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Spline-based procedures for dose-finding
studies with active control
Hans-Joachim Helms,a*† Norbert Benda,b Jörg Zinserling,b
Thomas Kneibc and Tim Friedea

In a dose-finding study with an active control, several doses of a new drug are compared with an established
drug (the so-called active control). One goal of such studies is to characterize the dose–response relationship
and to find the smallest target dose concentration d∗, which leads to the same efficacy as the active control. For
this purpose, the intersection point of the mean dose–response function with the expected efficacy of the active
control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of
the target dose without assuming a specific dose–response function. Furthermore, the construction of a spline-
based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods
such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by
a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization
are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and
reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach
is satisfactory, especially for bias minimal designs. © 2014 The Authors. Statistics in Medicine Published by John
Wiley & Sons Ltd.
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1. Introduction

The aim of phase II dose-finding studies is the characterization of the dose–response relationship of
the investigated drug. Sometimes, it is of interest to estimate a target dose, which leads to a desired
response. An overview over the variety of approaches on how to deal with the planning and analysis of
this type of studies is given by Ruberg [1, 2] and by Bornkamp et al. [3]. More specifically, Bretz et al.
[4] and Pinheiro et al. [5] proposed a methodology that combines formal hypothesis testing for dose–
response with flexible modeling of the dose–response relationship. For a more detailed discussion of
their MCPMod approach, we refer to [6,7]. Estimating the smallest dose with a clinically relevant effect
in a parametric model can be seen as a calibration problem or inverse regression problem. This requires
estimating the value of an independent variable that yields an expected outcome of the dependent variable
equal to a prespecified value. There is extensive literature on this kind of calibration problems, in quality
control and dose estimation [8–11]. Whereas these approaches focus on a target dose that is defined by a
specific fixed effect difference to placebo, there is an increasing interest in describing the dose–response
relative to an active comparator to be included in the dose-finding trial. This, however, has found little
attention in the statistical literature with the notable exceptions of [12,13]. In addition, the use of a placebo
may be unethical in some situations. If the dose-finding study includes an active control, the target dose
d∗ is without loss of generality defined as the smallest dose that leads to the same expected efficacy as
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the active comparator. In this paper, the focus will lie on phase II dose-finding studies with active control
where the underlying dose–response function is unknown, and no assumptions regarding the shape are
made in the analysis as well as estimating the target dose d∗ and the construction of a corresponding CI.

We found little in statistical literature addressing this kind of problem except the approach of Kirby
et al. [14], which uses a cubic smoothing spline, with cross-validation for the smoothing parameter to
estimate the dose–response function but does not include an active comparator in the statistical model.
Additionally, the construction of a CI for the target dose was not investigated. Further, the approach
of Dilleen et al. [15], which includes an active control, only assumes a monotone response function
and uses a linear spline interpolation to estimate the target dose and therefore fits the problem more
precisely. In order to estimate the target dose without assumptions on the underlying dose–response shape,
a cubic spline approach [16] will be used, and a cubic spline-based bootstrap method for constructing a
CI [17] for the target dose will be presented. This approach will be compared by simulation studies with
the linear spline approach from Dilleen et al. [15] as well as two parametric approaches, which use an
approximation of the standard error by the Δ-method to construct corresponding CIs [18]. The spline-
based point estimators of the target dose are characterized in terms of bias, whereas coverage probabilities
are presented for the 95% CI for all methods. Additionally, the possible benefits of a smoothed cubic
spline over the cubic spline interpolation are investigated in a small simulation study. Further, design
considerations for the introduced spline approaches with the focus on bias minimization will be presented
in the context of dose-finding studies with active control.

Typically, phase II dose-finding studies include three to five doses of an experimental drug, a dose
of an active comparator, and possibly a placebo control. The range of the used total sample sizes varies
from 100 to more than 1000 subjects per study. Examples include the study of Krum et al. [19] investi-
gating the effect of an endothelin receptor antagonist called bosentan on blood pressure in patients with
essential hypertension. In this study, 293 patients were randomly assigned to receive placebo or one of
the four oral doses of bosentan (100, 500, 1000, and 2000 mg per day) or the angiotensin-converting
enzyme inhibitor enalapril as active control for 4 weeks, as well as a study presented by Chapple et
al. [20], which investigated the effect of solifenacin on patients with symptomatic idiopathic detrusor
overactivity. A total of 255 patients were randomized to receive placebo or one of the four doses of
solifenacin (2.5, 5, 10, or 20 mg per day) or tolterodine as active control. The primary endpoints were
voids/24 h and mean volume voided. The motivating example used in this paper is a study by Nauck
et al. [21] in type 2 diabetes. The study was a double-blinded, double-dummy, placebo-controlled and
active-controlled, parallel-group design over a period of 26 weeks. A total number of N = 1091 sub-
jects, which were randomly assigned (2:2:2:1:2) to liraglutide (0.6, 1.2, or 1.8 mg/day) once daily, to
placebo or to the active control glimepiride were enrolled. All treatments were in combination therapy
with metformin (1 g twice daily). The primary endpoint was defined by the change in the percentage of
glycated hemoglobin in the blood HbA1c at the end of the study. The secondary endpoints included the
change in fasting plasma glucose (FPG) and body weight from baseline to the end of the study. For the
purpose of illustration, the decrease in FPG in millimole per liter (mmol/l) will be used as endpoint for
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Figure 1. FPG decrease of the experimental drug dose levels and active control at the end of the study displayed
as mean± assumed standard error (SE) reported in [21].
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our motivating example. In the study, the standard deviations (SD) of the FPG values are only presented
at the beginning and at the end of the study. For the decrease in FPG, no SD was available from the pub-
lication, and therefore, we set the SD to 1.8 mmol/l for all dose levels as well for the active control. The
study results with assumed standard error are displayed in Figure 1. These were used to motivate the
simulation scenarios.

