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Galactolipids constitute the major lipid class in plants. In recent years oxygenated deriva-
tives of galactolipids have been detected. They are discussed as signal molecules during
leaf damage, since they accumulate in wounded leaves in high levels. Using different
analytical methods such as nuclear magnetic resonance, infra-red spectroscopy, and high
performance liquid chromatography/mass spectrometry (HPLC/MS) earlier reports focused
on the analysis of either oxidized or non-oxidized species and needed high levels of ana-
lytes. Here, we report on the analysis of the galactolipid subfraction of the Arabidopsis
leaf lipidome by an improved HPLC/MS2-based method that is fast, robust, and com-
paratively simple in its performance. Due to a combination of phase partitioning, solid
phase fractionation, liquid chromatography, and MS2 experiments this method has high
detection sensitivity and requires only low amounts of plant material. With this method
167 galactolipid species were detected in leaves of Arabidopsis thaliana. Out of these 79
being newly described species. From all species the head group and acyl side chains were
identified via MS2 experiments. Moreover, the structural identification was supported by
HPLC/time-of-flight (TOF)-MS and gas chromatography (GC)/MS analysis. The quantifica-
tion of different galactolipid species that accumulated 30 min after a mechanical wounding
in A. thaliana leaves showed that the oxidized acyl side chains in galactolipids are divided
into 65% cyclopentenones, 27% methyl-branched ketols, 3.8% hydroperoxides/straight-
chain ketols, 2.0% hydroxides, and 2.6% phytoprostanes. In comparison to the free
cyclopentenone derivatives, the esterified forms occur in a 149-fold excess supporting the
hypothesis that galactolipids might function as storage compounds for cyclopentenones.
Additional analysis of the ratio of non-oxidized to oxidized galactolipid species in leaves of
wounded plants was performed resulting in a ratio of 2.0 in case of monogalactosyl dia-
cylglycerol (MGD), 8.1 in digalactosyl diacylglycerol (DGD), and 0.6 in the acylated MGD.
This indicates that galactolipid oxidation is a major and rapid metabolic process that occurs
class specific.
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INTRODUCTION
Monogalactosyl diacylglycerol (MGD) as well as digalactosyl dia-
cylglycerol (DGD) are ubiquitous non-phosphorous lipid classes
in higher plants constituting about 80% of thylakoid membrane
lipids and about 60% of all leaf lipids (Douce and Joyard,

Abbreviations: AOS, allene oxide synthase; arb, arbitrary units; Col-0, Columbia-
0; CP, chiral phase; DAD, diode array detector; DGD, digalactosyl diacylglyc-
erol; DMOX, 4,4-dimethyloxazolines; dnOPDA, (7R,8Z,11S,13Z )-10-oxo-8,13-
dinor-phytodienoic acid; DP, declustering potential; EP, entrance potential; EI,
electron impact; ESI, electrospray ionization; GC, gas chromatography; HPHT,
hydro(pero)xy hexadecatrienoic acid; HPLC,high performance liquid chromatogra-
phy; H(P)OD, hydro(pero)xy octadecadienoic acid; H(P)OT, hydro(pero)xy octade-
catrienoic acid; JA, jasmonic acid; KHT, keto hexadecatrienoic acid; KOT, keto
octadecatrienoic acid; α-LeA, α-linolenic acid; LOX, lipoxygenase; MGD, mono-
galactosyl diacylglycerol; MS, mass spectrometry; OPDA, (9R,10Z,13S,15Z )-12-
oxo-10,15-phytodienoic acid; PPA1, phytoprostane A1; PPB1, phytoprostane B1;
QLIT, quadrupole-linear ion trap; RP, reversed phase; RT, retention time; SPE,
solid phase extraction; SQD, sulfoquinovosyl diacylglycerol; UPLC/TOF-MS, ultra
performance liquid chromatography/time-of-flight mass spectrometry.

1990; Dörmann and Benning, 2002). After the discovery of the
first oxidized galactolipid in 2001 (Stelmach et al., 2001), recent
studies have demonstrated that wounded leaves of Arabidopsis
thaliana accumulate high levels of oxygenated galactolipid deriv-
atives (Buseman et al., 2006). In Arabidopsis these oxidized galac-
tolipids may contain cyclopentenones, i.e., 12-oxo-phytodienoic
acid (OPDA) and/or dinor-12-oxo-phytodienoic acid (dnOPDA),
esterified either to the glycerol backbone of the lipid at one or at
two positions, respectively, and/or to the sugar moiety (Andersson
et al., 2006). They are collectively called Arabidopsides (Hisamatsu
et al., 2003, 2005). In case of MGD and DGD derivatives, OPDA
is either linked to glycerol at both the sn1 and sn2 position as
in Arabidopside B (Ara-B) and Arabidopside D (Ara-D), or is
attached at the sn1 position while dnOPDA at the sn2 position like
in Arabidopside A (Ara-A) and Arabidopside C (Ara-C; Hisamatsu
et al., 2003, 2005). In following studies further Arabidopsides were
identified containing hexadecatrienoic acid (16:3) linked at the
sn2 position and OPDA at the sn1 position (MGD-O; Stelmach
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et al., 2001) or octadecatrienoic acid (18:3) at the sn1 position and
dnOPDA at the sn2 position – the latter one termed Arabidop-
side F (Ara-F; Nakajyo et al., 2006). Besides these MGD and DGD
derivatives also acylated MGD species, like Arabidopside E (Ara-E;
Andersson et al., 2006) and Arabidopside G (Ara-G; Kourtchenko
et al., 2007) have been identified. Here an extra OPDA molecule
is esterified to the galactosyl moiety in addition to the one at the
sn1 and sn2 postion (Ara-G; note that in case of Ara-E, dnOPDA is
esterified at the sn2 position). Additionally, OPDA linked to mono-
galactosyl monoacylglycerol MGM was found in Ipomoea tricolor
(heavenly blue; Ohashi et al., 2005). Besides the above described
galactolipid species, one phospholipid, namely phosphatidylglyc-
erol (PG) has also been demonstrated to contain OPDA esterified
at the sn1 position and hexadecenoic acid (16:1) or hexadecanoic
acid (16:0) at sn2 position (Buseman et al., 2006).

Knowledge on the biological role of Arabidopsides is still scarce.
In several studies it has been suggested that they may act as sig-
nal molecules during leaf damage (Stelmach et al., 2001; Buseman
et al., 2006; Böttcher and Weiler, 2007). Along this line, it has
been demonstrated that different Arabidopsides accumulate dur-
ing hypersensitive response (Andersson et al., 2006; Kourtchenko
et al., 2007). In addition,Arabidopsides may (i) inhibit root growth
of cress (Hisamatsu et al., 2003), (ii) promote senescence in oat
leaves (Hisamatsu et al., 2006), or (iii) have direct antimicrobial
function (Kourtchenko et al., 2007). It has also been discussed
that Arabidopsides might act as storage compounds allowing a
faster and stronger formation of the well established signal mole-
cule jasmonic acid (JA) and its derivatives (Stelmach et al., 2001;
Andersson et al., 2006; Buseman et al., 2006; Kourtchenko et al.,
2007).

Several analytical strategies were pursued to elucidate the struc-
ture of oxidized galactolipids. In initial experiments galactolipid
extracts were treated with lipases in order to release OPDA from
lipid molecules allowing the analysis by gas chromatography/mass
spectrometry (GC/MS), high performance liquid chromatogra-
phy/MS (HPLC/MS), and nuclear magnetic resonance (NMR)
spectroscopy (Stelmach et al., 2001). In following studies a com-
bination of MS, infra-red (IR) as well as NMR techniques was
applied for the analysis of MGD derivatives like Ara-A, Ara-B
(Hisamatsu et al., 2003), and Ara-F (Nakajyo et al., 2006), or DGD
derivatives such as Ara-C and Ara-D (Hisamatsu et al., 2005).
MS and NMR were also used for the elucidation of two oxi-
dized acylated MGD derivatives, Ara-E (Andersson et al., 2006)
and Ara-G (Kourtchenko et al., 2007). The latter two metabolites
were demonstrated to accumulate preferentially during the hyper-
sensitive response. All these analyses were hampered by the high
amount of plant material needed for extraction and the expen-
diture of time necessary for the analytical analysis. Therefore,
Buseman et al. (2006) established an analytical method that based
on electrospray ionization (ESI)-tandem MS: it was used for detec-
tion and characterization of the already described MGD and DGD
derivatives as well as additional oxidized lipid molecules that are
distributed among MGD, DGD, and PG classes in wounded A.
thaliana leaves.

Besides to the analysis of oxylipin-containing galactolipids,
a number of different comprehensive studies have also been
carried out on the analysis and identification of non-oxidized

galactolipids. These species have been detected in leaves of A.
thaliana (Welti et al., 2002; Devaiah et al., 2006; Glauser et al.,
2008) and also in several plant species such as Ipomoea batatas
(Napolitano et al., 2007) and plant tissues like oat kernels (Moreau
et al., 2008). Most of these species were identified and analyzed
in parallel using low amounts of plant material either by means
of ESI-tandem MS-based methods (Welti et al., 2002; Devaiah
et al., 2006; Napolitano et al., 2007; Moreau et al., 2008) or
the ultra performance LC (UPLC)/time-of-flight (TOF)-MS tech-
nique (Glauser et al., 2008). According to those methods, different
numbers of non-oxidized galactolipid species have been identi-
fied – with the highest number of identified species reported by
Devaiah et al. (2006).

As to date no method was available to analyze a comprehensive
galactolipid spectrum that is needed for a functional analysis of
Arabidopsides, we aimed with our study to establish a sensitive
analytical method that could be used for the analysis of non-
oxidized as well as oxidized galactolipids in parallel. Using this
method we were able to identify 167 different species of various
galactolipid classes in leaves of A. thaliana and 79 of them being
newly described species. One hundred forty-six of these species
were quantified in A. thaliana leaves 30 min after a mechanical
wounding.

RESULTS
ESTABLISHMENT OF A HPLC/MS2-BASED METHOD FOR
IDENTIFICATION AND PROFILING OF GALACTOLIPIDS
In order to analyze the biosynthesis and the role of galactolipid-
bound oxylipins in plant cells, several MS-based strategies partially
combined with chromatographic separation have been developed
and performed during the last years (Andersson et al., 2006; Buse-
man et al., 2006; Böttcher and Weiler, 2007; Kourtchenko et al.,
2007). However, compared to the number of different poten-
tial galactolipid species the number of experimentally identified
ones was still considerably low. In order to gather a comprehen-
sive picture about the diversity of galactolipids we established a
HPLC/MS2-based method that was combined with a solid phase
extraction (SPE) step. Using this method we were able to iden-
tify and quantify non-oxidized species as well as the oxidized
derivatives of the galactolipid classes MGD, DGD (including their
acylated forms) as well as SQD.

EXTRACTION EFFICIENCY OF DIFFERENT MEDIA
To quantitatively isolate all galactolipids from the plant material,
different solvent systems were tested concerning their extrac-
tion efficiency: the extraction was performed either with chloro-
form/methanol or methyl tert -butyl ether as extraction solvents.
Extraction procedures were employed according to three methods
which were published by Bligh and Dyer (1959), Heinz and Tul-
loch (1969), Matyash et al. (2008). The total lipids were extracted
from Arabidopsis leaves which were harvested 30 min after wound-
ing. The galactolipids were purified by SPE, analyzed by using
HPLC/MS, and the amounts of 12 non-oxidized MGD species, 19
oxidized MGD species, 13 non-oxidized DGD species, 18 oxidized
DGD species, 6 acylated MGD species, and 18 oxidized acylated
MGD species were determined. As shown in Figure 1 the extrac-
tion according to Bligh and Dyer (1959) yielded 16.4 μmol g−1
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FIGURE 1 | Extraction efficiency of different media. Total lipids were
extracted from wounded leaves (30 min harvested after wounding) of A.
thaliana according to three extraction methods (Bligh and Dyer, 1959; Heinz
and Tulloch, 1969; Matyash et al., 2008). Galactolipids were then purified from

these extracts by using SPE and analyzed as well as quantified by HPLC/MS.
The amounts of the respective species from the various galactolipid classes
were summed. The mean values and SD of three parallel extractions are
shown.

f.w. whereas with the methods of Heinz and Tulloch (1969) and
Matyash et al. (2008) only 9.0 μmol g−1 f.w. could be detected.

OPTIMIZATION OF ANALYTIC HPLC/MS-PARAMETERS
In order to optimize the chromatographic separation of the dif-
ferent galactolipid species different gradient systems consisting
of either acetonitrile/water (70:30, v/v) and 2-propanol (binary
gradient system) or acetonitrile, water, and 2-propanol (ternary
gradient system) were tested. The highest resolution was achieved
by using the ternary gradient system (Table 1). In order to improve
the ionization efficiency of the galactolipids, 0.1% (v/v) of acetic
acid was added. In addition two C18 columns with different dimen-
sions have been tested: 250 mm × 2.1 mm, 5 μm particle size, and
50 mm × 2.1 mm, 1.8 μm particle size. The highest separation effi-
ciency was obtained with the latter one. To optimize quantification,
different amounts of plant material were measured. The most reli-
able and comprehensive peak detection was reached if 100 mg of
plant material was extracted (data not shown).

