF3C6H4C(NSiMe3)2Nd ⁺
•	680	100	[PbC(NSiMes)2]2Sm ⁺		331	22	CF3 C6 H4 C(NSiMe3)2 ⁺
	417	34	$PhC(NSiMe_3)_2 Sm^+$		171	53	CF2 Ce H4 CN ⁺
	263	38	PhC(NSiMes)2 ⁺	10	1146	8	M+
	146	53	Siz Meet	13	015	76	[CE2 Co HAC(NSiMe2)2]2 Fut
7	690	20	[PhC(NSiMea)2]2 Fut		404	20	CE2 Ce He C (NSi Mez)2 Fut
1	000	00	PhC/NSiMoa)at		404	70	$CF_{2}C_{2}H_{4}C(NSiMe_{2})_{2}H_{4}$
	203	00	PhCNa SiMoat		331	100	Cr3C6 H4 C(NSIME3 /2
	191	100	Sia Moot		1150	100	512 Me6
•	140	100	512 Me6	20	1159	100	M' [DhColleC(NGiMon)oloDat
8	941	9	M' [DhC(NGiMaa)a laCdt		820	100	PhOs H. C(NSiMes)2 J2 FT
	084	94	DbC(NSIMes) 2 12 du		481	38	PhOs H4 C(NSIMe3)2 Pr
	420	24	PhG(NSIMes) 2 Gu		339	58	PhC6 H4 C (NSIMe3)2
	263	80	PhC(NSIMe3/2		146	82	S12 Me6
•	146	100	S12 Me6	~ ~	73	83	SiMe3 *
9	963	12		21	1161	1	
	700	100	[PhC(NS1Me3)2]2YD		822	25	[PhC6H4C(NS1Me3)2]2Nd [*]
	437	16	PhC(NS1Me3)2YD		482	9	PhC6H4C(NS1Me3)2Nd*
	263	13	PhC(NS1Me3)2*		339	17	PhC6H4C(NS1Me3)2*
10	964	11	M*		179	38	PhC6 H4 CN ⁺
	701	100	[PhC(NSiMe3)2]2Lu ⁺		73	100	SiMe3 ⁺
	438	17	PhC(NSiMe3)2Lu ⁺	22	1170	1	M*
	263	17	PhC(NSiMes)2*		832	68	[PhC6H4C(NSiMe3)2]2Eu*
11	1020	4	M+		492	47	PhC6H4C(NSiMe3)2Eu*
	727	87	[MeOC6H4C(NSiMe3)2]2Pr ⁺		339	91	PhC6H4C(NSiMe3)2+
	434	82	MeOC6H4C(NSiMe3)2Pr ⁺		179	100	PhC6 H4 CN ⁺
	279	20	MeOC6H4C(NSiMe3)2+		146	68	Si2Me6 ⁺
	133	63	MeOC6 H4 CN ⁺	23	1191	2	M+
	73	100	SiMe3*		852	100	[PhC6H4C(NSiMe3)2]2Yb*
12	1023	4	M+		513	20	PhC6H4C(NSiMe3)2Yb*
	730	64	[MeOC6 H4 C(NSiMe3)2]2 Nd+		339	7	PhC6H4C(NSiMe3)2•
	437	37	MeOC6H4C(NSiMe3)2Nd+		179	12	PhC6 H4 CN ⁺
	293	42	MeOC6H4C(NSiMe3)2*				
	73	100	SiMe3+				
12	1031	6	M+				
10	739	100	[MeOC6H4C(NSiMe3)2]2Eu*				
	446	45	MeOC6 H4 C(NSiMe3)2 Eu*				
	146	19	Siz Mee *				
	140	1.6	~				

Ausb. 24.17 g (64%). – IR (Nujol): $\tilde{\nu} = 1654 \text{ m cm}^{-1}$, 1249 m, 1235 s, 1051 m, 969 m, 851 s, 830 vs, 751 s, 732 m, 693 m. – ¹H-NMR ([D₆]Aceton): $\delta = 7.34-7.98$ (m, 9H, Ph + C₆H₄), 3.50–3.75 (m, 6H, THF), 1.65–1.90 (m, 6H, THF), 0.07 (s, 9H,

SiMe₃), -0.15 (s, 9H, SiMe₃). - EI-MS: m/z (%) = 339 (18) [PhC₆H₄C(NSiMe₃)[±]], 325 (4) [PhC₆H₄CN(SiMe₃)[±]], 267 (6) [PhC₆H₄CN₂SiMe₃H⁺], 179 (22) [PhC₆H₄CN⁺], 146 (100) [Si₂Me⁺₆], 73 (31) [SiMe⁺₃].