This paper is organized as follows. In Section 2.1, notation and statistical model are introduced. In
Sections 2.2 and 2.3, the robust estimation function of the target dose and the corresponding bootstrap
CI are derived, respectively. In Section 3, the properties of the cubic spline approach are investigated.
More precisely, the estimation bias, the coverage probability of the CI as well as the median CI length are
assessed in extensive simulations. Furthermore, the potential benefit of a smoothed spline is investigated.
In Section 4, methods of deriving a bias-based optimal design for the use of cubic spline interpolation
are presented. Finally, we close with a brief discussion and some recommendations in Section 5. All
technical proofs can be found in Appendix A.

2. Spline-based estimation of the target dose

2.1. Notation and statistical model

In the following, bold letters such as 𝜶 or a define a vector, and bold capital letters such as 𝚺 or A a matrix,
if not defined otherwise. Further denotes A′ the transpose of A and A−1 the inverse matrix. Especially,
In defines the identity matrix of dimension n, and 1n is the vector containing n times the element 1. The

symbol ∼ defines ‘distributed as’ and
!
= defines ‘should be equal’.

For k groups and the dose levels d1 < d2 < … < dk, the random variable of the j-th person in the
i-th dose level can be written as Yij = f𝜽

(
di

)
+ 𝜖ij, with dose–response function f𝜽(d) and normally

distributed error terms 𝜖ij ∼  (
0, 𝜎2

i

)
for i = 1,… , k, j = 1,… , ni. The random variables of the

active control (ac) are given by Yac,j = 𝜇+ 𝜖ac,j, with expected value 𝜇 and error terms 𝜖ac,j ∼  (
0, 𝜎2

ac

)
for person j = 1,… , nac. Let nd =

∑k
i=1 ni be the sample size of all dose levels and N = nd + nac the

total sample size. Further describes Yd =
(
Y11,… , Yk,nk

)′
the random vector of the k dose levels, Yac =(

Yac,1,… , Yac,nac

)′
the vector of the active control, and Y =

(
Y′

d, Y′
ac

)′
the vector of all random variables.

The response function f𝜽(d) as well as the first, second and fourth derivatives f ′
𝜽
, f ′′

𝜽
and f (4)

𝜽
should exist

and be continuous on the investigated dose range. No other assumptions will be made regarding the shape
of f𝜽(d). To determine the target dose d∗, the smallest dose that solves the equation f𝜽 (d∗) = 𝜇 must
be found.

In general, the dose–response curve as well as the expected value of the active control 𝜇 are unknown
and must be estimated from the data. In the next section, a method to construct a robust estimating pro-
cedure for the target dose without any additional assumptions on the dose–response function will be
presented. Therefore, the term robust will be used if an estimator is robust against the different possi-
ble shapes of the function f𝜽(d) and does not depend on additional assumptions or information on the
unknown dose–response function.

2.2. Spline-based point estimator of the target dose

Two components are needed to construct an estimator of the target dose. The first is an unbiased estimator
of the response of the active control, which can be derived by using standard maximum likelihood (ML)
theory (Pawitan [22]) and can be written as the mean of the vector Yac, that is,

𝜇 = Yac. =
1

nac

nac∑
j=1

Yac,j ∼ 
(
𝜇,

𝜎2
ac

nac

)
.

The more complex second part is to retrieve useful information regarding the unknown dose–response
function between the investigated dose levels. Therefore, a smooth and continuous interpolation function
without additional model assumptions is required. To construct a function with these attributes, a natural
cubic spline interpolation based on the dose levels d1 < d2 < … < dk as knots and the mean values

of the random variables at the k dose levels Yi. = f̂𝜽
(
di

)
, i = 1,… , k as estimators of the response

will be used.
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The natural cubic spline function can be defined as

s (d) =
k+2∑
i=1

ciB3,i (d)

with iteratively derived base polynomials

B0,i (d) =

{
1, d ∈ [di, di+1)
0, else

and

Bq,i (d) =
d − di

di+q − di
Bq−1,i (d) +

di+q+1 − d

di+q+1 − di+1
Bq−1,i+1 (d) .

To derive the k + 2 base polynomials Bq,i, for q = 3, a knot vector of k + 6 data points is needed and can
be defined by using multiples of the k dose levels or by using the mean difference between all dose levels
h = 1

k−1

∑k−1
i=1 (di+1 − di). For the second approach, the knot vector dc can be defined as

dc =
(
d−q−1,… , d0, d1,… , dk, dk+1,… , dk+q

)′
with di = d1 + (i − 1)h, i = −q − 1,… , 0 as well as dj = dk + jh, j = 1,… , q.

The natural cubic spline is generated by a sum of locally defined base polynomials (the B-spline
basis) (de Boor [16]) and connects each adjacent pair of dose levels di, di+1, i = 1,… , k − 1 with a
cubic polynomial and has continuous first and second derivatives that guaranties a smooth curve shape.
Further are the k conditions s

(
di

)
= Yi. for i = 1,… , k as well as the two natural spline conditions

s′′
(
d1

)
= s′′

(
dk

)
= 0 that are used to solve the unique linear system of k + 2 equations to estimate the

unknown parameters ci. This kind of spline interpolation is implemented in standard statistic software
but can also be computed directly. When the parameters are derived, the point estimator of the target dose
is derived numerically by solving the equation

d̂∗ = min
d∈[d1, dk]

{̂s (d) = Yac.}.

This is a point estimator of the target dose, which can be derived without any assumption on the shape
of the dose–response function (except the assumptions made in Section 2.1 which justify the use of the
cubic spline).