These optimized parameters led to a chromatographic sep-
aration as shown in Figure 2. For detection of the different
galactolipid species positive and negative ESI was used: all species
except SQD were detected with highest sensitivity with positive
ESI. In addition MS spectra were recorded in a mass range of 450–
1,500 amu (details of the respective MS conditions are given in
Table 2).

STRUCTURAL ELUCIDATION OF DIFFERENT GALACTOLIPID SPECIES
USING ION TRAP-MS
At first structure identification MS2 experiments were performed
with the ion trap system. Previous reports indicated that it is pos-
sible to identify the structure of any galactolipid due to a different
fragmentation pattern of its ammonium (Wang et al., 1999) and
sodium adduct, respectively (Welti et al., 2003; Devaiah et al., 2006;
Napolitano et al., 2007). The fragmentation of the ammonium ion
by collision-induced dissociation (CID) leads to a neutral loss of
the galactose moiety and an additional water loss whereas the
sodium adduct fragments by a neutral loss of the acyl side chains.
Moreover, the specific formation of these adducts can be observed
by applying different capillary temperatures of either 200 or 310˚C
(Table 2).

Table 1 |Ternary gradient system used for the RP-HPLC/MS2 analysis

of different galactolipid species.

Time

(min)

Solvent

Aa (%)

Solvent

Bb (%)

Solvent

Cc (%)

Flow rate

(μl min−1)

0 50 50 0 200

10 50 50 0 200

15 85 15 0 200

35 34 6 60 200

55 34 6 60 200

57 85 15 0 200

59 50 50 0 200

62 50 50 0 200

aSolvent A: acetonitrile/acetic acid (100:0.1, v/v).
bSolvent B: water/acetic acid (100:0.1, v/v).
cSolvent C: 2-propanol/acetic acid (100:0.1, v/v).

The identification of Ara-E by this strategy is shown as an exam-
ple in Figure 3. The ammonium adduct (m/z 1066.4) and sodium
adduct (m/z 1071.6) of Ara-E were detected in addition to the
respective protonated ion (m/z 1049.3) with positive ESI at a capil-
lary temperature of 270˚C (Figure 3A). By decreasing the capillary
temperature to 200˚C the formation of the sodium adduct was
almost completely avoided and the ammonium adduct was pri-
marily formed (Figure 3C). The fragmentation of this adduct by
CID led to the formation of fragment ions resulting from the neu-
tral loss of the galactose moiety acylated with OPDA (m/z 613.1) as
well as of an additional water loss (m/z 595.2, Figure 3E). In con-
trast to the fragmentation of the ammonium adduct, the sodium
adduct occurring primarily at a capillary temperature of 310˚C
(Figure 3D) fragmented into the ions m/z 779.4 and m/z 807.4
due to the loss of OPDA from the sn1 position and dnOPDA from
the sn2 position of the glycerol backbone (Figure 3F). The origin
of the fragments from either the sn1 or sn2 position can be deduced
from the different signal intensities of the various fragment ions.
Fragments resulting from the neutral loss of the acyl chain at sn1

position have in general higher abundances than those resulting
from the neutral loss of the acyl chain at the sn2 position (Guella
et al., 2003; Napolitano et al., 2007). In addition, the fragmentation
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FIGURE 2 | Elution of various galactolipid classes. Total ion chromatogram
(TIC) of the RP-HPLC/MS analysis of the galactolipid fraction after purification
from the total lipid extract by using SPE. Total lipids were extracted according

to Bligh and Dyer (1959) from leaves of A. thaliana 30 min after wounding.
Galactolipid species were detected in positive ESI mode using a mass range
of 450–1,500 amu.

Table 2 | Mass spectrometry conditions used for detection and

quantification of different lipid species.

Lipid species MGD DGD SQD

Ionization mode Positive Negative

Ion-adduct used for quantification [M + NH4]+ [M − H]−

Recorded mass range used for quantification 450–1500 amu

Temperature of ion transfer capillary for

[M + NH4]+ and [M − H]−/[M + Na]+ analysis

200/310˚Ca

Ion spray/capillary voltage 4 kV/28V

Sheath gas/auxiliary gas flow rate 30/10 arb

Collision energy 2V

aAt 310˚C: collision energy of the source fragmentation mode was set at 40V.

of the sodium adduct of several acylated MGD species led to the
neutral loss of the acyl residue at the galactosyl moiety. The result-
ing additional fragments occur with very low abundances (data
not shown).

To investigate a comprehensive galactolipid spectrum, all mole-
cular ions with mono-, di-, or acylated galactose moieties were first
identified due to the fragment ion spectra at a capillary temper-
ature of 200˚C and then further analyzed as described for Ara-E.
Most of the detected masses could be identified according to pub-
lished data on the occurrence of fatty acids and oxylipins in A.
thaliana.

STRUCTURAL ELUCIDATION OF DIFFERENT GALACTOLIPID SPECIES
USING TOF-MS
The identity of the galactolipid species that were found with
the ion trap MS2 experiments was verified by HPLC–TOF-MS

experiments via their accurate molecular masses. In addition,
unknown acyl side chains of galactolipids were identified by sub-
tracting the accurate mass of the head group and the other acyl
chain, both identified in MS2 experiments, from the accurate
masses of the entire molecule. Based on this result it was possi-
ble to predict the respective sum formula of the unknown side
chain as summarized in Table 3. By using the predicted sum
formulas, oxidized acyl side chains could be identified as phy-
toprostanes, ketols, or hydroperoxides by comparing them with
those of known oxylipins from A. thaliana. Notably, for two of the
predicted sum formulas (C17H28O4 and C19H32O4) no structure
could be assigned. Based on the finding that they contain an odd
number of carbon atoms, however, these compounds were ten-
tatively assigned as methyl-branched fatty acid derivatives. This
hypothesis was confirmed by GC/MS analysis of the respective
compounds (next section).

STRUCTURAL ELUCIDATION OF DIFFERENT GALACTOLIPID SPECIES
USING GC/MS
Next GC/MS analysis was performed for identification of the acyl
backbone of the galactolipid structures. For this two different frac-
tions were used: the galactolipid fraction resulting from SPE was
directly applied to transesterification to obtain the corresponding
methyl esters of all acyl side chains. Alternatively, the galactolipid
species were further purified and thereby enriched by repetitive
HPLC runs before transesterification.

The number and position of the double bonds of the non-
oxidized acyl chain derivatives were determined by the analysis
of the 4,4-dimethyloxazoline (DMOX) derivatives. However, for
some acyl side chains the amounts were too low and it was not pos-
sible to determine the position of the double bonds with absolute
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FIGURE 3 | Ion trap mass spectrometric detection. (A) Mass
spectrum of Ara-E in positive ESI mode at a capillary temperature of the
ion source of 270˚C, (B) Structure of Ara-E with fragment ions of the
[M + NH4]+ ion or [M + Na]+ ion, (C) Mass spectrum of Ara-E at a
capillary temperature of the ion source of 200˚C, (D) Mass spectrum of
Ara-E at a capillary temperature of the ion source of 310˚C, (E) Product
ion spectra of [M + NH4]+, (F) Product ion spectra of [M + Na]+. Total
lipids were extracted from wounded leaves of A. thaliana according to

Bligh and Dyer (1959) and galactolipids were subsequently purified by
SPE. For identification of the various molecular species, galactolipids
were separated by RP-HPLC and then detected in positive ESI mode
using an ion trap mass spectrometer. The galactolipid fraction resulting
from 200 to 300 mg of plant material was used. The ammonium and
sodium adducts of the various galactolipid species were detected at the
respective capillary temperatures of the ion source in a mass range of
450–1,500 amu and at CE of 2V.

Table 3 | Predicted sum formulas and their predicted structures of

some unknown acyl side chains deduced from accurate mass

measurements byTOF-MS.

Calculated accurate

masses (Da)

Predicted

sum formulas

Predicted

structures

282.1885 C16H26O4 Ketol-16:2/HPHT

296.1914 C17H28O4 uk

306.251 C20H34 20:3

308.1888 C18H28O4 PPA1/PPB1

310.2122 C18H30O4 Ketol-18:2/HPOT

312.2239 C18H32O4 Ketol-18:1/HPOD

324.2232 C19H32O4 uk

uk, unknown structure (unpublished in literature).

certainty. This analysis led to the identification of branched-chain
fatty acids as acyl residues of galactolipids (Table 4). The respective
mass spectra were confirmed by comparison with data of the lipid

library1. However, the correct positions of the methyl group at the
fatty acid backbone could not always be determined unequivocally
by the mass spectra of their methyl esters and DMOX derivatives.

For the structural identification of different oxylipins [e.g.,
OPDA, dnOPDA, hydroxy octadecatrienoic acids (HOTs), and
hydroxy octadecadienoic acids (HODs)] that were esterified to
the glycerol backbone of galactolipids, their respective trimethylsi-
lyl ether/methyl ester derivatives were analyzed via GC/MS or
as methyl esters by HPLC/diode array detection (DAD; data not
shown). The identity of those compounds was confirmed by com-
parison with authentic standards. The structures of the two acyl
side chains with the predicted sum formulas of C17H28O4 and
C19H32O4 could be resolved from the EI–MS spectra of the corre-
sponding methyl esters as well as trimethylsilyl ester/trimethylsilyl
ether derivatives (Figure A1 in Appendix). From these data, the
compounds were assigned as ketol derivatives of methyl-branched

1http://www.lipidlibrary.aocs.org/ms/arch_me/index.htm
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Table 4 | Straight- and branched-chain fatty acids identified as methyl

esters as well as DMOX derivatives by GC/MS.

M+ of identified

non-oxidized acyl side chains

Identification as

Methyl esters DMOX derivatives

200 n.d. 12:0a

214 n.d. Methyl-12:0a

228 n.d. 14:0a

238 n.d. Methyl-14:2a

240 n.d. Methyl-14:1a

242 n.d. Methyl-14:0a

250 16:3 (7, 10, 13) 16:3 (7, 10, 13)

252 16:2 (7, 10) 16:2 (7, 10)

254 16:1 (9)/16:1 (7) 16:1 (9)

256 16:0 16:0

264 n.d. Methyl-16:3 (9)a

268 n.d. Methyl-16:1 (9)a

270 Methyl-16:0 Methyl-16:0

278 18:3 (9, 12, 15) 18:3 (9, 12, 15)

280 18:2 (9, 12) 18:2 (9, 12)

282 18:1a 18:1a

284 18:0 18:0

292 n.d. Methyl-18:3a

296 n.d. Methyl-18:1a

306 20:3 (11, 14, 17) 20:3 (11, 14, 17)

308 20:2 (11, 14) 20:2 (11, 14)

312 20:0 20:0

324 Methyl-20:1a n.d.

326 Methyl-20:0 Methyl-20:0

338 n.d. 22:1 (13)

340 22:0 22:0

352 n.d. Methyl-22:1a

354 Methyl-22:0 Methyl-22:0

366 n.d. 24:1a

368 24:0 24:0

380 n.d. Methyl-24:1a

382 n.d. Methyl-24:0

396 n.d. 26:1a

Numbers in brackets indicate the position of the double bond at the fatty acid

backbone, counting from the carboxyl terminus.
aFatty acid detected in extremely low levels.

n.d., Not determined.

16:3 and 18:3 and were therefore being named methyl-ketol-16:2
and methyl-ketol-18:2, respectively.

QUALITATIVE GALACTOLIPID PROFILE OF WOUNDED A. thaliana
LEAVES
By combining all data obtained by the different MS experiments
the structure of the detected acyl side chains could be assigned. The
structures of the non-oxidized and oxidized fatty acid residues are
given in Table 5. By combining their structural information with
the corresponding information for the head groups a qualitative
galactolipid profile of wounded A. thaliana leaves was obtained.