Tab. 6. Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Auslenkungsparameter* [pm² $\times 10^{-1}$] von Verbindung 11

	x	У	2	U(eq)		x	У	Z	U(eq)
Molekül	1				Molekül	2			
Pr(1)	11726(1)	2113(1)	1122(1)	30(1)	Pr(1A)	2305(1)	2170(1)	6121(1)	29(1)
Si(1)	12692(2)	437(1)	263(1)	61(1)	Si(1A)	3180(1)	929(1)	7580(1)	44(1)
Si(2)	11355(1)	872(1)	2601(1)	42(1)	Si(2A)	2242(1)	489(1)	5257(1)	44(1)
\$i(3)	8901(1)	2052(1)	750(1)	46(1)	Si(3A)	-571(1)	2159(1)	6363(1)	50(1)
Si(4)	10871(1)	3800(1)	1989(1)	42(1)	Si(4A)	1824(1)	3462(1)	4625(1)	42(1)
Si(5)	11635(1)	3433(1)	-359(1)	59(1)	Si(5A)	2044(1)	3896(1)	6936(1)	40(1)
\$i(6)	14572(1)	2100(1)	1312(1)	51(1)	Si(6A)	5198(1)	2160(1)	5777(1)	41(1)
N(1)	12121(3)	875(2)	866(2)	42(2)	N(1A)	2811(3)	1094(2)	6835(2)	35(2)
N(2)	11688(3)	1038(2)	1851(2)	33(1)	N(2A)	2502(3)	920(2)	5863(2)	37(2)
N(3)	9835(3)	2435(2)	1046(2)	37(2)	N(3A)	443(3)	2508(2)	5999(2)	38(2)
N(4)	10648(3)	3116(2)	1598(2)	32(1)	N(4A)	1450(3)	2937(2)	5238(2)	35(2)
N(5)	12248(3)	2889(2)	225(2)	39(2)	N(5A)	2758(3)	3178(2)	6610(2)	34(2)
N(6)	13436(3)	2444(2)	950(2)	39(2)	N(6A)	4018(3)	2530(2)	6073(2)	37(2)
0(1)	12293(4)	-2371(2)	1816(2)	81(2)	0(1A)	4174(3)	-2292(2)	6857(2)	63(2)
0(2)	5820(3)	4228(2)	2214(2)	72(2)	0(2A)	-3157(3)	4133(2)	4285(2)	76(2)
0(3)	16376(4)	3897(3)	-962(3)	106(3)	0(3A)	6845(4)	4476(3)	7156(3)	109(3)
C(1)	11927(4)	596(3)	1427(2)	35(2)	C(1A)	2827(4)	651(3)	6409(2)	34(2)
C(2)	9775(4)	2954(3)	1414(2)	34(2)	C(2A)	514(4)	2871(3)	5464(2)	36(2)
C(3)	13206(4)	2808(3)	419(2)	39(2)	C(3A)	3737(4)	3055(3)	6423(2)	35(2)
C(4)	11972(4)	-181(3)	1551(2)	55(2)	C(4A)	3210(4)	-123(2)	6535(2)	31(2)
C(3)	12(09(4)	- 1722(3)	1079(3)	51(2)	U(5A)	41/2(4)	-426(3)	6311(2)	40(2)
C(D)	12124(5)	- 1522(3)	1727(2)	59(5)		4323(4)	-1148(3)	6418(2)	44(2)
C(7) C(8)	11280(5)	- 1246(3)	1/33(3)	55(2)	C(7A)	2064(4)	-1278(3)	6735(2)	44(2) 57(2)
C(0)	11219/61	-508(3)	13/2(2)	44(2)	C(0A)	2504(4)	- 12/0(3)	6866(3)	(7(2)
C(10)	11536(7)	-2723(3)	1606(3)	100(4)	C(10A)	5169(5)	-2621(3)	6664(3)	47(2)
C(11)	8738(4)	3312(3)	1620(2)	36(2)		-443(4)	3192(3)	5133(2)	38(2)
C(12)	8242(4)	3028(3)	2116(2)	49(2)	C(12A)	-688(4)	2944(3)	4616(3)	52(2)
C(13)	7268(5)	3342(3)	2303(3)	59(3)	C(13A)	-1602(5)	3245(3)	4310(3)	55(2)