2.3. Spline-based bootstrapped confidence interval for the target dose

In the previous section, a spline-based estimator of the target dose was presented. In the following section,
the focus will lie on the construction of a CI for the target dose estimator. As described in Section 2.1, no
assumptions were made regarding the shape of the dose–response curve, and therefore, the distribution
of the target dose estimator is unknown. To solve this problem, a bootstrap approach as well as the
assumptions on the error terms in Section 2.1 will be used. Even if the dose–response function is unknown,
the mean values Yi. are unbiased estimators of f𝜽

(
di

)
i = 1,… , k, and the distributions of the mean

values are known to be

Yi. = f𝜃
(
di

)
+ 𝜖i. ∼ 

(
f𝜃
(
di

)
,
𝜎2

i

ni

)
for i = 1,… , k

and

Yac. = Yk+1 = 𝜇 + 𝜖ac. ∼ 
(
𝜇,

𝜎2
ac

nac

)
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with the active control (ac) labeled as the k + 1-th dose included in the study with nk+1 = nac and
𝜎k+1 = 𝜎ac. The variances of the error terms can be estimated by

𝜎2
i = 1(

ni − 1
) ⋅

(
ni∑

j=1

(
Yij − Yi.

)2
)
, i = 1,… , k + 1.

Under these conditions, a bootstrap can be used to construct a CI. The residuals of the dose means will
be bootstrapped using the variance estimator 𝜎2

i , and a new set of dose means Yi.
b, i = 1,… , k + 1 can

be generated by (see, e.g., [17])

Yi.
b = Yi. + Zb

i , Zb
i ∼ 

⎛⎜⎜⎝0,
𝜎2

i

ni

⎞⎟⎟⎠ , i = 1,… , k + 1, b = 1,… , nboot

with bootstrapped residuals Zb
i and residual variance 𝜎2

i ∕ni. As a second step, the interpolation method

presented in Section 2.2 will be used to compute target dose estimator d̂∗b
, b = 1,… , nboot based on the

bootstrapped mean values. All estimators of the target dose are saved in the vector d̂∗b
, whose elements

can then be ordered by size. In the last step, the 𝛼∕2 and (1 − 𝛼∕2) quantiles of d̂∗b
are determined in

order to construct the bootstrap CI. Then the CI based on the bootstrapped mean values and the cubic
spline interpolation can be written as

CIboot =
[

d̂∗b⌊nboot⋅
𝛼

2⌋, d̂∗b⌈
nboot⋅

(
1− 𝛼

2

)⌉] .
3. Simulation studies

In this section, the properties of the presented methods from Section 2 will be compared with stan-
dard parametric regression as well as nonparametric methods and be evaluated in extensive simulation
studies motivated by the study presented in Section 1. Therefore, we consider a five-arm dose-
finding study (k = 4) with placebo (d1 = 0) as minimum dose and d4 = 1.8 as maximum dose(

d =
(
d1,… , d4

)′ = (0, 0.6, 1.2, 1.8)′
)

. Further, different expected values of the active control are
included (𝜇 = 0.8, 1.3) to enable the investigation of various target doses d∗. The samples sizes per dose
will be set to ni = n, i = 1,… , k and the sample size of the active control to nac = r ⋅ n with r ∈ R

+

(r = 1). For all simulation scenarios, the number of replications is nsim = 10, 000, and the number of
bootstrap samples per simulation run is nboot = 5000, if not stated otherwise. Three different classes of
dose–response functions are used in the simulation studies, the linear model f𝜽(d) = 𝜃0 + 𝜃1d, the three
parameter Emax model, and the four parameter logistic model (see Table I), which is sometimes also
referred to as sigmoid Emax model [23]. In the following, the term logistic model will be used to describe
this response function.

Table I. Simulation scenarios for linear, Emax, and logistic
response functions with 𝜃0 = −0.4, 𝜎 = 1.8, and sample sizes
n = 20, 25,… , 40, 50,… , 100 per group.

Dose–response function 𝜇 𝜃1 𝜃2 𝜃3 d∗

Linear 0.8 1.25 − − 0.96
1.3 1.25 − − 1.36

Emax 0.8 2.675 0.4523 − 0.368
1.3 2.675 0.4523 − 0.789

Logistic 0.8 2.675 0.9 3 0.840
1.3 2.675 0.9 3 1.083
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The Emax dose–response function can be described as

f𝜽 (d) = 𝜃0 +
𝜃1d(

d + 𝜃2

)
with intercept 𝜃0, slope 𝜃1, and the dose, which leads to an effect of 𝜃1∕2, the ED50 𝜃2. The logistic
response function can be written as

f𝜽 (d) = 𝜃0 +
𝜃1(

1 +
(
𝜃2∕d

)𝜃3
)

with intercept 𝜃0, slope 𝜃1, the ED50 𝜃2, and the sigmoid shape parameter 𝜃3. For d = 0, the response
function is defined as f𝜽 (0) = 𝜃0, and the Emax model is a special case with 𝜃3 = 1.

Two parametric nonlinear regressions (A, B) and a linear spline approach (C) presented by Dilleen
et al. [15] are studied to compare the results of the cubic splines approach in the different dose–response
scenarios. For both parametric regressions, the target dose estimator is derived by solving the equation
f
𝜽
(d∗) = Yac., and the normal approximation by the Δ-method (Cramér’s theorem, Ferguson [18]) is

applied to derive a CI for the target dose. (A) The first regression fits an Emax function and uses ML
theory for estimating the response function f

𝜽
(d) and the target dose. (B) The second regression fits a

logistic function and computes the target dose estimator as described for the first regression. To avoid
fitting problems that can occur if a more flexible logistic regression model is fitted onto an Emax dose–
response function, a three-step fitting procedure is used as described in Kirby et al. [24] and Jones et al.
[25]. If the logistic model cannot be fitted, an Emax model is fitted, and if even this was not possible, a
linear model is used. (C) Furthermore, a flexible method based on linear spline interpolation presented
by Dilleen et al. [15] was studied, which uses linear spline interpolation between the mean values of the
dose levels for estimating the target dose. Dilleen et al. [15] assumed monotone dose–response functions
and used isotonic regression to guarantee the monotonicity before nonparametric bootstrap methods were
used to generate the CIs. This assumption of monotonicity is not made here, because the target dose was
defined as the smallest dose that leads to the same efficacy as the active control and therefore is unique
if it exists. To facilitate comparison of this approach versus the cubic spline approach of Section 2.2, the
bootstrap method described in Section 2.3 is used instead of a nonparametric bootstrap approach, which
was proposed by Dilleen et al. [15], to construct a CI for the linear spline approach. The three methods
(A, B, and C) as well as the cubic splines of Section 2.2 will be used in every simulation scenario, and
the results will be presented in the next section.