Due to different fragment ion pattern, nearly all isobaric species
could be identified and their molecular structures resolved. How-
ever, in some cases, isobaric species differed in their retention
times, but exhibited the same intensities of both ion fragments
derived from the sodium adduct rendering it impossible to deter-
mine the sn position of the acyl side chains. These species are
shown with side chains in brackets in the following and in the
tables. Species containing exclusively non-oxidized acyl side chains
were grouped together to build the non-oxidized classes. On the
other hand, species containing at least one oxidized acyl side chain
were arranged into the oxidized classes. This classification led to
formation of 10 different galactolipid classes: non-oxidized MGD,
oxidized MGD, non-oxidized DGD, oxidized DGD, non-oxidized
acylated MGD, oxidized acylated MGD, oxidized acylated DGD,
non-oxidized MGM, non-oxidized SQD, and oxidized SQD. The
number of species identified are given in Table 6 and compared
with the numbers from previous studies. In summary, 22 non-
oxidized MGD species (Table A1 in Appendix), 36 oxidized MGD
species (Table A2 in Appendix), 31 non-oxidized DGD species
(Table A3 in Appendix), 26 oxidized DGD species (Table A4 in
Appendix), 13 non-oxidized acylated MGD species (Table A5 in
Appendix), 27 oxidized acylated MGD species (Table A6 in Appen-
dix), one oxidized acylated DGD species (Table A7 in Appendix),
two non-oxidized lyso-MGD species (Table A8 in Appendix) seven
non-oxidized SQD species (Table A9 in Appendix) as well as two
oxidized SQD species (Table A10 in Appendix) were identified.

QUANTITATIVE GALACTOLIPID PROFILE OF WOUNDED A. thaliana
LEAVES
In summary 167 species could be distinguished by the HPLC/MS2

experiment. However, some galactolipid species could not be
quantified since their signals were either too small or they were not
fully separated under the used experimental conditions. Therefore,
only 146 of the 167 species were quantified by the HPLC/MS-based
method.

In the non-oxidized MGD class, the most abundant species
is the plastid-derived prokaryotic species 34:6-MGD (x :y-
MGD, where x :y represents the sum of both acyl side chains
with x carbons and y double bonds bound to MGD) with
an amount of 737.5 ± 166.3 nmol g−1 f.w. followed by the
endoplasmic reticulum-derived eukaryotic species 36:6-MGD
(511.5 ± 88.1 nmol g−1 f.w.; Table A1 in Appendix). Other
prokaryotic species like 34:5-MGD and 34:4-MGD had amounts
of 215.1 ± 25.4 and 221.1 ± 40.5 nmol g−1 f.w. Another abun-
dant eukaryotic species is 36:5-MGD with an amount of
174.3 ± 36.6 nmol g−1 f.w. Seven further non-oxidized MGD
species were determined at levels lower than 100 nmol g−1 f.w.
The total amount of the quantified non-oxidized MGD species
was 2.15 ± 0.19 μmol g−1 f.w. The corresponding oxidized MGD
species are shown in Table A2 in Appendix. The prokaryotic
species methyl-ketol-18:2/16:3-MGD [X/Y-MGD, where fatty acid
(derivative) X is esterified at the sn1 position and Y at the sn2 posi-
tion of the glycerol backbone of MGD] and Ara-A derived from
34:6-MGD were the most abundant oxidized species with amounts
of 257.1 ± 80.6 and 194.0 ± 184.7 mmol g−1 f.w., respectively. The
next most intensive species were (HPOT/ketol-18:2)/16:3-MGD,
18:3/methyl-ketol-16:2-MGD, OPDA/methyl-ketol-16:2-MGD,
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Table 5 | Molecular masses of the detected acyl side chains and the appropriate sum formulas and structures of the respective non-oxidized or

oxidized molecular versions.

Molecular masses of the acyl side chains Non-oxidized molecule Oxidized molecule

Sum formula Structure Sum formula Structure

250 C16H26O2 16:3 ukd ukd

252 C16H28O2 16:2 ukd ukd

254 C16H30O2 16:1 ukd ukd

256 C16H32O2 16:0 ukd ukd

264 C17H28O2 Methyl-16:3a C16H24O3 dnOPDA, KHT

268 C17H32O2 Methyl-16:1a ukd ukd

270 C17H34O2 Methyl-16:0a ukd ukd

278 C18H30O2 18:3 ukd ukd

280 C18H32O2 18:2 ukd ukd

282 C18H34O2 18:1 C16H26O3 Ketol-16:2, HPHT

284 C18H36O2 18:0 ukd ukd

292 C19H32O2 Methyl-18:3a C18H28O3 OPDA, KOT

294 C19H34O2 Methyl-18:2a C18H30O3 HOT, KOD

296 C19H36O2 Methyl-18:1a C18H32O3, C17H32O3
b HOD, methyl-ketol-16:2c

306 C20H34O2 20:3a ukd ukd

308 C20H36O2 20:2a C18H28O4 PPA1,PPB1

310 C20H38O2 20:1a C18H30O4 Ketol-18:2, HPOT

312 C20H40O2 20:0a C18H32O4 Ketol-18:1, HPOD

324 C21H40O2 Methyl-20:1a C19H32O4 Methyl-ketol-18:2c

aFatty acids detected and verified by GC/MS.
bSum formulas determined by HPLC/TOF-MS.
cStructure determined by GC/MS.
duk, Unknown.

Table 6 | Number of identified galactolipid species detected in wounded leaves of A. thaliana.

Identified

galactolipids

Current

study

Stelmach

et al.

(2001)

Hisamatsu et al.

(2003, 2005), Nakajyo

et al. (2006)

Buseman et al.

(2006), Devaiah

et al. (2006)

Andersson et al.

(2006), Kourtchenko

et al. (2007)

Böttcher

and Weiler

(2007)

Glauser

et al.

(2008)

Non-oxidized MGD 22 24 2

Oxidized MGD 36 (29) 1 (1)a 3 (3) 11 (3) 3 1

Non-oxidized DGD 31 22

Oxidized DGD 26 (22) 2 (2) 4 (3) 1

Non-oxidized acylated MGD 13

Oxidized acylated MGD 27 (25) 2 (2)

Oxidized acylated DGD 1 (1)

Non-oxidzied MGM 2

Oxidized MGM 2 (2)

Non-oxidized SQD 7

Oxidized SQD 2 (2)

Σ 167 (79)

(n), Number of galactolipid species which were described in the respective publication for the first time.

and OPDA/16:3-MGD//18:3/dnOPDA-MGD (MGD-O//Ara-F)
containing partially methyl-ketol-16:2 and methyl-ketol-18:2 as
acyl side chains. The levels of these species were between 70
and 100 nmol g−1 f.w. Within this MGD class, all further species
including Ara-B derived from 36:6-MGD were determined with

levels lower than 50 nmol g−1 f.w. The total amount of the oxidized
MGD species was 1.07 ± 0.54 μmol g−1 f.w.

The non-oxidized DGD class was mainly composed of
the eukaryotic species 36:6-DGD (416.9 ± 104.2 nmol g−1 f.w.)
and 34:3-DGD composed of 16:0 at sn1 and 18:3 at sn2
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(351.9 ± 107.0 nmol g−1 f.w.) as well as the prokaryotic species
34:6-DGD (294.5 ± 64.9 nmol g−1 f.w.; Table A3 in Appen-
dix). The species 34:5-DGD, 34:2-DGD, 34:1-DGD, and 36:3-
DGD had amounts between 70 and 170 nmol g−1 f.w. All other
species were detected with amounts lower than 60 nmol g−1

f.w. The total amount of the non-oxidized DGD species was
1.69 ± 0.41 μmol g−1 f.w.

In accordance with the non-oxidized DGD profile, Ara-D
derived from the eukaryotic 36:6-DGD was together with methyl-
ketol-18:2/18:3-DGD and OPDA/OPDA-DGD (Ara-D) the most
abundant oxidized species in the oxidized DGD class with
amounts of 40.7 ± 29.9 and 67.0 ± 34.9 nmol g−1 f.w., respectively
(Table A4 in Appendix). Two other abundant oxidized species
were methyl-ketol-18:2/methyl-ketol-18:2-DGD and 16:0/OPDA-
DGD//OPDA/16:0-DGD with levels above 10 nmol g−1 f.w. The
other oxidized DGD species including OPDA/dnOPDA-DGD
(Ara-C) were found to have levels lower than 8 nmol g−1

f.w. In total, the oxidized DGD species had an amount of
0.21 ± 0.09 μmol g−1 f.w.

Within the non-oxidized acylated MGD class, three species,
i.e., the eukaryotic species 54:9-MGD (90.0 ± 41.0 nmol g−1 f.w.),
52:9-MGD representing a mixture of a prokaryotic and a eukary-
otic species (69.8 ± 41.9 nmol g−1 f.w.), and the prokaryotic
species 50:9-MGD (23.6 ± 13.8 nmol g−1 f.w.; Table A5 in Appen-
dix), were determined with decreasing amounts. Four additional
species were quantified with levels lower than 20 nmol g−1 f.w.
The total amount of the non-oxidized acylated MGD species was
0.18 μmol ± 0.07 g−1 f.w.

The most abundant oxidized acylated MGD species was the
prokaryotic OPDA/dnOPDA–MGD–OPDA [X/Y-MGD-Z, where
fatty acid (derivative) X is esterified at the sn1 position, Y at the
sn2 position of the glycerol backbone and Z at the galactose moi-
ety of MGD; Ara-E] with an amount of 181.4 ± 76.1 nmol g−1

f.w. (Table A6 in Appendix). The second most abundant species
was OPDA/OPDA-MGD-OPDA (Ara-G) with an amount of
67.7 ± 26.8 nmol g−1 f.w. The other species were determined with
levels lower than 20 nmol g−1 f.w. leading to a total amount of the
oxidized acylated MGD class of 0.33 ± 0.12 μmol g−1 f.w.

For the class of oxidized acylated DGD and non-oxidized
MGM only three different species were detected. The level
of these metabolites were comparatively low with levels of
9.4 ± 5.0 nmol g−1 f.w. for OPDA/OPDA–DGD–OPDA (Table A7
in Appendix) and 0.5 ± 0.4 nmol g−1 f.w. (18:1-MGM) to
28.8 ± 26.4 nmol g−1 f.w. (18:3-MGM; Table A8 in Appendix).

While the non-oxidized SQD species gave amounts of 0.3 ±
0.5 nmol g−1 f.w. (for 16:1–16:0-SQD) to 502.9 ± 629.4 nmol g−1

f.w. (for 18:3/16:0-SQD; Table A9 in Appendix) the amount of
the oxidized species was too low for quantification (Table A10 in
Appendix).

In addition to the galactolipids, the non-esterified oxylip-
ins jasmonic acid (JA), OPDA, and dnOPDA were analyzed.
Due to the different requirements of these free oxylipins in the
chromatographic and ionization conditions, these metabolites
were analyzed via HPLC/quadrupole-linear ion trap-MS. Using
this method the free oxylipins were measured with amounts
of 0.73 ± 0.14 nmol g−1 f.w. for JA, 4.7 ± 2.2 nmol g−1 f.w. of
dnOPDA, and 2.7 ± 1.1 nmol g−1 f.w. of OPDA giving a total

amount of 8.16 ± 3.14 nmol g−1 f.w. The sum of all OPDA- and
dnOPDA-containing galactolipid species is 1.10 ± 0.45 μmol g−1

f.w. and is therefore about 150-fold higher than the total amount
of non-esterified OPDA and dnOPDA.

VALIDATION OF THE ESTABLISHED HPLC/MS2-BASED METHOD
In order to evaluate the quality and reliability of the established
method, the sensitivity, the quantification range and precision
of this method were examined according to the Guidance for
Industry-Bioanalytical method validation2 (2001).

The sensitivity of the method was determined with the galac-
tolipid species 17:0/17:0-MGD to be 2 pmol. The lower limit
of quantification was 20 pmol. Next the quantification range
for the six main non-oxidized galactolipids as well as the six
main Arabidopsides was examined. The linear range achieved
for 34:6-MGD was 2.0–20 nmol (r2 = 0.98), for 36:6-MGD 1.8–
17 nmol (r2 = 0.98), for 34:6-DGD 0.6–6.5 nmol (r2 = 0.99), for
36:6-DGD 0.5–10 nmol (r2 = 0.99), for 52:9-MGD 0.03–2.6 nmol
(r2 > 0.99), and for 54:9-MGD 0.03–3.8 nmol (r2 > 0.99), respec-
tively. In case of the six main Arabidopsides, the linear range
achieved for Ara-A was 1.4–64 nmol (r2 = 0.99), for Ara-B 0.12–
15 nmol (r2 = 0.99), for Ara-C 0.04–1.8 nmol (r2 = 0.99), for Ara-
D 0.07–16 nmol (r2 = 0.99), for Ara-E 0.37–21.5 nmol (r2 = 0.98),
and for Ara-G 0.12–8.5 nmol (r2 = 0.99), respectively.

