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The objective of this study was to estimate the contribution of each autosome to genetic
variation of milk yield, fat, and protein percentage and somatic cell score in Holstein cat-
tle. Data on 2294 Holstein bulls genotyped for 39,557 autosomal markers were used.
Three approaches were applied to estimate the proportion of genetic variance attributed to
each chromosome. In two of them, marker-derived kinship coefficients were computed,
using either marker genotypes observed on the whole genome or on subsets relative
to each chromosome. Variance components were then estimated using residual maxi-
mum likelihood in method 1 or a regression-based approach in method 2. In method 3,
genetic variances associated to each marker were estimated in a linear multiple regres-
sion approach, and then were summed up chromosome-wise. Generally, all chromosomes
contributed to genetic variation. For most of the chromosomes, the amount of variance
attributed to a chromosome was found to be proportional to its physical length. Neverthe-
less, for traits influenced by genes with very large effects a larger proportion of the genetic
variance is expected to be associated with the chromosomes where these genes are.This
is illustrated with the DGAT1 gene on BTA14 which is known to have a large effect on fat
percentage in milk. The proportion of genetic variance for fat percentage associated with
chromosome 14 was two to sevenfold (depending on the method) larger than would be
predicted from chromosome size alone. Based on method 3 an approach is suggested to
estimate the effective number of genes underlying the inheritance of the studied traits,
yielding numbers between N ≈ 400 (for fat percentage) to N ≈ 900 (for milk yield). It is
argued that these numbers are conservative lower bound estimates, but are in line with
recent findings suggesting a highly polygenic background of production traits in dairy cattle.
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INTRODUCTION
The use of information on genealogy as a means to measure the
degree of relatedness of individuals in a population has been
used for several decades in many different branches of genetics.
In the field of livestock genetics and breeding, the most relevant
application of this idea has been the use of pedigree informa-
tion to construct the so called numerator relationship matrix. The
off-diagonal elements of this matrix are the numerators of the
coefficients of relationship (Wright, 1922), which are twice the
kinship between the animals represented by its rows and columns,
and the diagonal elements are equal to 1 plus the inbreeding coef-
ficient (Wright, 1922) of the corresponding animal, which is also
the kinship coefficient of this animal with itself. The inverse of
this matrix has been widely and successfully used for best linear
unbiased prediction of breeding values (Henderson, 1963), as well
as for estimation of genetic variance components for most of the
economically important traits in all livestock species.

The advent of molecular techniques for genotyping individ-
uals using panels of specific loci (for instance, single nucleotide
polymorphisms, SNP) made it possible to identify resemblance
between individuals based on the observed genetic variants that

they carry. The number of loci in such panels has sharply increased
in the recent years and the current developments in this field
(e.g., Eck et al., 2009) indicates that full genome sequences should
be available soon. Therefore, very accurate estimates of realized
relationships (i.e., based on observed similarity between marker
genotypes or sequences) are becoming feasible and will achieve
maximum accuracy when full sequences are available.

As pointed out by Schork (2001), elements of the numera-
tor relationship matrix built from pedigree contain the expected
genome sharing for two individuals, whereas the marker-based
estimates of whole genome–allele sharing are calculated by sum-
ming up allele sharing estimates at many (possibly all) loci in the
genome. Hence, the marker approach accommodates variation
in kinship among similarly related animals (e.g., full- or half-sibs)
and thus more adequately characterizes the genome sharing of two
animals than can be achieved through the use of pedigree-based
expectations alone.

A number of methods for computing relationships from
marker data have been proposed but results from analyses using
one or another are likely to differ to a minor extent. Thomas (2005)
compared estimates of heritability derived with relationships
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computed from several different methods and reported that the
additional error introduced by using estimated rather than true
relationships outstrips any difference in the amount of error due
to the choice of method.

The use of realized relationship matrices built from whole
genome marker information has been recently applied both in
best linear unbiased prediction of breeding values and estimation
of variance components (e.g., Hayes and Goddard, 2008; Lee et al.,
2010). In both studies, results indicated that the estimation of vari-
ance components and genome-based prediction of breeding values
was more accurate using marker-based rather than pedigree-based
relationship matrices.

The idea of using marker genotypes to estimate whole genome
genetic similarity between individuals can be extended to the esti-
mation of the degree of similarity within specific segments of the
genome (e.g., chromosomes) as well. Then the proportion of phe-
notypic variance attributed to genetic variation in a specific region
(for instance, a chromosomal heritability) can be estimated anal-
ogously (Ponz et al., 2001; Schork, 2001). Such an approach was
applied by Visscher et al. (2007) in the chromosome-wise partition
of genetic variation for human height.

The objective of this study was to investigate the distribution
of genetic variation observed in economically important traits of
dairy cattle across the genome using high throughput genotype
information. We will use three different approaches to quantify
the association between chromosome length and genetic variance
explained. Based on the results we propose a method to estimate
the effective number of genes underlying the inheritance of the
traits studied. Finally, the impact of the empirical results on the
efficiency of genomic selection schemes is discussed.