3.1. Bias of the target dose estimator

In this section, the bias of the target dose estimators of the different methods will be investigated. The
bias is defined as E

(
d̂∗ − d∗

)
where d̂∗ is an estimator of d∗. The ML estimators for the parametric

regressions cannot be expressed in closed form and have to be calculated numerically. This problem
is inherited by the bias in these cases, and therefore, the bias can be approximated using second-order
Taylor approximations (see, for example, [26, 27]). Further, the bias of the ML-estimators in the case of
normal error terms for N → ∞ goes to zero. For the linear and the cubic spline, the bias is independent
of the sample size, especially the bias does not decline to zero for N → ∞. Therefore, we will focus on
the investigation of the bias of the spline approaches. For the linear and the cubic spline interpolation,
the bias cannot be given analytically but can be calculated numerically. The interpolations use the mean
values of the different dose levels and the active control with

E
(

Yi.
)
= f𝜽

(
di

)
for i = 1,… , k, and E

(
Yac.

)
= 𝜇

to derive the target dose estimator. The mean values are unbiased estimators of f𝜽(di), i = 1,… , k, and
therefore, the expected value of the spline interpolation E(̂s(d)) can be derived by using the values of the
expected response function f𝜽(di), i = 1… , k in the interpolation

E
(

d̂∗
)
= min

d∈[d1, dk]

{
E
(̂
s(d)

)
= 𝜇

}
= d∗

s .
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Figure 2. Linear and cubic spline interpolation of the Emax model fitted to the means reported in [21] and the
bias of d̂∗ for the linear and cubic splines.

Hence, the bias is defined as

Bias = E
(

d̂∗ − d∗
)
= d∗

s − d∗.

The bias for the interpolations can be derived for every expected value 𝜇 of the active control to inves-
tigate the behavior of the bias over the dose range. The results of the numerically derived bias of the
linear and the cubic spline as well as the corresponding spline interpolations for the Emax model are
shown in Figure 2. It can be seen that the bias for the used active control responses (𝜇 = 0.8, 1.3) is
0.066 and −0.056 for the cubic spline and 0.104 and 0.063 for the linear spline, respectively. The max-
imum absolute bias over all reasonable 𝜇 ∈ [f𝜽(0), f𝜽(1.8)] is 0.087 for the cubic and 0.125 for the
linear spline.

3.2. Coverage probability

The coverage probability of the 95% CI of d∗ using the different methods will be investigated through sim-
ulations in this section. The simulation specifications presented earlier as well as the simulation scenarios
from Table I will be used.

To determine the performance of the different methods for the nominal coverage probability of 95%,
the dotted lines in Figures 3 and 5 show the 99% interval of the simulation error and were derived as
0.95 ± u99.5

√
0.95 ⋅ 0.05∕

√
nsim. This is roughly ±0.005, which has been considered as a practical irrel-

evant deviation from the nominal level ([28]). Simulated coverage probabilities above this interval are
considered as conservative and values below as liberal.

From Figure 3, it can be seen that for 𝜇 = 1.3, the cubic spline approach as well as the linear spline
perform well for all sample sizes considered in the linear, the Emax, and the logistic response scenarios.
Furthermore, it can be seen that the parametric Emax regression is working quite well for the linear
and the Emax response function over all considered sample sizes, but in the cases of a logistic response
function, it is not able to fit the underlying function and gets extremely liberal down to 88% for large
sample sizes. The logistic regression is slightly liberal for all simulation scenarios with a linear or an Emax
response function and performs well if the underlying response function is logistic. For an active control
of 𝜇 = 0.8, all four methods are working acceptably for the linear and the logistic response function, but
if an Emax response function was simulated, no method is able to hold the 95% coverage level. The Emax
regression is liberal for small sample sizes and is getting better with increasing n, the linear spline and
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Figure 3. Coverage probability of the cubic spline, the linear spline, the Emax, and logistic regression for different
𝜇 and various sample sizes n per group for a linear, an Emax and a logistic response function. The dotted lines
indicate the simulation error with 99% probability. For all simulation scenarios, the number of replications is

nsim = 10, 000 and the number of bootstrap simulations per simulation run is nboot = 5000.

the logistic regression are getting extremely liberal and the effect is getting worse for large sample sizes.
The same trend can be seen for the cubic spline but with a much smaller loss in coverage probability.
For the spline approaches, this can be explained by the substantial bias in this scenario (see Figure 2)
and the low number of probably unfavorable chosen dose levels. As described in Section 3, a three-step
fitting procedure was used if the logistic model could not be fitted. In the investigated Emax scenarios,
30–38% of the logistic models could not be fitted over all sample sizes. In the Supporting Information,
dose-finding studies with k = 5, 6, and 8 dose levels have been investigated for the simulation scenarios
described in Table I. Overall, the performance of the spline approaches improved with increasing number
dose levels, whereas the parametric regression approaches do not improve with increasing number of
dose levels and lead to liberal coverage probabilities, especially for small sample sizes.

In addition to the coverage probability, the median CI length has been investigated in the simulations
studies. Under the considered scenarios, half open CIs can occur for the linear and the cubic spline
interpolation because the spline approaches presented here are not designed to extrapolate beyond the
dose range. These situations appear if, for example, the target dose estimator is close to the limits of the
dose range and the sample sizes are small. The parametric regressions did not have this disadvantage,
because they are able to extrapolate beyond the dose range. In the scenarios without half open CIs, all
methods perform very similar for all considered response functions (results not shown).