The precision of the method was determined in relation to
the six main non-oxidized galactolipids as well as the six main
Arabidopsides (Table 7). For these 12 compounds, the coefficient
of variation (CV) of the analytical precision was calculated from
data resulting from analysis of identical biological material which
was extracted in triplicates and from each extract three aliquots
were injected. The mean values (MV) and SD of the absolute peak
areas of each nine measurements were calculated and CV was
estimated by the following equation: CV = SD/MV∗100. The CV
values referring to the different galactolipid species were between
4.0 and 35.4. To evaluate these values the biological variation of
the plant material was determined as well. For this, plant material
originating from three biological replicates was extracted in paral-
lel and for each extract a single measurement was performed. The
CV of these nine measurements was also calculated as described
above for the evaluation of the analytical precision. As shown
in Table 7 the biological variation of the used plant material is
higher than the analytical precision (with one exception for Ara-
B). Therefore, three parallel extractions of the same plant material
shall be always performed and subsequently measured once for
the intended use.

DISCUSSION
Galactolipids are the most abundant lipids on earth (Dörmann
and Benning, 2002). Interestingly, in A. thaliana the majority of
them occurs oxidized at the acyl side chains already after short
times of wounding and during hypersensitive response (Stelmach
et al., 2001; Andersson et al., 2006; Buseman et al., 2006; Grun
et al., 2007; Kourtchenko et al., 2007). Here we describe a compre-
hensive analysis of galactolipids by a HPLC/MS2-based method

2http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformati
on/Guidances/ucm070107.pdf
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Table 7 | Calculated coefficients of variation (CV) of the analytical precision and biological variation using the established HPLC/MS2-based

method.

Main non-oxidized galactolipids

34:6-MGD 36:6-MGD 34:6-DGD 36:6-DGD 52:9-MGD 54:9-MGD

Analytical precision 6.7 3.4 6.9 4.00 34.4 35.4

Biological variation 10.6 11.8 12.7 7.8 38.4 40.6

Main arabidopsides

Ara-A Ara-B Ara-C Ara-D Ara-E Ara-G

Analytical precision 16.5 19.9 27.2 21.2 10.1 14.3

Biological variation 22.8 15.7 34.0 25.9 17.9 18.0

Analytical precision was calculated for three replicated extractions each measured three times. Biological variation was calculated for triplicate experiments each

experiment three times extracted and finally each extract single measured.

CV = standard deviation/mean value∗100.

that qualitatively and quantitatively determine the non-oxidized
species and oxidized derivatives of the galactolipid classes MGD,
DGD (including the acylated forms), and SQD.

ESTABLISHMENT OF A METHOD FOR COMPREHENSIVE GALACTOLIPID
ANALYSIS
Recently, the analysis of galactolipids and particularly of the oxi-
dized species has been intensified due to the discovery of the
Arabidopsides in the genius Arabidopsis (Böttcher and Weiler,
2007). For the first structure identification spectroscopic analyses,
i.e., IR and NMR spectroscopy were typically used. These meth-
ods need high amounts of ideally purified substances and are time
consuming (Stelmach et al., 2001; Hisamatsu et al., 2003, 2005;
Andersson et al., 2006; Kourtchenko et al., 2007). The spectrum
of identified galactolipid species was later augmented by using
a MS-based method coupled with chromatographic separation
(Glauser et al., 2008). Notably, the most comprehensive analyses,
which either mainly focused on non-oxidized galactolipid species
or on oxidized species, were performed so far with ESI-MS2-based
approaches (Welti et al., 2002; Buseman et al., 2006; Devaiah et al.,
2006). These methods, however, may have the disadvantage that
due to the missing chromatographic separation or insufficient res-
olution or sensitivity of the mass spectrometer, galactolipid species
with the same molecular mass can only be differentiated by MS2

experiments and therefore, the sn-specific molecular composition
of those species cannot be deduced from the signal abundance
of the respective fragment ions. In addition, direct ESI-MS is
highly prone to ionization suppression and/or enhancement which
can affect the quantification process of low abundant galactolipid
species. A task of this study was to establish a fast, sensitive, and
robust method for analysis of the comprehensive galactolipid spec-
trum composed of the non-oxidized species as well as the oxidized
species. As analytical system, ESI-MS2 detection was chosen in
conjunction with HPLC separation. In combination with SPE as an
additional purification step 167 non-oxidized and oxidized species
could be identified. To our knowledge this study presents the most
comprehensive analysis of galactolipids so far (Table 6).

The analysis was focused on the determination of MGD, DGD,
acylated MGD, acylated DGD, MGM species as well as SQD
species. While the SQD species were analyzed with negative ESI
all other galactolipid species were measured with positive ESI.

Since MGD and DGD represent about 80% of the plants lipid
membrane in which MGD is the most abundant one with about
50% (Douce and Joyard, 1990; Dörmann and Benning, 2002), the
positive ESI parameters were focused on the analysis of the main
galactolipid classes.

Structural characterization of the main galactolipids has been
achieved in this study by using MS2 experiments based on the
identification of the neutral loss fragments derived from either the
ammonium adducts or the sodium adducts. The preferred forma-
tion of the different adducts could be forced by optimizing the
temperature of the ion transfer capillary of the ion source either
at 200 or at 310˚C. Since the two different adducts lead to the for-
mation of specific fragment ions either derived from the neutral
loss of the hexose moiety or from the neutral loss of the acyl side
chains (Napolitano et al., 2007; Pacetti et al., 2007), the structure of
the main galactolipid species could be characterized in the positive
ESI mode by two measurements at different temperatures of the
ion transfer capillary. The acyl side chains can also be identified as
acyl anions derived from the deprotonated ion [M − H]– and the
acetate adduct [M + OAc]− (Buseman et al., 2006; Devaiah et al.,
2006).

The regiochemical distribution of the acyl side chains could be
deduced from the intensity ratio of the fragment ions correspond-
ing to [M + Na-sn1]+ and [M + Na-sn2]+. Since the loss of the
acyl side chain from the sn1 position is the preferred fragmenta-
tion process compared to the one form the sn2 position (Guella
et al., 2003), the ratio of the fragment ion intensities derived from
the sodium adducts was used to establish the position of the acyl
side chains at the glycerol backbone. The chromatographic sepa-
ration supported the structural identification, because at least in
case of the oxidized galactolipids regioisomers could be chromato-
graphically resolved. The structures of the acyl side chains were
determined based on their molecular masses which were used to
predict the appropriate sum formula. These data were, however,
not capable to distinguish between compounds with identical m/z
values. Additionally, the position of double bonds as well as of
hydro(pero)xy and keto groups could not be elucidated based
on the MS2 fragment ions. In contrast, Kim et al. (2001) were
able to determine the positions of the double bonds in the acyl
side chains of MGD and DGD species in wheat flour using the
complex MS2 ion spectra of the sodium adducts desorbed by fast
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atom bombardment (Kim et al., 2001). These experiments, how-
ever, were carried out with purified galactolipids and could not
be applied for the compound identification in lipid extracts. In
the current study, it was possible according to the used solvent
gradient of the chromatographic separation to predict whether
the respective galactolipid species contained non-oxidized or oxi-
dized acyl side chains, because the oxidized species eluted earlier
than the corresponding non-oxidized species. Unequivocal iden-
tification of most acyl side chains was achieved by analyzing the
respective DMOX and trimethylsilyl ether/methyl ester derivatives
via GC/MS.

For two compounds with m/z values of 296 and 324 the
structures could not be directly deduced based from MS2 spec-
tra since they have been so far not been identified as acyl side
chains of galactolipids and as oxylipins. However, the elucidation
of these structures was possible by TOF-MS and GC/MS analy-
ses: the accurate masses and the EI mass spectra of the respective
methyl esters and trimethylsilyl ester/trimethylsilyl ether deriva-
tives strongly suggest that these compounds are ketol derivatives
derived from methyl-branched fatty acids (Figure A1 in Appen-
dix). They could result from activities of lipoxygenases (LOXs)
and an allene oxide synthase (AOS) of A. thaliana against methyl-
branched fatty acids leading to the formation of allene oxides
which are non-enzymatically further hydrolyzed into ketols.

The quantification of the various galactolipid species was car-
ried out using only 17:0/17:0-MGD (a non-natural galactolipid
that is not found in A. thaliana) as internal standard. In some stud-
ies, however, 18:0/18:0- and 18:0/16:0-MGD as well as 18:0/18:0-
and 18:0/16:0-DGD derived from the natural galactolipids by
hydrogenation have been used as internal standards (Welti et al.,
2002; Buseman et al., 2006; Devaiah et al., 2006), since those species
were found in the galactolipid extracts only in low levels. It should
be emphasized at this point, that the use of only one single inter-
nal standard as in the present study could affect the quantification
process, because the ionization efficiency of the distinct galac-
tolipid species could be different within the used gradient system of
the chromatographic separation. The gradient system and ioniza-
tion conditions were therefore optimized and different extraction
methods were tested in order to obtain the highest quality of the
quantification results. Furthermore, the precision of the quan-
tification process has been validated in the corresponding signal
intensity range in which all galactolipid species were detected in
the HPLC/MS2-based method. Due to the fact that the fatty acid
composition of a lipid can influence its ionization behavior, it
should be stressed, however, that the amount of lipids analyzed in
this study can differ from that actually accumulating in the leaves.

GALACTOLIPID PROFILES IN WOUNDED A. thaliana LEAVES
A number of studies demonstrated that non-esterified oxylipins
such as JA, OPDA, and dnOPDA as well as the oxylipin-containing
galactolipids accumulate in A. thaliana leaves after wounding
(Farmer and Ryan, 1992; Blechert et al., 1997; Stelmach et al., 2001;
Stintzi et al., 2001; Buseman et al., 2006). Therefore we used our
method to quantify the identified galactolipid species by analyzing
leaves 30 min after wounding. Since knowledge on the biosynthe-
sis and the function of the oxidized galactolipid species is rather
scarce till now, the levels of the non-esterified dnOPDA, OPDA,

and JA, which are the potential precursors or products of the
galactolipid-bound forms, were determined in parallel. Due to the
different requirements of the galactolipids and the non-esterified
oxylipins in the chromatographic and ionization conditions both
compound classes could not be determined by a single analytical
method, but were quantified by two different HPLC/MS2-based
methods.

The ratio of the total amount of non-esterified OPDA and
dnOPDA and the total amount of the oxylipin-containing galac-
tolipids in leaves after wounding could provide hints whether
the galactolipid species have functions as storage forms of the
cyclopentenones, which could be liberated as signaling com-
pounds after leaf damage (Mosblech et al., 2009). In this case
the oxidized galactolipid species may be synthesized by direct
oxidation of the acyl side chains of the galactolipids. Alterna-
tively, it has been suggested that non-esterified dnOPDA, OPDA,
and JA may be esterified into galactolipids subsequently after
their biosynthesis (Stelmach et al., 2001). The quantitative galac-
tolipid profiles revealed that the total amount of the OPDA- and
dnOPDA-containing galactolipids were around 150-fold higher
than those of non-esterified OPDA and dnOPDA. This finding
goes in line with that of a previous study by Andersson et al. (2006),
who demonstrated that the hypersensitive response resulted in a
200-fold induction of esterified OPDA and an accumulation of
esterified OPDA that is 10 times higher compared to the free fatty
acid derivative. Due to this huge difference in the amounts of
the non-oxidized and oxidized galactolipids one may assume that
non-esterified OPDA and dnOPDA molecules are esterified to the
glycerol backbones directly after their biosynthesis producing the
respective oxidized galactolipid species in plastids. Consequently,
only small amounts remain as free OPDA and dnOPDA or enter
the peroxisome where they are converted by a series of reactions
leading to the synthesis of even lower levels of JA. Alternatively, JA
biosynthesis could proceed with the release of defined amounts of
esterified OPDA and dnOPDA from the respective oxidized galac-
tolipid species in the plastids, which are then converted into JA
in the peroxisome. Up to now, the proportion of both metabolic
pathways on the overall JA biosynthesis cannot be elucidated. In
addition, the biosynthesis of the free oxylipins as well as of the
lipid-bound oxylipins can be directly linked to the availability of
the respective substrates. Taking into account that more than 99%
of the polyunsaturated fatty acids α-linolenic acid and roughanic
acid occur esterified within lipids in plant cells (Conconi et al.,
1996), one may assume that the synthesis of the huge amounts of
oxylipin-containing galactolipids occurs using lipid-bound sub-
strates, even because free fatty acids are only present in low cellular
levels. They are liberated from lipids by the catalytic activity of
lipases and can serve as substrate for sequential oxidation and
isomerization reactions via the oxylipin pathway leading to low
oxylipin levels (Andreou et al., 2009).

The total amount of non-oxidized galactolipid species was
4.82 ± 1.37 μmol g−1 f.w. and that of the oxidized galactolipid
species was 1.81 ± 0.71 μmol g−1 f.w. This finding demonstrates
that 30 min after wounding the non-oxidized galactolipids were
2.7-fold higher than the possible oxidized species. Interestingly, in
the major abundant galactolipid class MGD, this ratio was only 2.0
whereas it was even 8.1 in case of the DGD species and only 0.6
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in the acylated MGD class. This may indicate that the oxidation
degree of the galactolipids may be class-specifically regulated after
wounding or different substrate specificities for the enzymes of the
oxylipin pathway against the different lipid molecules may exist.
Moreover, these different proportions may hint at specific func-
tions of the respective species. One conclusion that one may derive
from this observation is that the primary substrate of oxylipin
forming enzymes under these conditions are MGD species. From
these oxidized MGD molecules oxylipins may be transferred by
acyl editing reactions onto acylated MGD- and DGD species.