C(14)	6782(4)	3954(3)	1996(3)	51(2)	C(14A)	-2237(4)	3799(3)	4542(3)	52(2)
C(15)	7252(4)	4242(3)	1495(3)	54(2)	C(15A)	-2004(4)	4053(3)	5052(3)	51(2)
C(16)	8232(4)	3920(3)	1316(2)	51(2)	C(16A)	-1115(4)	3757(3)	5346(2)	44(2)
C(17)	5220(5)	4788(3)	1853(3)	78(3)	C(17A)	-3383(6)	3917(4)	3742(3)	98(4)
C(18)	14040(4)	3111(3)	55(2)	45(2)	C(18A)	4515(4)	3474(3)	6595(2)	40(2)
C(19)	14473(4)	3642(3)	252(3)	50(2)	C(19A)	4730(5)	4058(3)	6250(3)	62(3)
C(20)	15257(5)	3924(3)	-79(3)	60(3)	C(20A)	5518(6)	4421(4)	6410(3)	76(3)
C(21)	15608(5)	3666(3)	-607(3)	73(3)	C(21A)	6047(5)	4162(4)	6933(4)	67(3)
C(22)	15174(6)	3135(4)	-808(3)	91(3)	C(22A)	5824(5)	3593(4)	7283(3)	73(3)
C(23)	14396(5)	2860(3)	-487(3)	78(3)	C(23A)	5084(4)	3260(3)	7112(3)	60(3)
C(24)	16891(6)	4401(4)	-757(4)	127(5)	C(24A)	7220(8)	4885(5)	6805(4)	165(7)
C(25)	13789(7)	-267(4)	476(3)	135(4)	C(25A)	4368(6)	288(4)	7712(3)	106(4)
C(26)	11801(6)	48(4)	-163(3)	119(4)	C(26A)	2158(6)	637(5)	8076(3)	115(4)
C(27)	13166(5)	1123(3)	-254(2)	58(2)	C(27A)	3447(7)	1768(3)	7798(3)	106(4)
C(28)	12444(5)	469(5)	3069(3)	120(4)	C(28A)	3406(5)	200(3)	4790(3)	75(3)
C(29)	10324(7)	339(5)	2719(3)	130(5)	C(29A)	1587(7)	-278(4)	5462(3)	102(4)
C(30)	10863(7)	1730(3)	2859(3)	125(4)	C(30A)	1363(5)	1151(3)	4784(2)	60(2)
C(31)	9604(5)	1564(3)	149(3)	75(3)	C(31A)	47(5)	1635(3)	7037(3)	80(3)
C(32)	8410(5)	1412(3)	1314(3)	77(3)	C(32A)	-1097(5)	1567(4)	5900(3)	91(3)
C(35)	7802(5)	2674(4)	406(3)	83(3)	C(33A)	-1638(4)	2821(3)	6636(3)	67(3)
U(34)	10110(5)	3902(3)	2699(3)	68(3)	C(34A)	2118(5)	2931(3)	3965(2)	63(3)
C(32)	10040(5)	4028(3)	1522(3)	(/(3)	C(35A)	893(4)	4277(3)	4400(3)	59(2)
C(30)	12170/4)	3783(3)	2105(3)	09(3)	U(36A)	2U3/(4)	3/48(3)	4822(5)	63(3)
C(3/)	11577/05	4218(4)	-340(4)	135(5)	C(3/A)	1009(5)	4003(3)	0558(5)	81(3)
C(30)	10290/55	2940())	- 1012(3)	120(0)	L(38A)	2/19(5)	4272(5)	7514(3)	(5(3)
C(37)	10200(3)	3743(4)	-110(3)	92(3) 44/7	C(39A)	00/(4)	3202(3)	(282(5)	62(3)
C(40)	15/50/51	2102(3)	853/21	00(3)	C(40A)	DU23(4)	2191(3)	2422(5)	07(5) 70475
C(42)	16133(5)	1577(3)	1080/31	77(4)	C(41A)	J733(4) /828/51	1450/21	0343(3) 517/72	(0(5)
~~~/	14133(3)	(3) ((3)	1707(3)	11(3)	U(42A)	4020(3)	(2)4(3)	2174(3)	07(2)

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen  $U_{ii}$ -Tensors.