3.3. The cubic spline with penalty term and cross-validation

The presented spline-based estimation of the target dose and the combination with the bootstrapped CI
can be used with every kind of fitting approach as long as no other assumptions are needed. Therefore, the
potential benefit of a more complex smoothing cubic penalty spline as proposed for dose-finding studies
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in [14] is investigated in the following. Instead of interpolating the mean responses at the dose levels, a
cubic spline in combination with a penalty term is used and the following equation has to be optimized

k∑
i=1

(
Yi. − s3

(
di

))2
+ 𝛼pen ∫

dk

d1

(
s′′3 (t)

)2
dt,

where 𝛼pen is the so-called smoothing parameter and s′′3 (.) the second derivative of the cubic spline func-
tion. The 𝛼pen has to be prespecified or can, for example, be derived via cross-validation, which was used
in [14]. To compare this more complex spline approach with the presented cubic spline interpolation, a
small simulation study is conducted, which uses the presented simulation scenarios of the Emax response
function in Table I for k = 4, 8 dose levels and two different sample sizes n = 25, 50 per group with
nsim = 2000 and nboot = 1000. The designs with k = 8 dose levels were included in the simulation study to
address the potential advantage of the penalty spline, which is the smoothing of noisy data. Additionally,
to the cubic spline interpolation and the selection of the penalty term by cross-validation, two prespec-
ified penalty terms for medium and high penalty (in SAS 9.3 log10(k ⋅ 𝛼pen) = −4, −2) are included in
the simulations. To derive the cubic penalty spline, the standard procedure TPSPLINE in SAS 9.3 was
applied, which is able to use predefined 𝛼pen as well as to derive 𝛼pen by cross-validation. The results are
shown in Table II. It can be seen that there is no substantial benefit of the penalty spline over the cubic
interpolation in the investigated scenarios. Further, it can be seen that choosing the penalty term 𝛼pen by
cross-validation leads to a loss in coverage probability in the case of k = 4 dose levels, which can be
explained by the low number of dose levels. In these cases, it is more useful to predefine the penalty term
or use the presented spline interpolation. For designs with k = 8 dose levels, the spline interpolation as
well as penalty splines with selected penalty terms and with cross-validation perform very well. In terms
of target dose estimation and coverage probability, no real benefit of the penalty spline over the spline
interpolation was found. Additionally, in designs with a low number of dose levels, the performance of
the penalty spline is fairly poor in comparison with the spline interpolation approach. This was one of the
reasons to use the simpler and more stable cubic spline interpolation. If the interest of the study also lies
on the identification of the dose–response shape, the penalty spline can compute much smoother curves
especially for higher numbers of dose levels.

4. Designs for the spline-based approach: minimizing the bias of the target
dose estimator

Now, we investigate the design of a k dose level dose-finding study with active control. The minimum
and the maximum dose levels (d1, dk) are derived from the information by tolerability phase I studies
or determined in some other way by the clinical trial team. Also, the ratio r between dose sample sizes
ni = n, for i = 1,… , k per group and active control sample size nac = r ⋅ n is prespecified. Even if the
spline approaches are very flexible, some information or assumptions about the underlying dose–response
function are needed in the planning phase. So the optimal designs are depending on the class of the dose–
response function (e.g., linear, Emax or logistic model) and will be derived in three different ways as
presented in the succeeding text. The aim of all procedures is to find a design, which is optimal for an
unknown response of the active control so that the absolute bias of the spline procedures is small overall.

4.1. Minimum maximum global bias

Using the Taylor series approximation it was shown in Hall [29], Hall and Meyer [30] and de Boor [16]
that the spline interpolations have the following global upper error bounds. For the linear spline s1, the
upper error bound is given by

‖‖f𝜽 − s1
‖‖∞ ⩽ Cs1

‖‖f ′′
𝜽
‖‖∞ h2

max = Cs1
⋅ max

d∈[d1, dk]
|f ′′
𝜽
| ⋅ h2

max ⩽
1
8
‖‖f ′′

𝜽
‖‖∞ h2

max

and for the cubic spline s3 the upper error bound is

‖‖f𝜽 − s3
‖‖∞ ⩽ Cs3

‖‖‖f (4)
𝜽

‖‖‖∞ h4
max = Cs3

⋅ max
d∈[d1, dk]

|f (4)
𝜽

| ⋅ h4
max ⩽

5
384

‖‖‖f (4)
𝜽

‖‖‖∞ h4
max
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Table II. The mean estimated target dose, coverage probability, and median confidence interval
length for different numbers of dose levels (k), different expected responses of the active control
(𝜇), and different sample sizes (n) per group are reported for the cubic spline interpolation (penalty
= no) and the smoothing spline with various penalty terms (penalty = cross-validation (CV), High,
Medium) in the Emax response scenario (Table I) with nsim = 2000 and nboot = 1000.