Most of the so far described oxylipin-containing galactolipids
contain either OPDA- and/or dnOPDA as acyl side chains (Stel-
mach et al., 2001; Hisamatsu et al., 2003, 2005; Andersson et al.,
2006; Kourtchenko et al., 2007). In addition eight species have
been described as ketol-containing galactolipids (Buseman et al.,
2006). In the current study, several additional oxylipin species were
identified to be esterified into galactolipids. Besides the most abun-
dant cyclopentenones OPDA and dnOPDA, which comprised of
65 mol%, of the total oxidized acyl side chains, two novel methyl-
branched ketols were identified as the second most abundant
oxylipins with 27 mol%. Acyl side chains corresponding to either
hydroperoxides or common oxylipin pathway-derived ketols were
found to represent 3.8 mol% of the total oxidized acyl side chains.
The distinct composition of these galactolipid species could not
be further deduced since the respective acyl side chains have an
identical molecular mass. Hydroxides and phytoprostanes were
determined with 2.0 and 2.6 mol%, respectively. These data indi-
cate that the majority of the oxidized galactolipids is derived
from enzymatic reactions, since cyclopentenones in these amounts
may be exclusively formed by the coordinated activities of 13-
LOX, 13-AOS, and 13-allene oxide cyclase. Indeed, the analysis
of the enantiomeric composition of the esterified hydroxides and
hydroperoxides revealed that the main 13-regioisomers occurred
over 90% as S-enantiomers confirming the enzymatic origin of
these galactolipid acyl side chains (data not shown). In contrast,
phytoprostanes were the only acyl side chains determined within
the galactolipid fraction of exclusively non-enzymatic origin. In
summary, these data revealed that the oxidized galactolipid species
accumulating after wounding in leaves of A. thaliana are the result
of enzymatic reactions assuming that the novel methyl-branched
ketols are also derived from an enzymatic activity.

Non-enzymatic peroxidation of membrane lipids and in partic-
ularly of the most abundant polyunsaturated fatty acids roughanic
acid, linoleic acid, and α-linolenic acid is another process in
lipid metabolism and results in the formation of lipid-bound
phytoprostanes or hydroxy fatty acids (Müller, 2004). However,
we detected only four minor abundant oxidized galactolipid
species being lipid-bound phytoprostanes. This finding was unex-
pected, since during the hypersensitive response of A. thaliana
non-enzymatically formed oxylipins accumulated to much higher
amounts (Grun et al., 2007).

Concerning the non-oxidized galactolipid species it is notable
that in addition to the C16 and C18 fatty acids, several C20 fatty
acids as well as methyl-branched fatty acids were identified as
acyl residues of the galactolipids. These fatty acid structures were
mainly identified within the DGD class, esterified either at the sn1

or the sn2 position. Even though the levels of these species were

very low in comparison to the other non-oxidized DGD species
their biosynthesis seems to be specific for DGD.

In summary,we have explored the high diversity of galactolipids
in A. thaliana and identified 167 different species. Our results
indicate that galactolipid oxidation upon wounding occurs class
specific and that esterifed cyclopentenone derivatives are more
abundant compared to the free forms. Our data will be valuable
for analyzing comprehensive galactolipid profiles in different bio-
logical contexts and might help to understand their function and
biosynthetic pathways.

MATERIALS AND METHODS
MATERIAL
Solvents for lipid extraction and galactolipid purification were
purchased either (chloroform or acetone) from Carl Roth
(Karlsruhe, Germany) or (2-propanol, acetonitrile (HPLC/MS
grade) and methanol (HPLC/MS and HPLC grade) from Acros
(Geel, Belgium). Acetic acid was from Sigma-Aldrich (Stein-
heim, Germany). Deionized water was filtered with cartridge to
0.055 μs/cm (arium® 611, Sartorius, Göttingen, Germany). Di-
heptadecanoate-monogalactosyldiacylglycerol (17:0/17:0-MGD)
standard was provided by Prof. E. Heinz (Hamburg, Germany) and
used for galactolipid quantification. (10-2H,11-2H2, 12-2H3)-JA
(D6-JA) and (17-2H2, 18-2H3)-OPDA (D5-OPDA) standards were
provided by Dr. O. Miersch (Halle/Saale, Germany) for quantifi-
cation of non-esterified JA, OPDA, and dnOPDA. Phytoprostanes
were synthesized using our published procedures (El Fangour
et al., 2004, 2005; Pinot et al., 2008).

PLANT MATERIAL AND GROWTH CONDITIONS
In this study the Columbia-0 (Col-0) ecotype of Arabidopsis was
used as wild type plants. Plants were grown for 7–8 weeks under
light period of 8 h at 22˚C with 90 μmol/m2 s light intensity and
a dark period of 16 h at 18˚C. Wounding of rosette leaves was
mechanically performed by using forceps. Wounded plants were
further incubated for 30 min at 90 μmol/m2 s light intensity until
the harvest. The harvested leaves were frozen directly in liquid
nitrogen and stored at −80˚C until use. Prior to extraction, leaf
material was ground into fine powder under liquid nitrogen using
a beat mill (Retsch, Haan, Germany) and kept again at −80˚C
until use.

SAMPLE PREPARATION, EXTRACTION PROCESSES
Galactolipids and their oxidized derivatives were extracted accord-
ing to (Bligh and Dyer, 1959; Heinz and Tulloch, 1969; Matyash
et al., 2008) with some minor modifications as described below
in order to compare the extraction efficiency of the respective
method. In standard experiments 0.2–2 g of plant material was
used for extraction. As internal standards, 25 μg of 17:0/17:0-
MGD for the quantification of galactolipids and 25 ng of each
D5-OPDA and D6-JA for the quantification of non-esterified JA,
OPDA, and dnOPDA were added.

CHLOROFORM/METHANOL EXTRACTION (ACCORDING TO BLIGH AND
DYER, 1959)
Briefly, total lipids were extracted from 0.2 g of wounded leaves of
A. thaliana by the addition of 1.5 ml of chloroform/methanol (1:2,
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v/v) and incubation at 6˚C for 4 h. The above mentioned inter-
nal standards were added. The extract was centrifuged at 450 × g
at 4˚C for 10 min and the supernatant was stored under argon
atmosphere at −20˚C. The pellet was resolved in 1.5 ml of chlo-
roform/methanol (2:1, v/v), incubated for 20 h and centrifuged
at 450 × g at 4˚C for 10 min. The resulting supernatant of both
extraction steps were combined and 0.7 ml of 0.45% (w/v) sodium
chloride was added. After manual shaking the mixture was cen-
trifuged at 450 × g at 4˚C for 5 min and sodium sulfate was added
to the organic phase in order to remove residual water from the
sample. The total lipid extract was dried under streaming nitro-
gen and the remaining lipids were re-dissolved in 0.5 ml methanol
and stored under argon atmosphere at −20˚C. About 0.1 ml of
each individual sample was used for the quantification of non-
esterified JA, OPDA, and dnOPDA whereas the remaining sample
was used for the identification and quantification of galactolipid
species and their oxidized derivatives. In experiments where 2.0 g
of plant material were used, the volume of the extraction solvents
adjusted adequately.

CHLOROFORM/METHANOL EXTRACTION (ACCORDING TO HEINZ AND
TULLOCH, 1969)
Total lipids were extracted in a procedure similar to the one of Bligh
and Dyer (1959) described above with the following modifications:
the composition of chloroform/methanol in both extraction steps
was 1:1 (v/v) instead of 1:2 (v/v) and 2:1 (v/v) in the first and in
the second step, respectively.

METHYL tert -BUTYL ETHER EXTRACTION (ACCORDING TO MATYASH
ET AL., 2008)
Wounded leaves of A. thaliana were incubated with 1.5 ml
methanol containing the above mentioned internal standards
under constant shaking. Five microliter of methyl tert -butyl ether
were added and the resulting mixture was shaken for 1 h in the
dark. About 1.25 ml of water was added and after manual shaking
and incubation at room temperature for 10 min, the extract was
centrifuged at 450 × g at 4˚C for 15 min. The upper phase was
stored under argon atmosphere at −20˚C and the lower phase was
re-extracted with 1.4 ml of methanol/water (3:2.5, v/v) and 2.5 ml
of methyl tert -butyl ether. After manually shaking the mixture
was incubated at room temperature for 10 min and centrifuged at
450 × g at 4˚C for 15 min. The resulting upper phase was com-
bined with the one from the first reaction step and dried under
streaming nitrogen. The remaining lipids were re-dissolved in
0.5 ml of methanol and stored under argon atmosphere at −20˚C.
For the quantification of non-esterified JA, OPDA, and dnOPDA,
0.1 ml of each individual sample was used. The remaining sample
was used for the quantification of galactolipid species and their
oxidized derivatives.

SEPARATION OF LIPID CLASSES BY SPE
The lipid extract was dried under streaming nitrogen and remain-
ing lipids were re-dissolved in 1 ml of chloroform. The solution
was applied on SPE column (Strata SI-1 Silica, 500 mg/6 ml; Phe-
nomenex, Aschaffenburg, Germany) which was pre-equilibrated
with 1 ml of chloroform. Neutral lipids were eluted from the
column with 14 ml of chloroform, while galactolipids were

eluted with 15 ml of acetone/2-propanol (9:1, v/v). The galac-
tolipid fraction was dried under streaming nitrogen and subse-
quently re-dissolved in 0.5 ml of methanol and stored at −20˚C
until use.

IDENTIFICATION AND QUANTIFICATION OF GALACTOLIPID SPECIES
VIA HPLC/MS2

Galactolipid species were identified by using a HPLC Surveyor sys-
tem (Thermo Finnigan, San Jose, CA, USA) equipped with an EC
50/2 Nucleodur C18 column, gravity 1.8 μm (50 mm × 2.1 mm,
1.8 μm particle size; Macherey and Nagel, Düren, Germany) and
with a PDA coupled with an LCQ Advantage mass spectrometer
(Thermo Finnigan, San Jose, CA, USA). A ternary gradient sys-
tem consisting of acetonitrile as solvent A, water as solvent B, and
2-propanol as solvent C was used. The gradient program started
with an isocratic run at 50% of each solvent A and B for 10 min,
followed by a linear gradient reaching 85% of solvent A and 15%
of solvent B within 5 min, then continued with a linear gradient
reaching 34% of solvent A, 6% of solvent B, and 60% of solvent
C within 20 min and followed by an isocratic run for 20 min. The
flow rate was 0.2 ml/min.

For analysis the dried sample was re-dissolved in 16 μl of
methanol. By using the partial loop injection mode, 4 μl of the
sample were injected. The tray temperature was at 10˚C and col-
umn temperature was at 25˚C. The Surveyor PDA was performed
to collect spectral absorbance from 200 nm up to 340 nm. The
MS analysis was performed in positive (MGD and DGD species)
and negative (SQD species) ESI mode and the resulting ions were
collected in a mass range of 450–1,500 amu in full scan mode.
The ion spray voltage was 4 kV, capillary voltage was 28 V, the
flow rate of the sheath gas was at 30 arbitrary units (arb) and
the auxiliary gas flow rate at 10 arb. The temperature of the ion
transfer capillary was either at 200˚C to detect the ammonium
adducts [M + NH4]+ or at 310˚C in addition to the setting-up
of the collision energy (CE) of the source fragmentation mode
at 40 V in order to analyze the sodium adducts [M + Na]+. For
ion identification the data-dependent scan mode was used or
alternatively specific MS/MS experiments were performed. The
CE was 2 V. For quantification of the galactolipid species, the
HPLC/MS analysis was performed without PDA detection and in
full scan MS mode without using data-dependent MS/MS scan
mode. The capillary temperature was at 200˚C and for quan-
tification of MGD and DGD species the ammonium adducts
were used. SQD species were analyzed and quantified as depro-
tonated molecular ion ([M − H]−) in the negative ESI mode
using the same MS conditions described above (Table 2). The
molar values of the galactolipid species were quantified by using
a defined amount of 17:0/17:0-MGD as internal extraction stan-
dard. The data were smoothed and peak areas were integrated
using Xcalibur™software version 1.4 (Thermo Finnigan, San Jose,
CA, USA).