2. Darstellung der Komplexe 2-23 (Allgemeine Arbeitsvorschrift): Zu 4 mmol LnCl₃(THF)_x (Ln = Yb: x = 3.5; Ln = Sc: x = 3; Ln = Nd: x = 2; Ln = Ce, Pr, Sm, Eu, Gd, Lu: x = 0) in 60 ml THF tropft man innerhalb von 30 min eine Lösung von 12 mmol 1 in 40 ml THF und läßt 24 h bei Raumtemp. rühren. Nach Eindampfen zur Trockne wird der Rückstand in 80 ml Hexan aufgenommen. Durch Filtrieren über eine dünne Schicht Celite läßt sich das ausgefallene NaCl vollständig abtrennen. Eindampfen des Filtrats liefert ein meist öliges Rohprodukt. Die weitere Aufarbeitung erfolgt nach drei Varianten: A: Es wird aus 5-10 ml Hexan bei -25°C kristallisiert. B: Das Rohprodukt wird 1 h mit 20 ml Acetonitril gerührt, das mikrokristalline Produkt abfiltriert und i. Vak. getrocknet. C: Das Produkt wird mit Toluol extrahiert und aus Toluol/Hexan umkristallisiert (Tab. 2). Analysen und Spektren siehe Tabelle 3-5.

Kristallstrukturanalyse von 11^[39]: Gut ausgebildete, gelbgrüne Einkristalle von 11 wurden durch langsames Abkühlen einer bei Raumtemp. gesättigten Lösung in Hexan erhalten. Kristallgröße  $0.5 \times 0.5 \times 0.2$  mm.  $C_{42}H_{75}N_6O_3PrSi_6$  (1021.5), triklin, Raumgruppe  $P\bar{1}$ , Gitterkonstanten a = 1313.5(1), b = 1928.1(2), c =2238.7(2) pm,  $\alpha = 84.39(1), \beta = 87.85(1), \gamma = 80.13(1)^{\circ}, V = 5.557$ nm³, Z = 4,  $D_{her.} = 1.221$  gcm⁻³,  $\mu$ (Mo- $K_{\alpha}$ ) = 1.04 mm⁻¹, semiempirische Absorptionskorrektur, Stoe-Siemens-Vierkreisdiffraktometer, Mo- $K_{\alpha}$ -Strahlung ( $\lambda = 0.71073$  Å), Meßtemperatur  $T = -85^{\circ}$ C, Graphitmonochromator, 11717 beobachtete Reflexe  $[F \ge 3 \sigma(F)]$ , Strukturlösung (Patterson) und -verfeinerung mit SHELXS-86 und SHELX-76 (1046 verfeinerte Parameter). Die Wasserstoffatome wurden geometrisch ideal positioniert und nach dem Reitermodell verfeinert. R = 0.046,  $R_w = 0.038$  [ $w^{-1} =$  $\sigma^{2}(F) + 0.0002 F^{2}$ ], Restelektronendichte 0.64/-0.45 e/Å³, GOF = 1.38. Tab. 6 enthält die Atomkoordinaten.

- ^[1] G. Wilkinson, J. M. Birmingham, J. Am. Chem. Soc. 1954, 76, 6210.
- ^[2] M. Wedler, H. W. Roesky, F. T. Edelmann, J. Organomet. Chem. 1988, 345, C1.
- M. Wedler, M. Noltemeyer, U. Pieper, H.-G. Schmidt, D. Stalke,
  F. T. Edelmann, Angew. Chem. 1990, 102, 941; Angew. Chem. Int. Ed. Engl. 1990, 29, 894.
- ^[4] M. Wedler, F. Knösel, M. Noltemeyer, F. T. Edelmann, U. Behrens, J. Organomet. Chem. 1990, 388, 21.
- ^[5] R. T. Boeré, R. T. Oakley, R. W. Reed, J. Organomet. Chem. 1987, 331, 161.
- ^[6] K. Dehnicke, Chemiker-Ztg. 1990, 114, 295.
- ^[7] Gmelin Handbook of Inorganic Chemistry, 8. Aufl., Sc. Y, La-Lu, Rare Earth Elements, Part D5: "Carboxylates".
- ^[8] T. Schleid, A. Lossin, G. Meyer, Z. Anorg. Allg. Chem. 1991, 589/599, 299.
- ¹⁹ M. S. Khiyalov, I. R. Amiraslanov, F. N. Musaev, K. S. Mamedov, *Koord. Khim.* **1982**, *8*, 548.
- ^[10] M. S. Khiyalov, I. R. Amiraslanov, K. S. Mamedov, K. S. Movsumov, *Dokl. Akad. Nauk Azerb. SSR* **1981**, *37*, 42; *Chem. Abstr.* **1981**, *95*, 106726.