k 𝜇 d∗ n Penalty Mean d̂∗ Coverage probability Median interval length

CV 0.5814 0.8875 1.2090

25
High 0.5301 0.9285 1.1870
Medium 0.5089 0.9305 1.1775

0.8 0.3680
No 0.4931 0.9350 1.1680

CV 0.5267 0.8750 0.8510

50
High 0.5023 0.8825 0.7360
Medium 0.4651 0.9175 0.6975
No 0.4578 0.9260 0.7000

4 CV 0.9722 0.9490 1.3590

25
High 0.9302 0.9425 1.4040
Medium 0.8814 0.9465 1.4365

1.3 0.7886
No 0.8753 0.9410 1.4350

CV 0.9197 0.9505 1.2100

50
High 0.9032 0.9570 1.2525
Medium 0.8530 0.9465 1.3220
No 0.8577 0.9435 1.3150

CV 0.4668 0.9560 1.1405

25
High 0.4723 0.9295 1.0960
Medium 0.4205 0.9485 0.9170

0.8 0.3680
No 0.4278 0.9555 0.9040

CV 0.4388 0.9520 0.7900

50
High 0.4546 0.9335 0.7030
Medium 0.3962 0.9560 0.7070
No 0.4030 0.9455 0.6960

8 CV 0.9134 0.9525 1.4495

25
High 0.9074 0.9490 1.4090
Medium 0.7960 0.9385 1.4010

1.3 0.7886
No 0.7734 0.9420 1.3860

CV 0.8503 0.9705 1.2790

50
High 0.8751 0.9435 1.2695
Medium 0.8069 0.9545 1.2325
No 0.7976 0.9455 1.2190

with constants Cs1
, Cs3

, and hmax = max
i
(di+1 − di) as well as ||g||∞ = max

x∈[a, b]
|g(x)|. If we want to mini-

mize these upper bounds, hmax must be minimized and this can be achieved by choosing the dose levels
equidistant between d1 and dk so that hmax = di+1 − di for i = 1,… , k − 1. With this approach, we mini-
mize the general upper bounds for the spline. However, this approach is mainly used to derive asymptotic
results regarding the number of dose levels going to infinity (k → ∞) (see de Boor [16]). This is not
the goal of the designs we have in mind because we consider asymptotic properties with n → ∞ or
N → ∞ and a fixed number of dose levels. Because this optimization does not depend on the underlying
dose–response function, it can be done with no extra information.

4.2. Equally spaced responses

In this approach, the dose levels will be selected in a way that the dose–response difference between two
adjacent dose levels is the same for all dose levels
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|f𝜽 (di+1

)
− f𝜽

(
di

) | !
= hequ for i = 1,… , k − 1.

With this condition, more information is available on the parts of the response function with larger
changes in the response. For the linear, Emax, and logistic model, it can be shown that this approach is
independent of the intercept 𝜃0 and the slope 𝜃1 (see Appendix A). This means that for the linear model,
an equidistant allocation of the dose levels on the dose range would be optimal and that no assumptions
have to be made to generate the optimal design. This result leads also to the same optimal design for the
linear model as the global bias approach in the previous section. Furthermore, for the Emax model, only
the ED50

(
𝜃2

)
must be specified to derive the optimal design for the linear as well as the cubic spline. In

the logistic model, additionally to the ED50, the degree of sigmoidal shape
(
𝜃3

)
must be quantified.

4.3. Equally bound bias

This approach uses the global upper error bound of the bias in Section 4.1 on every interval between two
adjacent dose levels simultaneously for all dose levels. Therefore, we define the optimization criteria for
the linear spline s1 as

‖‖f𝜽 − s1
‖‖∞ |d∈[di, di+1] ⩽ ‖‖f ′′

𝜽
‖‖∞ |d∈[di, di+1]

(
di+1 − di

)2 !
= h1 for i = 1,… , k − 1

and for the cubic spline s3 as

‖‖f𝜽 − s3
‖‖∞ |d∈[di, di+1] ⩽

‖‖‖f (4)
𝜽

‖‖‖∞ |d∈[di, di+1]
(
di+1 − di

)4 !
= h3 for i = 1,… , k − 1.

Using this approach, the bias is equally bound on every interval between two adjacent dose levels ensur-
ing a good interpolation over the investigated dose range. As in the approaches presented earlier, it can
be shown that this optimization procedure does not depend on the intercept 𝜃0 and the slope 𝜃1 for linear,
Emax, and logistic models (see Appendix A). The construction of the optimal designs can be done in the
same way as described in Section 4.2. It is important to note that this method as well as the approach
described in the previous section need numerical optimization to find the corresponding optimal design.
This can be done in any standard statistical software (e.g., SAS, R) using optimization routines for solving
root-finding problems. To use this kind of standard routines for the presented methods, all k−1 conditions
can be arranged in a vector and must be multiplied by the projection matrix Pk−1 = Ik−1 −

1
(k−1)

1k−11′k−1.
Then the optimization is a root-finding problem with the same result, and the standard routines can
be applied.

4.3.1. The minimum–maximum global absolute bias. To determine for the desired spline interpolation,
which of the methods (equidistant on the dose scale (m = 1), equidistant on the response scale (m = 2),
equally bound bias (m = 3)) is superior to the others, it is necessary to define a criterion that can assess
the differences between the methods. Such a criterion is the minimum–maximum global absolute bias of
the spline interpolation, which is given by

Biasopt = min
m

max
𝜇∈[f𝜽(d1)+cl, f𝜽(dk)−cu]

||Biasm
||

with Biasm the bias of method m.
Through this criterion, the method m with the smallest maximum absolute bias over all reasonable

expected values of the active control 𝜇
(
cl, cu ∈ [0, (f𝜽(dk) − f𝜽(d1))∕2]

)
is chosen as the optimal design.

Following this line, a design can be found that is optimal for all reasonable 𝜇 and has the smallest bias
of the presented methods. If the study is placebo controlled (d1 = 0), then the already established active
comparator should have a higher response than placebo, and cl > 0 would be a reasonable choice. In our
example, cl and cu are set to 0.

In Figure 4, the bias-based optimal design for the cubic spline is presented for the Emax model used
in the simulation studies, with 𝜃2 = 0.4523 to enable comparison of the bias in the original design (see
Figure 2). It can be seen that in the case of four dose levels, the optimal design for the cubic spline leads
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Figure 5. Cubic spline optimal: coverage probability of the cubic spline, the linear spline, the Emax, and logistic
Δ-method for different 𝜇 and various sample sizes n per group for the Emax response function. The dotted lines
indicate the simulation error with 99% probability. For all simulation scenarios, the number of replications is

nsim = 10, 000 and the number of bootstrap simulations per simulation run is nboot = 5000.

to a larger bias for certain expected values in the linear spline interpolation than in the equidistant case.
In the simulation scenarios 𝜇 = 0.8, 1.3, the bias in the optimal design is −0.017 and 0.020 for the cubic
spline and 0.037 and 0.223 for the linear spline, respectively. The maximal absolute bias is then 0.023
for the cubic spline and 0.267 for the linear spline. In such situations, we would not recommend the use
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of linear splines in optimal designs which were planned for the use of cubic splines. If more than four
dose levels are investigated, the bias decreases further for both methods, and the optimal designs for the
linear and the cubic spline become more similar.