IDENTIFICATION OF THE ACYL SIDE CHAINS USING HPLC/TOF-MS AND
GC/MS
Unknown fatty acids and the respective derivatives esterified either
to the glycerol backbone or the galactosyl moiety of MGD and
DGD were identified by using a combination of HPLC/TOF-MS
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and GC/MS analyses. For this purpose on the one hand the accu-
rate mass of a galactolipid species was determined by using an
orthogonal TOF mass spectrometer (LCT Premier™; Waters Cor-
poration, Milford, USA) that was coupled to the same RP-HPLC
system as described above. The same solvent system and gradient
elution profile were used. The TOF-MS analysis was performed in
positive ESI mode using the W optic system of the mass analyzer
and with a mass resolution larger than 104. Data were acquired
by MassLynxTM software (Waters Corporation, Milford, USA) in
centroided format over a mass range of 400–1,200 amu with scan
duration of 0.5 s and interscan delay of 0.1 s. The capillary voltage
was maintained at 2.7 kV and the cone voltage at 30 V. The desolva-
tion and source temperature were set at 250 and 80˚C, respectively.
Nitrogen was used as cone gas and desolvation gas at a flow rate
of 30 and 600 l h−1, respectively. For accurate mass measurement
of <5 ppm root mean squared, the TOF mass spectrometer was
calibrated with 0.01% (v/v) phosphoric acid in acetonitrile/water
(50:50, v/v) and the dynamic range enhancement mode was used
for data recording. All analyses were monitored by using leucine–
enkephalin ([M + H]+ 556.2771 as well as the 2 × 13C isotopomer
[M + H]+ 558.2828 (Sigma-Aldrich, Steinheim, Germany) as lock
spray reference compound at a concentration of 1 μg ml−1 in
acetonitrile/water (50:50, v/v) and at a flow rate of 20 μl min−1

delivered by a 515 HPLC pump (Waters Corporation, Milford,
USA).

In order to identify and characterize esterified fatty acids as
well as esterified oxylipins in more detail on the other hand GC/MS
analysis was employed. For this purpose fatty acids were converted
to the corresponding methyl esters by a transesterification reac-
tion that was performed according to op den Camp et al. (2003).
Briefly, the galactolipid fraction from SPE was dried under stream-
ing nitrogen and 330 μl of toluene/methanol (2:1, v/v) and 170 μl
of sodium methoxide solution (0.5 M in methanol; Sigma-Aldrich,
Steinheim, Germany) were added and incubated for 20 min at
room temperature. Then 500 μl of saturated sodium chloride
solution and 50 μl of 32% (v/v) hydrochloride acid were added.
The resulting methyl esters were extracted three times with 1 ml
of hexane each. The combined organic phases were dried under
streaming nitrogen; remaining methyl esters were re-dissolved in
10 μl of acetonitrile and stored under argon atmosphere at - 20˚C
until use.

In case of hydroxy fatty acid derivatives, the sample was addi-
tionally treated with 1–2 μl N,O-bis(trimethylsilyl)trifluoroace
tamide (Sigma-Aldrich, Steinheim, Germany) directly before
analysis.

For identification of the double bond positions of esterified
fatty acids, DMOX derivatives of the esterified fatty acids were
injected to GC/MS in addition to the corresponding fatty acid
methyl esters. DMOX derivatization of fatty acids that are ester-
ified to galactolipid backbones was performed according to Fay
and Richli (1991). The galactolipid fraction from SPE was dried
under streaming nitrogen and 200 μl of 2-amino-2-methyl-1-
propanol solution (Sigma-Aldrich, Steinheim, Germany) were
added. The reaction mixture was enriched with argon to elimi-
nate autooxidation and incubated for 18 h at 180˚C. After cool-
ing at room temperature DMOX derivatives were extracted with
1 ml of dichloromethane, 5 ml of hexane, and 2 ml of water. The

organic phase was dried under streaming nitrogen and the remain-
ing DMOX derivatives were re-dissolved in 30 μl chloroform.
DMOX derivatives were purified by thin layer chromatography
(silica gel 60, 20 cm × 20 cm; Merck, Darmstadt, Germany) using
a petrol ether/diethyl ether (2:1, v/v) system. DMOX derivatives
were extracted from the silica gel by adding 0.4 ml of water, 2 ml
of methanol, 2 ml of chloroform, and 2 ml of saturated sodium
chloride solution. Residual water was removed from the organic
phase by the addition of sodium sulfate. The resulting DMOX
derivatives were dried under streaming nitrogen, re-dissolved in
10 μl acetonitrile and stored at −20˚C until use.

Gas chromatography/MS was carried out using an Agilent 5973
network mass selective detector connected to an Agilent 6890
GC equipped with a capillary HP-5 column (30 m × 0.25 mm,
0.25 μm coating thickness; J&W Scientific, Agilent, Waldbronn,
Germany). Helium was used as carrier gas at a flow of 1 ml min−1.
The temperature gradient was as follows: 150˚C for 1 min, 150–
200˚C at 4 K min−1, 200–250˚C at 5 K min−1, 250–320˚C at
20 K min−1, and 320˚C hold for 15 min. Mass range was set of
50–650 amu. Electron energy of 70 eV, an ion source temperature
of 230˚C and a temperature of 320˚C for the transfer liner were
used.

QUANTIFICATION OF NON-ESTERIFIED OXYLIPINS USING
HPLC/QLIT-MS ANALYSIS
For the quantification of non-esterified oxylipins JA, OPDA, and
dnOPDA in the total lipid extracts HPLC–QLIT-MS were utilized.
About 1/5 of the total lipid extract was dried under streaming
nitrogen and re-dissolved in 100 μl acetonitrile/water/acetic acid
(20:80:0.1, v/v/v). The analysis was carried out using an Agilent
1100 HPLC system (Agilent,Waldbronn, Germany) equipped with
an EC 50/2 Nucleodur C18, gravity 1.8 μm column (50 × 2, 1.8 μm
particle size; Macherey and Nagel, Düren, Germany) and coupled
to an Applied Biosystems 3200 hybrid triple quadrupole/linear
ion trap mass spectrometer (MDS Sciex, ON, Canada). Nano-
electrospray ionization (nanoESI) analysis was achieved using a
chip ion source (TriVersa NanoMate; Advion BioSciences, Ithaca,
NY, USA). A binary gradient system was used: solvent A, acetoni-
trile/water/acetic acid (20:80:0.1, v/v/v) and solvent B, acetoni-
trile/acetic acid (100:0.1, v/v) with the following gradient program:
90% solvent A and 10% solvent B for 2 min, followed by linear
increase of solvent B up to 90% within 6 min and an isocratic
run at 10% solvent A and 90% solvent B for 2 min. The flow
rate was 0.3 ml min−1. For stable nanoESI, 100 μl min−1 of 2-
propanol/acetonotrile/water/formic acid (70:20:10.0.1, v/v/v/v)
were added just after the column via a mixing tee valve. By
using another post column splitter 990 nl min−1 of the eluent
were directed to the nanoESI chip. Ionization voltage was set to
−1.7 kV. The non-esterified oxylipins were ionized in a negative
mode and determined in multiple reactions monitoring mode.
The mass transitions were as follows: 215/59 [declustering poten-
tial (DP) −45 V, entrance potential (EP) −9.5 V, CE −22 V] for
D6-JA, 209/59 (DP −45 V, EP −9.5 V, CE −22 V) for JA, 296/170
(DP −70 V, EP −8.5 V, CE −28 V) for D5-OPDA, 291/165 (DP
−70 V, EP −8.5 V, CE −28 V) for OPDA, and 263/59 (DP −70 V, EP
−8.5 V, CE −28 V) for dnOPDA. The mass analyzers were adjusted
to a resolution of 0.7 amu full width at half-height. The ion source
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temperature was 40˚C and the curtain gas was set at 10 arb. The
data were smoothed and peak areas were integrated using Applied
Biosystems Analyst software. The quantification was carried out
by comparison to two internal standards D6-JA and D5-OPDA
using a calibration curve (unlabeled/deuterium-labeled) vs. molar
amounts of unlabeled (0.3–1,000 pmol).
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APPENDIX

FIGURE A1 | EI–MS spectra of methyl ester and trimethylsilyl

ester/trimethylsilyl ether derivatives of methyl-branched ketols.

(A) Racemic methyl ester of 17-methyl-α-/γ-ketol-18:2 (B) Trimethylsilyl

ester/trimethylsilyl ether of 17-methyl-α-/γ-ketol-18:2 (C) Racemic methyl
ester of 17-methyl-α-/γ-ketol-16:2 (D) Trimethylsilyl ester/trimethylsilyl ether of
17-methyl-α-/γ-ketol-16:2.
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Table A1 | Non-oxidized MGD species identified in wounded A. thaliana leaves.

Sum

formula

Carbons:number of

double bonds-

galactolipid

class

Identified

galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0 0.5 h

(nmol g−1)c

C43H70O10 34:6-MGD 18:3/16:3-MGD 764.5 585.2/567.3 769.5 491.2/519.2 26.4 737.5 ± 166.3

C43H72O10 34:5-MGD 18:3/16:2-MGD 766.5 587.2/569.3 771.5 493.2/519.2 28.6 215.1 ± 25.4

18:2/16:3-MGD 491.2/519.2

C43H74O10 34:4-MGD 18:3/16:1-MGD 768.6 589.2/571.3 773.5 495.3/519.2 30.5 221.1 ± 40.5

18:2/16:2-MGD 493.3/521.3

18:1/16:3-MGD 491.3/523.2

C43H76O10 34:3-MGD 18:3/16:0-MGD 770.6 591.2/573.4 775.5 497.3/519.5 32.3 86.8 ± 15.2

18:2/16:1-MGD 495.2/521.3

18:1/16:2-MGD 493.3/523.3

C43H78O10 34:2-MGD 18:2/16:0-MGD 772.6 593.1/575.3 777.5 497.2/521.2 34.2 46.5 ± 10.6

18:1/16:1-MGD 495.2/523.3

C43H80O10 34:1-MGD 18:1/16:0-MGD 774.6 595.2/577.2 779.6 497.2/523.2 35.6 76.8 ± 14.9

18:0/16:1-MGD 495.2/525.2

C44H78O10 35:3-MGD 18:3/methyl-

16:0-MGD

784.5 605.2/587.2 789.5 511.3/519.2 33.7 4.9 ± 1.8

C45H74O10 36:6-MGD 18:3/18:3-MGD 792.6 613.3/595.5 797.5 519.2 28.5 511.5 ± 88.1

C45H76O10 36:5-MGD 18:2/18:3-MGD 794.6 615.3/597.3 799.5 519.2–521.2 30.8 174.4 ± 36.6

C45H78O10 36:4-MGD 18:3/18:1-MGD 796.6 617.3/599.3 801.5 519.15–523.16

521.3

32.5 61.7 ± 12.9
18:2/18:2-MGD

C45H80O10 36:3-MGD 18:0/18:3-MGD 798.6 619.03/601.3 803.6 519.3–525.3 34.6 12.1 ± 2.5

18:2/18:1-MGD 523.3/521.2

C45H82O10 36:2-MGD 18:0/18:2-MGD 800.6 621.2/603.2 805.6 521.2/525.1 35.8 2.8 ± 1.1

18:1/18:1-MGD 523.2

aFragment ions corresponding to [M-monoGal-NH4]+ (equals to [M-C6H11O5-NH4]+) or [M-monoGal-O-NH4]+ (equals to [M-C6H11O6-NH4]+); respectively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2

COO−
).

cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/” Indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species; “–” indicates ion intensities of both ions were almost the

same and therefore, sn1/sn2 composition could not be deduced.
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Table A2 | Oxidized MGD species identified in wounded A. thaliana leaves.