- ^[11] Y. Meseri, A. A. Pinkerton, G. Chapuis, J. Chem. Soc., Dalton Trans. 1977, 725.

- ^[12] A. A. Pinkerton, Y. Meseri, C. Rieder, J. Chem. Soc., Dalton Trans. 1978, 85.
- ^[13] A. A. Pinkerton, D. Schwarzenbach, J. Chem. Soc., Dalton Trans. 1980, 1300.
- ^[14] H. Schumann, S. Hohmann, Chemiker-Ztg. 1976, 100, 336.
- ^[15] H. Schumann, F. W. Reier, J. Organomet. Chem. 1982, 325, 287.
- ^[16] K. Rossmanith, Monatsh. Chem. 1965, 96, 602.
- ^[17] K. Rossmanith, Monatsh. Chem. 1969, 100, 1484.
- ^[18] D. C. Bradley, J. S. Ghotra, F. A. Hart, J. Chem. Soc., Dalton Trans. 1973, 1021.
- [19] R. D. Fischer in Fundamental and Technological Aspects of Organo-f-Element Chemistry (Eds.: T. J. Marks, I. L. Fragalà), NATO ASI Series, D. Reidel Publishing, Dordrecht/Boston/ Lancaster, 1985, S. 277.
- ^[20] Cambridge Structural Database, Version 4. 12. 1988.
- ^[21] A. Clearfield, R. Gopal, R. W. Olsen, Inorg. Chem. 1977, 16, 911.
- ^[22] C. J. Radonovich, M. C. Glick, *Inorg. Chem.* 1971, 10, 1463.
- [23] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York, 1968.
   [24] W. T. Carnall, H. Crosswhite, H. M. Crosswhite, Energy Level
- ¹⁴⁴ W. I. Carnall, H. Crosswhite, H. M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃, ANL-Report, 1977 (unveröffentlicht).
- [25] C. Görller-Walrand, P. Vandevelde, Chem. Phys. Lett. 1985, 122, 276.
- ^[26] J. P. Bolender, D. H. Metcalf, F. S. Richardson, Poster PII 17, 19th Rare Earth Research Conference, Lexington (KY), U.S.A., 14.-19. Juli 1991.
- ^[27] H. Schultze, H.-D. Amberger, unveröffentlichte Ergebnisse.
- [28] R. A. Andersen, N. Edelstein, H.-D. Amberger, unveröffentlichte Ergebnisse.
- ^[29] P. Caro, J. Less-Comm. Met. 1986, 126, 239.
- [^{30]} L. B. Zinner, J. R. Matos, A. B. Nascimento, *Inorg. Chim. Acta* 1988, 141, 305.
- ^[31] F. Auzel, D. L. Malta, J. Phys. (Paris) 1977, 30, 315.
- ^[32] M. C. F. Da Cunha, H. F. Brito, L. B. Zinner, G. Vicentini, J. Less-Comm. Met., im Druck.
- ^[33] J. Hölsä, K. Jirkäs, M. Leskelä, J. Less-Comm. Met. 1986, 126, 215.
- ^[34] J. Hölsä, P. Porcher, J. Chem. Phys. 1981, 75, 2108.
- ^[35] W. T. Carnall, G. L. Goodmann, K. Rajnak, R. S. Rana, J. Chem. Phys. **1989**, 90, 3443.
- ^[36] A. Westerhof, H. J. De Liefde Meijer, J. Organomet. Chem. 1976, 116, 319.
- ^[37] J. H. Freeman, M. L. Smith, J. Inorg. Nucl. Chem. 1958, 7, 224.
- ^[38] C. R. Krüger, H. Niederprüm, Inorg. Synth. 1966, 8, 15
- ^[39] Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55920, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[64/92]

CAS-Registry-Nummern

1d: 141955-91-1 / 2: 141930-39-4 / 3: 141930-38-3 / 4: 141930-44-1 / 5: 141930-40-7 / 6: 141930-41-8 / 7: 141930-42-9 / 8: 141930-45-2 / 9: 128752-16-9 / 10: 141930-43-0 / 11: 141930-37-2 / 12: 141930-51-0 / 13: 141930-46-3 / 14: 128752-17-0 / 15: 141930-47-4 / 16: 141930-48-5 / 17: 141930-49-6 / 18: 141930-50-9 / 19: 141930-55-2 / 21: 141930-55-2 / 21: 141930-55-4 / 23:  $128752-18-1 / NaN(SiMe_{3})_2$ : 1070-89-9 / 4-Cyanbiphenyl: 2920-38-9