4.3.2. Bias minimal design: simulation study. To investigate the influence of the reduced bias approaches
on the coverage probability, new simulations were performed in the bias minimal Emax designs for the
simulation scenarios of the Emax response function with 𝜃2 = 0.4523 (Table I). The Emax model with
the new design dEmax = (d1, d2,… , d4)′ = (0, 0.1646, 0.516, 1.8)′ was simulated with nsim = 10, 000
and nboot = 5000 replications for the sample sizes n = 20, 25, 30, 40,… , 100 per group. The results are
presented in Figure 5.

It can be seen that for 𝜇 = 0.8, the coverage probability of the cubic spline approach stays in com-
parison with Figure 3 within the 99% interval of the simulation error for all sample sizes. For 𝜇 = 1.3,
the coverage probability becomes a little bit conservative. The bias minimizing design leads not only to
a small bias but also to a much better coverage probability in the investigated scenarios. However, this
is only the case for the cubic spline. The performance of the linear spline does not improve because the
bias of the linear spline is still very large in the optimal design for a cubic spline. To be fair, the optimal
design for the linear spline is calculated as well and leads in this example to the equidistant allocation,
which was already used in the example and the simulation study. Therefore, no extra simulation study is
executed and for results, it is referred to Section 3. It is also interesting to see that both parametric mod-
els using the Δ-method are getting liberal in the simulation scenarios and are therefore also sensitive to
dose selection.

5. Conclusions

Extending the previous work by Dilleen et al. [15], cubic spline interpolation was proposed for the pur-
pose of estimating the target dose and constructing bootstrapped CIs. To investigate the performance of
this approach, simulation studies were performed. We could show that the cubic spline approach has a
reasonable coverage probability for the linear, the Emax, and the logistic response function in most of
the scenarios considered. For the more biased case of an Emax response with expectation of the active
control 𝜇 = 0.8, we saw that the cubic spline is slightly liberal and this tendency increases with larger
sample sizes n per group. The performance of the linear spline approach is quite similar to the cubic
spline interpolation, but in the described Emax scenarios with 𝜇 = 0.8, the coverage probability becomes
extremely liberal.

A key factor in explaining these problems is the large bias of the linear and the cubic spline, which
becomes increasingly dominant with decreasing standard errors for larger sample sizes n per group.
Additionally, the resulting CI length for 𝜇 = 0.8 is much shorter than for the case of 𝜇 = 1.3. Even
if the absolute bias is comparable in the two scenarios, the coverage probability is more sensitive to
the underlying bias if the interval length is shorter. The difference of the interval length can be seen in
Table II. The cubic spline interpolation is represented by (penalty = no), for n = 50 and k = 4, the
median interval length is 0.7 for 𝜇 = 0.8 and 1.31 for 𝜇 = 0.8, which is nearly the entire dose range.
The Emax regression works fine if a linear or an Emax response function was simulated and becomes
very liberal if the underlying function for the simulation was a logistic function. The coverage probability
of the logistic regression is liberal for nearly all simulation scenarios, except if the simulated response
function was a logistic function. Furthermore, in 30–38% of the simulation runs, it was not possible to
fit a logistic regression when an Emax response function was simulated. Instead of using the three-step
fitting procedure, parameter bounds could be used in the regression procedures to avoid the numerical
problems (see, for example, [31]). Additionally to the designs with k = 4 dose levels, designs with
k = 5, 6, and 8 dose levels were simulated, which are reported in the Supporting Information. Because of
the construction of the spline approaches, an extrapolation beyond the dose range was not possible and
one-sided intervals occurred. In these cases, the median length was infinity, and therefore, a comparison
was not sensible. On the other hand, if the median length was finite for all approaches, no large differences
could be seen between the four approaches. To justify the use of the cubic spline interpolation instead
of a cubic smoothing spline with cross-validation, a small simulation study was conducted. It could be
shown that the coverage probability of the smoothing spline is quite liberal if only four dose levels were
investigated. Overall, the cubic spline interpolation performed much better in the simulated scenarios.
Therefore, in the cases of small numbers of dose levels, the cubic spline interpolation was preferred.
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Different bias reducing procedures were described and combined to find an optimal design by the
criteria of the minimal maximum absolute bias on the desired active control (or response) range. The
planning of such studies is relatively simple because only very few parameters must be prespecified to
construct the optimal design. For instance, for an Emax response function, only the ED50 = 𝜃2 and for a
logistic function, only the ED50 = 𝜃2 and the sigmoidal shape parameter 𝜃3 must be prespecified. In the
simulation study for the optimal design (Section 4.3.2), the true 𝜃2 value of the presented Emax response
function was used to derive the new dose allocation. We could show that the bias reducing design leads to
a considerably better control of the coverage probability. On the other hand, the coverage probability of
parametric approaches is much too low especially for smaller and moderate sample sizes n = 20,… , 70
per group. The performances of the parametric methods depend heavily on the investigated dose levels
and could lead to extreme liberal results in the investigated scenarios. With an increased number of dose
levels, the splines become more stable and less dependent on the assumed parameters. We recommend
the use of the spline-based methods only in studies with at least four dose levels in situations where some
knowledge of the true parameters exists or five dose levels to achieve a reasonable performance. For
the calculation of the optimal spline design, some of the model parameters of the response function are
needed and usually unknown during the planning phase. Therefore, the extension of the optimal spline
design under model uncertainty would be very interesting. A Min–Max approach could be used to derive
the design not only for one fix dose response function but also for multiple parameter constellations. The
resulting dose allocation would minimize the maximum bias over all considered model variations. In
addition, the use of optimal designs for cubic splines for the planning of studies that should be evaluated
using parametric approaches such as the Δ-method would be of further interest, especially in the context
of comparing the spline-based optimal designs with the optimal designs used in parametric approaches,
which are based on other local optimality criteria (see, for example, Dette et al. [13, 32]).

Appendix A

A.1. Equally spaced responses

It can be shown that the optimization of the equally spaced response does not depend on the slope 𝜃1 or the
intercept 𝜃0 for the linear, the Emax, and the logistic response function. In the following, the conditions
will be calculated for the three functions.