Sum

formula

Identified galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0 0.5 h

(nmol g−1)c

C39H64O12 Traumatic acid/18:3-MGD 742.5 562.9 747.5 469.1/519.2 29.8 6.5 ± 4.1

C43H68O11 OPDA/16:3-MGD (MGD-O)

18:3/dnOPDA-MGD (Ara-F)

778.5 599.1/581.2 783.5 491.2/533.2 17.6 72.4 ± 28.1
505.2/519.2

C43H70O11 OPDA/16:2-MGD 780.5 583.3/601.1 785.5 493.2/533.2 19.6 7.8 ± 6.8

C43H70O11 18:2/dnOPDA-MGD 780.5 583.3/601.1 785.5 505.2/521.2 20.9 6.9 ± 5.4

C43H74O11 16:0/OPDA-MGD 784.6 605.3/587.2 789.5 533.3/497.2 25.6 2.1 ± 0.6

C43H66O12 OPDA/dnOPDA-MGD (Ara-A) 792.5 613.1/595.3 797.4 505.2/533.2 9.2 194.0 ± 184.7

C43H70O12 (HPOT/ketol-18:2)/16:3-MGD 796.6 617.3/599.2 801.5 491.2/551.2 17.1 79.8 ± 34.9

C43H66O13 (PPA1/PPB1)/dnOPDA-MGD 808.6 629.3/611.3 813.5 505.2/549.1 14.26 0.8 ± 0.7

C43H68O13 (HPOT/ketol-18:2)/dnOPDA-MGD 810.6 631.2/613.2 815.5 505.2/551.3 5.4 5.5 ± 2.5

C43H68O13 OPDA/(ketol-16:2/HPHT)-MGD 810.6 631.2/613.2 815.5 523.2/533.2 7.8 4.1 ± 3.8

C44H72O12 Methyl-ketol-18:2/16:3-MGD 810.5 631.2/613.2 815.5 491.2/565.3 19.15 257.1 ± 80.6

C44H72O12 18:3/methyl-ketol-16:2-MGD 810.6 631.2/613.2 815.5 537.3/519.2 19.8 97.2 ± 111.1

C44H74O12 Methyl-ketol-18:2/16:2-MGD 812.5 633.2/615.3 817.5 493.2/565.3 21.4 25.4 ± 15.9

C44H76O12 16:1/methyl-ketol-18:2-MGD 814.5 635.2/617.2 819.5 565.2/495.3 23.7 2.7 ± 1.2

18:1/methyl-ketol-16:2-MGD 537.2/523.2

C44H70O13 Methyl-ketol-18:2/dnOPDA-MGD 824.5 645.2/627.3 829.5 505.2/565.3 15.2 4.0 ± 2.1

C44H70O13 OPDA/methyl-ketol-16:2-MGD 824.5 645.2/627.3 829.5 537.3/533.3 14.5 75.3 ± 52.8

C44H72O14 (HPOT/ketol-18:2)/methyl-ketol-

16:2-MGD

842.5 663.2/645.3 847.5 537.2/551.3 13 3.8 ± 1.9

C44H72O14 Methyl-ketol-18:2/(HPHT/ketol-

16:2)-MGD

842.5 663.2/645.3 847.5 523.2/565.2 13.4 5.4 ± 2.3

C45H72O11 OPDA/18:3-MGD 806.5 627.1/609.2 811.5 519.2/533.2 20.2 29.1 ± 14.8

C45H72O11 18.3/OPDA-MGD 806.5 627.1/609.2 811.5 533.2/519.2 21.8 14.2 ± 4.8

C45H74O11 OPDA/18:2-MGD 808.6 629.3/611.2 813.5 521.2/533.2 23 3.6 ± 1.6

C45H74O11 HOT/18:3-MGD 808.6 629.3/611.2 813.5 519.2/535.2 21.1 11.8 ± 4.5

C45H74O11 18:3/HOT-MGD 808.6 629.3/611.2 813.5 535.2/519.3 23.7 3.4 ± 2.9

C45H76O11 OPDA/18:1-MGD 810.5 631.2/613.2 815.5 523.2/533.3 25.8 n.q.

C45H70O12 OPDA/OPDA-MGD (Ara-B) 820.5 641.5/623.5 825.5 533.2 14.5 47.3 ± 22.5

C45H76O12 HOT/HOD-MGD 826.6 647.3/629.2 831.5 537.2/535.2 15 17.8 ± 13.2

C45H76O12 18:3/(HPOD/ketol-18:1)-MGD 826.6 647.3/629.2 831.5 553.2/519.3 16.4 2.6 ± 1.7

C45H72O13 OPDA/(HPOT/ketol-18:2)-MGD 838.5 659.1/941.2 843.5 551.2/533.2 13.6 n.q.

C45H74O14 Methyl-ketol-18:2/methyl-ketol-

16:2-MGD

856.5 677.2/659.3 861.5 537.2/565.2 15.7 65.5 ± 34.3

C46H76O12 18:3/methyl-ketol-18:2-MGD 838.5 659.2/641.1 843.5 519.2/565.2 22 n.q.

C46H78O12 18:2/methyl-ketol-18:2-MGD 840.2 661.2/643.2 845.5 565.3/521.2 24.6 n.q.

C46H74O13 OPDA/methyl-ketol-18:2-MGD 852.5 655.2/673.0 857.5 565.2/533.4 15.9 n.q.

C46H76O14 (HPOT/ketol-18:2)/methyl-ketol-

18:2-MGD

870.5 691.2/673.3 875.5 565.3/551.3 15.17 n.q.

C47H78O14 Methyl-ketol-18:2/methyl-ketol-

18:2-MGD

884.5 705.1/687.2 889.5 565.5 16.9 n.q.

aFragment ions corresponding to [M-monoGal-NH4]+ (equals to [M-C6H11O5-NH4]+) or [M-monoGal-O-NH4]+ (equals to [M-C6H11O6-NH4]+), respectively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).
cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/” Indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species; “–” indicates that ion intensities of both ions were almost

the same and therefore, sn1/sn2 composition could not be deduced.

n.q., Species not quantified.
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Table A3 | Non-oxidized DGD species identified in wounded A. thaliana leaves.

Sum

formula

Number of

acyl carbons:

number of

double

bonds-

galactolipid

class

Identified

galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0

0.5 h

(nmol g−1)c

C49H80O15 34:6-DGD 18:3/16:3-DGD 926.6 585.2/567.3 931.5 653.3/681.3 22.3 294.5 ± 65.0

C49H82O15 34:5-DGD 18:3/16:2-DGD 928.6 587.2/569.2 933.6 655.3/681.3 25.5 123.2 ± 27.7

C49H84O15 34:4-DGD 18:3/16:1-DGD

18:2/16:2-DGD

930.6 589.2/571.2 935.6 657.2–681.3 28.5 46.3 ± 10.7
655.2/683.2

C49H86O15 34:3-DGD 16:0/18:3-DGD 932.6 591.1/573.2 937.6 681.3/659.4 31.5 351.9 ± 107.0

C49H88O15 34:2-DGD 18:2/16:0-DGD 934.6 593.05/575.3 939.6 659.2/683.2 33.1 166.4 ± 67.4

C49H90O15 34:1-DGD 18:1/16:0-DGD 936.6 595.03/577.3 941.6 659.3/685.3 34.7 75.6 ± 25.8

C49H92O15 34:0-DGD 18:0/16:0-DGD 938.7 596.9/579.3 943.6 659.3/687.2 36.4 8.0 ± 3.8

C50H82O15 35:6-DGD 18:3/methyl-16:3-DGD

methyl-16:3/18:3-DGD

940.6 599.1/581.3 945.6 667.3–681.3 24.1 26.3 ± 7.6
681.2/667.2

C50H86O15 35:4-DGD Methyl-16:1/18:3-DGD 944.6 603.2/585.2 949.5 681.1/671.1 30.1 3.5 ± 0.3

C50H88O15 35:3-DGD 18:3/methyl-16:0-DGD 946.6 604.9/587.2 951.6 673.2/681.2 32.3 16.1 ± 6.1

C50H90O15 35:2-DGD 18:2/methyl-16:0-DGD

16:0/methyl-18:2-DGD

948.6 607.1/589.2 953.6 673.2/683.3 33.8 3.9 ± 0.9
697.1/659.2

C50H92O15 35:1-DGD 18:1/methyl-16:0-DGD

methyl-18:1/16:0-DGD

950.6 609.2/591.3 955.6 673.2/685.2 35.3 3.5 ± 2.9
659.2/699.1

C51H84O15 36:6-DGD 18:3/18:3-DGD 954.6 613.3/595.3 959.6 681.3 27.8 416.9 ± 104.2

C51H86O15 36:5-DGD 18:3/18:2-DGD 956.6 615.3/597.3 961.6 681.2/683.2 29.6 57.8 ± 23.8

C51H88O15 36:4-DGD 18:3/18:1-DGD

18:2/18:2-DGD

958.6 617.2/599.3 963.6 681.4/685.4 31.1 10.4 ± 6.6
683.4

C51H90O15 36:3-DGD 18:0/18:3-DGD 960.6 619.2/601.3 965.6 681.2/687.2 33.6 72.9 ± 22.8

C51H92O15 36:2-DGD 18:0/18:2-DGD 962.7 621.2/603.2 967.6 683.2/687.2 34.7 11.6 ± 4.4

C51H94O15 36:1-DGD 18:0/18:1-DGD 964.7 623.2/605.2 969.6 685.2/687.2 36.3 1.7 ± 0.8

C51H96O15 36:0-DGD 20:0/16:0-DGD 966.6 625.1/607.2 971.6 659.4/715.4 37.8 2.2 ± 1.9

C52H88O15 37:5-DGD Methyl-18:2/18:3-DGD 970.6 629.03/613.2 975.6 681.4/697.4 30.2 n.q.

C52H90O15 37:4-DGD Methyl-20:1/16:3-DGD

18:3/methyl-18:1-DGD

972.5 631.2/613.2 977.5 653.2/727.3 32.3 2.7 ± 1.7
966.4/681.4

C53H88O15 38:6-DGD 20:3/18:3-DGD 982.5 641.2/623.2 987.5 681.2/709.2 29.8 15.9 ± 5.4

C53H92O15 38:4-DGD 18:3/20:1-DGD

20:1/18:3-DGD

986.5 645.2/627.2 991.5 713.3/681.5 33.1 n.q
681.5/713.3

C53H94O15 38:3-DGD 20:0/18:3-DGD 988.6 647.1/629.2 993.6 681.2/715.1 35.3 2.5 ± 1.2

aFragment ions corresponding to [M-monoGal-NH4]+ (equals to [M-C6H11O5-NH4]+) or [M-monoGal-O-NH4]+ (equals to [M-C6H11O6-NH4]+), respectively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).
cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/” indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species; “–” Indicates that ion intensities of both ions were almost

the same and therefore, sn1/sn2 composition could not be deduced.

n.q., Species not quantified.
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Table A4 | Oxidized DGD species identified in wounded A. thaliana leaves.

Sum

formula

Identified

galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0 0.5 h

(nmol g−1)c

C49H78O16 OPDA/16:3-DGD 940.5 559.1/581.3 945.5 667.3/681.3 15.5 2.6 ± 1.1

18:3/dnOPDA-DGD

C49H84O16 OPDA/16:0-DGDII 946.6 604.9/587.2 951.6 659.3–695.3 21.1 22.8 13.2 ± 5.1

16:0/OPDA-DGDII

C49H76O17 OPDA/dnOPDA-DGD (Ara-C) 954.5 613.1/595.3 959.5 667.3/695.3 3.6 7.9 ± 3.3

C50H82O17 18:3/methyl-ketol-16:2-DGD 972.6 631.1/613.1 977.5 699.2/681.4

699.2/681.2

16.7 5.5 ± 2.6
Methyl-ketol-18:2/16:3-DGD

Methyl-ketol-18:2/16:0-DGD

C50H88O17 16:0/methyl-ketol-18:2-DGD 978.5 637.2/619.2 983.5 659.2/727.3 23.4 23.7 5.6 ± 3.1

727.2/659.3

C51H82O16 OPDA/18:3-DGDII;

18:3/OPDA-DGDII

968.6 627.1/609.2 973.5 681.3–695.3 17.1 18.3 30.2 ± 9.8

C51H84O16 HOT/18:3-DGD 970.5 629.0/611.3 975.6 681.3/697.4 18.6 2.5 ± 1.1

C51H84O16 OPDA/18:2-DGD 970.5 629.0/611.3 975.6 683.3/695.4 29.7 5.3 ± 1.1

C51H86O16 18:1/OPDA-DGD 972.6 631.1/613.1 977.5 695.2/685.3 21.5 1.7 ± 0.3

C51H80O17 OPDA/OPDA-DGD (Ara-D) 982.6 641.1/623.5 987.5 695.3 7.2 40.7 ± 29.9

C51H84O17 18:3/(HPOT/ketol-18:2)-DGD

(HPOT/ketol-18:2)/18:3-DGD

986.5 645.2/627.2 991.5 713.3/681.5 16.3 n.q
681.5/713.3

C51H88O17 18:0/(PPA1/PPB1)-DGD 990.5 649.2/631.2 995.5 711.1/687.2 24.1 0.2 ± 0.2

C51H82O18 OPDA/(HPOT/ketol-18:2)-

DGD

1000.6 659.2/641.2 1005.5 713.2/695.3 5.6 1.2 ± 0.7
713.2/695.3

C51H84O19 Methyl-ketol-18:2/methyl-

ketol-16:2-DGD

1018.5 677.2/659.2 1023.6 699.3/727.3 12.2 0.3 ± 0.3 .9

C52H86O17 Methyl-ketol-18:2/18:3-DGD 1000.5 659.2/641.2 1005.5 681.3/727.4 18.3 67.0 ± 34

C52H88O17 18:2/methyl-ketol-18:2-DGD 1002.5 660.7/643.2 1007.5 727.2/683.2 20.4 4.9 ± 3.3

C52H90O17 Methyl-ketol-18:2/18:1-DGD 1004.5 662.9/645.3 1009.5 685.2/727.2 23.8 0.5 ± 0.4

C52H84O18 OPDA/methyl-ketol-18:2-

DGD

1014.5 673.2/655.2 1019.5 695.3/727.3 12.6 8.1 ± 8.1

C52H84O19 Methyl-ketol-

18:2/(PPA1/PPB1)-DGD

1030.5 689.2/671.2 1035.5 711.2/727.3 13.4 1.0 ± 0.7

C53H88O19 Methyl-ketol-18:2/methyl-

ketol-18:2-DGD

1046.5 705.2/687.2 1051.6 727.3 14.9 13.1 ± 7.5

aFragment ions corresponding to [M-diGall-NH4]+ (equals to [M-C12H20O10-NH4]+) or [M-diGal-O-NH4]+ (equals to [M-C12H20O10-NH4]+), respectively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).
cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/” Indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species; “–” indicates that ion intensities of both ions were almost

the same and therefore, sn1/sn2 composition could not be deduced.
IIThe sn1/sn2 composition of the isobaric species could not be identified based on the fragment ion patterns but was predicted based on the chromatographic separation

since oxidized acyl side chains at sn1 position appear to increase the polarity of the molecule in comparison to the galactolipid species with the opposite sn1/sn2

composition.

n.q., Species not quantified.
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Table A5 | Non-oxidized acylated MGD species identified in wounded A. thaliana leaves.

Sum

formula

Number of acyl

carbons:number

of double

bonds-

galactolipid

class

Identified

galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0 0.5 h

(nmol g−1)c

C59H94O11 50:9-AMGD 18:3/16:3-MGD-16:3 996.7 585.2/567.3 1001.7 723.4/751.3 34.5 23.6 ± 13.8

C59H100O11 50:6-AMGD 18:3/16:3-MGD-16:0 1002.7 585.3/567.3 1007.7 729.6/757.4 38.5 2.0 ± 1.2

C59H102O11 50:5-AMGD 18:2/16:3-MGD-16:0 1004.5 587.2/569.3 1009.5 729.4/759.5 40.2 0.5 ± 0.306

18:3/16:2-MGD-16:0 731.5/757.4

C61H98O11 52:9-AMGD 18:3/16:3-MGD-18:3 1024.7 585.2/567.4

613.3/595.5

1029.7 751.6/779.5 36.3 69.8 ± 41.9
18:3/18:3-MGD-16:3

C61H104O11 52:6-AMGD 18:3/18:3-MGD-16:0 1030.7 613.3/595.5

591.2/573.4

1035.7 757.5 40.3 1.4 ± 1.1
18:3/16:0-MGD-18:3 757.5/779.4

C63H102O11 54:9-AMGD 18:3/18:3-MGD-18:3 1052.8 613.3/595.3 1057.7 779.4 37.5 90.0 ± 40.9

C63H104O11 54:8-AMGD 18:3/18:3-MGD-18:2 1054.5 613.3/595.5 1059.5 781.5 38.6 0.8 ± 0.4

18:3/18:2-MGD-18:3 615.3/597.3 781.5/779.2

C63H106O11 54:7-AMGD 18:3/18:2-MGD-18:2 1056.5 615.3/597.3

617.3/599.3

1061.5 783.5/781.5 40.1 0.3 ± 0.4
781.518:2/18:2-MGD-18:3

aFragment ions corresponding to [M-monoGal-snGal-NH4]+ (equals to [M-C6H11O5-snGal-NH4]+) or [M-monoGal-O-snGal-NH4]+ (equals to [M-C6H11O6-snGal-NH4]+), respec-

tively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).
cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/” indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species; “–” indicates that ion intensities of both ions were almost

the same and therefore, sn1/sn2 composition could not be deduced, snGal indicates the presence of an acyl residue linked to galactosyl moiety.
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Table A6 | Oxidized acylated MGD species identified in wounded A. thaliana leaves.

Sum

formula

Identified

galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0

0.5h

(nmol g−1)c

C59H90O13 OPDA/dnOPDA-MGD-16:3 1024.7 613.2/595.1 1029.6 737.4/765.5 24.9 3.5 ± 0.9

C59H96O13 OPDA/dnOPDA-MGD-16:0 1030.7 613.1/595.1 1035.7 743.5/771.5 30.1 20.5 ± 7.6

C59H88O14 OPDA/dnOPDA-MGD-

dnOPDA

1038.6 613.1/595.1 1043.6 751.4/779.4 18.3 7.5 ± 3.5

C61H96O12 OPDA/16:3-MGD-18:3 1038.5 613.2/595.3 1043.5 765.4/793.4/751.5 37.4 3.0 ± 3.0

18:3/16:3-MGD-OPDA 751.4/793.4/765.4

C61H104O12 18:1/16:1-MGD-OPDA 1046.7 593.1/575.3 1051.7 796.5/797.5/759.5 36.5 0.5 ± 0.3

C61H106O12 18:1/16:0-MGD-OPDA 1048.8 595.2/577.2 1053.7 771.3/797.2/761.8 37.8 0.3 ± 0.3

C61H94O13 OPDA/dnOPDA-MGD-18:3 1052.7 613.2/595.2

641.1/623.1

1057.6 765.4/793.4/779.4 27.1 11.4 ± 6.2
OPDA/OPDA-MGD-16:3 765.4/807.4

C61H96O13 OPDA/dnOPDA-MGD-18:2 1054.7 613.2/595.1 1059.7 767.4/795.5 28.3 1.8 ± 0.9

C61H98O13 OPDA/OPDA-MGD-16:1 1056.7 613.2/595.1 1061.7 769.5/807.4 29.7 1.8 ± 1.0

C61H98O13 OPDA/dnOPDA-MGD-18:1 1056.7 613.2/595.1 1061.7 769.5/807.4/779.5 30.1 2.6 ± 1.3

C61H100O13 OPDA/dnOPDA-MGD-18:0 1058.7 613.2/595.1 1063.7 771.4/799.5 31.8 1.0 ± 0.7

C61H100O13 OPDA/OPDA-MGD-16:0 1058.7 641.1/623.2 1063.7 771.5 31.1 13.0 ± 7.5

C61H92O14 OPDA/dnOPDA-MGD-OPDA

(Ara-E)

1066.7 613.5/595.3 1071.6 779.4/807.4 20.4 181.5 ± 76.1

C61H92O15 OPDA/dnOPDA-MGD-

(PPA1/PPB1)

1082.5 613.3/595.5 1087.5 795.4/823.5/779.6 19.9 2.6 ± 1.0

C61H94O15 OPDA/dnOPDA-MGD-

(HPOT/ketol-18:2)

1084.5 613.2/595.3 1089.5 797.4/825.3/779.5 19.4 0.9 ± 0.8

C61H94O15 OPDA/OPDA-MGD-

(HPHT/ketol-16:2)

1084.5 641.1/623.1 1089.5 797.2/807.4 19.4 n.q.

C63H100O12 18:3/18:3-MGD-OPDA 1066.7 613.3/595.5 1071.7 793.4 33.2 3.8 ± 1.2

C63H98O13 OPDA/OPDA-MGD-18:3 1080.7 641.1/623.1 1085.5 793.5/807.4 28.2 n.q.

C63H100O13 OPDA/OPDA-MGD-18:2 1082.7 641.1/623.2 1087.7 795.5/807.4 29.7 1.5 ± 1.0

C63H102O13 OPDA/OPDA-MGD-18:1 1084.7 641.1/623.1 1089.7 797.5/807.4 31.38 n.q.

C63H104O13 OPDA/OPDA-MGD-18:0 1086.5 641.1/623.1 1091.7 799.5/807.4 23.4 n.q.

C63H96O14 OPDA/OPDA-MGD-OPDA

(Ara-G)

1094.7 641.2/623.5 1099.7 807.5 22.5 67.7 ± 26.8

C63H98O16 OPDA/OPDA-MGD-

(HPOT/ketol-18:2)

1112.5 641.1/623.1 1117.5 825.4/807.5 20.7 n.q.

OPDA/methyl-ketol-16:2-

MGD-methyl-ketol-18:2

C63H100O16 Methyl-ketol-18:2 /dnOPDA-

MGD-methyl-ketol-18:2

1130.7 645.2/627.3 1135.5 843.4/839.4 23.1 n.q.
811.5/871.5

aFragment ions corresponding to [M-monoGal-snGal-NH4]+ (equals to [M-C6H11O5-snGal-NH4]+) or [M-monoGal-O-snGal-NH4]+ (equals to [M-C6H11O6-snGal-NH4]+), respec-

tively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).
cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/” Indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species; “–” means ion intensities of both ions were almost the same

and therefore, sn1/sn2 composition could not be deduced, snGal means acyl residue liked to galactosyl moiety.

n.q., Species not quantified.
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Table A7 | Oxidized acylated DGD species identified in wounded A. thaliana leaves.

Sum

formula

Identified galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0 0.5 h

(nmol g−1)c

C69H106O19 OPDA/OPDA-DGD-OPDA 1256.7 641.1/623.2 1261.7 969.5 18 9.4 ± 5.0

aFragment ions corresponding to [M-monoGal-snGal-NH4]+ (equals to [M-C6H11O5-snGal-NH4]+) or [M-monoGal-O-snGal-NH4]+ (equals to [M-C6H11O6-snGal-NH4]+), respec-

tively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).
cGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/”Indicates that ion intensity ratio pointed towards the sn1/sn2 composition of this galactolipid species; “–” means ion intensities of both ions were almost the same

and therefore, sn1/sn2 composition could not be deduced, snGal means acyl residue liked to galactosyl moiety.

Table A8 | Non-oxidized MGM species identified in wounded A. thaliana leaves.

Sum

formula

Number of

acyl carbons:

number of

double

bonds-

galactolipid

class

Identified

galactolipid

species

m/z Used for

head group

identification

[M + NH4]+

Fragment

ions of

[M + NH4]+ a

m/z Used for

side chains

identification

[M + Na]+

Fragment

ions of

[M + Na]+ b

RT

(minute)

Col-0 0.5 h

(nmol g−1)c

C27H50O9 18:1-MGD 18:1-MGM 536.4 356.8/339.0 n.d. n.d. 14.6 0.5 ± 0.4

264.9/247.0

C27H46O9 18:3-MGD 18:3-MGM 532.4 352.9/334.9 n.d. n.d. 5.6 28.8 ± 26.4

260.9/242.9

aFragment ions corresponding to [M–monoGal-snGal–NH4]+ (equals to [M–C6H11O5–snGal–NH4]+) or [M–monoGal–O–snGal–NH4]+ (equals to [M–C6H11O6–snGal–NH4]+),

respectively.
bFragment ions corresponding to [M + Na-sn1]+ or [M + Na-sn2]+, respectively (sn1/2 = Rsn1/sn2 COO−

).

“/”Indicates that ion intensity ratio pointed towards the sn1/sn2 composition of this galactolipid species; “–” means ion intensities of both ions were almost the same

and therefore, sn1/sn2 composition could not be deduced, snGal means acyl residue liked to galactosyl moiety.

Table A9 | Non-oxidized SQD species identified in wounded A. thaliana leaves.

Sum

formula

Identified galactolipid

species

m/z Used for head group

identification [M − H]−
Fragment ions of

[M − H]+
RT

(minute)

Col-0 0.5 h

(nmol g−1)a

C45H76O12S 18:3/18:2-SQD 839.6 283.0/559.2/561.2 29.9 17.8 ± 12.2

C43H78O12S 18:2/16:0-SQD 817.6 225.8/255.3/283.0/537.2/561.2 31.4 66.4 ± 47.0

C43H78O12S 18:2/16:0-SQD 817.6 255.3/283.0/537.3/561.2 32.7

C43H76O12S 18:3/16:0-SQD 815.6 225.0/255.4/283.1/537.2/559.2 31 502.9 ± 629.4

C41H78O12S 16:0/16:0-SQD 793.6 283.1/537.2 33.9 6.4 ± 6.5

C41H76O12S 16:1/16:0-SQD 791.6 535.1/537.2 32.5 0.3 ± 0.5

C41H72O12S 16:3/16:0-SQD 787.6 283.1/531.0/537.2 29.6 2.8 ± 3.8

aGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/”indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species.
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Table A10 | Oxidized SQD species identified in wounded A. thaliana leaves.

Sum formula Identified galactolipid species m/z Used for head group

identification [M − H]−
Fragment ions of

[M − H]+
RT (minute) Col-0 0.5 h

(nmol g−1)a

C57H96O15S HPHT/16:0-SQD 819.5 282.7/537.1/563.3 33.6 n.q

C46H76O14S 18:3/methyl-ketol-18:2-SQD 883.3 283.0/323.1/589.2/605.2 23.4 n.q

aGiven are the amounts of the respective species detected 30 min after mechanical wounding stimulus.

“/”indicates that ion intensity ratio pointed toward the sn1/sn2 composition of this galactolipid species.

n.q., Species not quantified.
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