A.1.1. The linear response function. If the dose–response function f𝜽(d) is a linear function, the conditions
simplify to

|f𝜽 (di+1

)
− f𝜽

(
di

) | = | (𝜃0 + 𝜃1di+1

)
−

(
𝜃0 + 𝜃1di

) | = |𝜃1||di+1 − di

!| = hequ for i = 1,… , k − 1.

Neither the intercept 𝜃0 nor the slope 𝜃1 has an influence on the optimal design, which means that the
optimal design for the linear function is the same as for the global error in Section 4.1 with di+1−di = hequ
for i = 1,… , k − 1. The dose levels would then be equidistant on the dose range.

A.1.2. The Emax response function. If the dose–response function f𝜽(d) is an Emax function, the
conditions can be written as

|f𝜽 (di+1

)
− f𝜽

(
di

) | = ||||||
(
𝜃0 + 𝜃1

di+1(
di+1 + 𝜃2

)) −

(
𝜃0 + 𝜃1

di(
di + 𝜃2

))||||||
= |𝜃1| ||||| di+1(

di+1 + 𝜃2

) −
di(

di + 𝜃2

)||||| !
= hequ for i = 1,… , k − 1.

It can be seen that the intercept 𝜃0 and the slope 𝜃1 have no influence on the optimal design. The
ED50 𝜃2 is the only parameter that has to be specified to construct an optimal design for the Emax
response function.
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A.1.3. The logistic response function. If the dose–response function f𝜽(d) is a logistic function, the
conditions can be written as

|f𝜽 (di+1

)
− f𝜽

(
di

) | = |||||||𝜃0 + 𝜃1
1(

1 +
(
𝜃2∕di+1

)𝜃3
) − 𝜃0 − 𝜃1

1(
1 +

(
𝜃2∕di

)𝜃3
)|||||||

= |𝜃1| |||||||
1(

1 +
(
𝜃2∕di+1

)𝜃3
) − 1(

1 +
(
𝜃2∕di

)𝜃3
)|||||||

!
= hequ for i = 1,… , k − 1.

Even if the function is more complicated, the optimization does not depend on the intercept 𝜃0 and the
slope 𝜃1. However, in addition to the ED50 in the Emax function, the sigmoidal shape parameter 𝜃3 must
be prespecified for deriving the optimal design in the logistic response function.

A.2. Equally bound bias

It can also be shown that the equally bound bias for the linear and the cubic spline does not depend on
the intercept 𝜃0 and the slope 𝜃1 for linear, Emax, and logistic response functions. The conditions will be
calculated for the three functions. As the parameters only influence the second or fourth derivative of the
dose–response function, the difference of the dose levels can be ignored.

A.2.1. Linear response function.The second and fourth derivatives (for the linear and the cubic spline) of
the linear response function f𝜽(d) = 𝜃0 + 𝜃1d can be derived as

𝜕2f𝜽
𝜕d2

= 0 and
𝜕4f𝜽
𝜕d4

= 0,

respectively. This means that the optimal design for linear function is not only independent of the slope
𝜃1 and the intercept 𝜃0 but also every possible design would be optimal with a bias of 0 for every active
control value 𝜇. This can be explained by the fact that the linear spine interpolates polynomials up to
degree 1 and the cubic spline up to degree 3 exactly ([16]).

A.2.2. Emax response function.The second and fourth derivatives (for the linear and the cubic spline) of
the Emax function f𝜽(d) = 𝜃0 + 𝜃1d∕(d + 𝜃2) can be derived as

𝜕2f𝜽
𝜕d2

= −2𝜃1

𝜃2(
d + 𝜃2

)3
= c2

1(
d + 𝜃2

)3

and

𝜕4f𝜽
𝜕d4

= −24𝜃1

𝜃2(
d + 𝜃2

)5
= c4

1(
d + 𝜃2

)5
.

It can be seen that the second and fourth derivatives and so the optimal design for the linear and the
cubic spline only depend on the ED50 𝜃2. That means that the optimal design can be constructed with
assumptions on ED50 alone.

A.2.3. Logistic response function.The second and fourth derivatives (for the linear and the cubic spline)
of the logistic function f𝜽(d) = 𝜃0 + 𝜃1∕(1 + (𝜃2∕d)𝜃3) can be derived as

𝜕2f𝜽
𝜕d2

= 𝜃1𝜃3

⎡⎢⎢⎢⎣
(2𝜃3)

(
𝜃2

d

)
2𝜃3((

1 +
(

𝜃2

d

)
𝜃3

)
3
)
⋅ d2

−
(𝜃3 + 1)

(
𝜃2

d

)
𝜃3((

1 +
(

𝜃2

d

)
𝜃3

)
2
)
⋅ d2
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and

𝜕4f𝜽
𝜕d4

=
𝜃1𝜃3

d4
⋅
[
(𝜃2∕d)𝜃3

(
−𝜃3

3 − 6𝜃2
3 − 11𝜃3 − 6

)
∕((𝜃2∕d)𝜃3 + 1)2

+ (𝜃2∕d)2𝜃3
(
14𝜃3

3 + 36𝜃2
3 + 22𝜃3

)
∕((𝜃2∕d)𝜃3 + 1)3

+ (𝜃2∕d)3𝜃3
(
−36𝜃3

3 − 66𝜃2
3

)
∕((𝜃2∕d)𝜃3 + 1)4

+ (𝜃2∕d)4𝜃3
(
25𝜃3

3

)
∕((𝜃2∕d)𝜃3 + 1)5

]
.

Even if the derivatives are getting much more complex than for Emax function, it can still easily be seen
that the second and fourth derivatives do not depend on the slope 𝜃1 and the intercept 𝜃0. Therefore, the
ED50 as well as the sigmoidal shape parameter 𝜃3 must be defined to obtain an optimal design for the
linear or the cubic spline for the logistic response function.
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