MATERIALS AND METHODS
DATA
Genotypic, phenotypic, and pedigree data were collected on a set
of 2294 Holstein–Friesian AI Bulls born between 1981 and 2003.
The pedigree traced back to 1906 and contained 21,646 animals
which were up to 21 generations apart from the founder popula-
tion. The 2294 bulls belonged to generations number 7 to 20 in
the pedigree. They were sons of 362 bull sires and 1858 bull dams.
Number of offspring per bull sire ranged from 1 to 80 with an aver-
age of 6.37 and number of offspring per bull dam ranged from 1
to 8 with an average of 1.24. The average numerator relationship
coefficient among the bulls was 0.09 ± 0.04 and almost all of them
were inbred. The average inbreeding coefficient was 0.04 ± 0.02.

The 2294 samples were successfully (at most 3% of missing
calls) genotyped for the Illumina BovineSNP50 BeadChip. The
genotyping was done according to the manufacturer’s instruc-
tions using the Illumina BeadStudio® software to create genotypes
from the raw data applying the settings recommended by Illu-
mina. The chip assay comprises 54,001 SNP markers (Matukumalli
et al., 2009), from which 52,255 were mapped to the BTAU4.0
assembly (ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/). Aver-
age space between mapped markers in the chip is 51.5 kb and
median spacing is 37.32 kb. Besides the 1746 SNPs located in
unassigned contigs (unknown chromosome and/or position in the
BTAU4.0 assembly), some of the markers were also excluded from
the data set due to more than 5% of missing calls or to minor allele

frequency lower than 0.05. Criteria for filtering samples and mark-
ers from the data set were based on results from the study of The
Wellcome Trust Case Control Consortium (2007). The final num-
ber of markers remaining after filtering and quality control was
39,557. Given the density of the panel and the low rate of missing
calls after the filtering process, imputation of missing genotypes
using linkage disequilibrium (LD) information is expected to be
very accurate. Imputation was performed using the software fast-
PHASE 1.3.0c (Scheet and Stephens, 2006). The final numbers of
markers and the inter-marker distances within each autosome are
presented in Table 1.

Four traits related to production and typically included in
national dairy cattle genetic evaluations were considered in this
study: milk yield (Mkg), protein percentage (Ppr), fat percentage
(Fpr), and somatic cell score (SCS). Estimated breeding values
(EBV), computed using a random regression test day model, were
available for all traits. Detailed information about the traits and the
breeding value estimation can be found in Liu et al. (2001). Basic
descriptive statistics for the traits’ EBV are presented in Table 2.
The accuracies of EBV for Mkg, Fpr, and Ppr were the same and
ranged from 0.88 to 0.99 with a mean of 0.94 and an SD of 0.02.
The accuracies of EBV for SCS ranged from 0.76 to 0.99 with a
mean of 0.88 and an SD of 0.04. Further information regarding
the data can be found in Pimentel et al. (2010).

GENOMIC PAIR-WISE RELATEDNESS
For every pair of genotyped animals a coefficient of kinship was
computed following the similarity index approach proposed by
Eding and Meuwissen (2001). Briefly, for each marker locus a
genetic similarity index between a pair of animals x and y is com-
puted as Sxy = 0.25(I 11 + I 12 + I 21 + I 22), where I ij is 1 if allele
i in x is identical to allele j in y, or 0 otherwise. If founder alle-
les are unique, Sxy averaged over multiple loci was shown to be
an unbiased estimator of the kinship coefficient, i.e., the proba-
bility of identity by descent, IBD (Eding and Meuwissen, 2001).
When founder alleles are not unique, then a correction is needed
to account for the probability of alleles being alike in state (AIS).
For a given locus, the kinship coefficient between a pair of animals
i and j (fij) is therefore estimated as:

f̂ij = Sij − s

1 − s

where s is the similarity index in the founder population, i.e.,
the probability of two alleles being AIS in the founder population
(where all animals are unrelated). An estimate of s can be obtained
from data on the founder population as:

s =
2∑

k=1

q2
k

where qk is the frequency of the kth allele in the founder
population.

Final estimates of kinship coefficients between every pair of
animals were computed by averaging across all loci. Since esti-
mates of s differed from one locus to another, the inverse of the
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Table 1 | Numbers of markers and inter-marker distances (in base-pair) across chromosomes.

BTA Length (in Mbp) Final number of markers Average distance Minimum distance Maximum distance

1 161 2562 62874 1 683859

2 141 2077 67736 1 651937

3 128 1964 65159 1 813670

4 124 1943 63915 1 920943

5 126 1665 75603 147 1209051

6 123 1983 61827 49 826195

7 112 1692 66244 2792 657006

8 117 1800 64988 1 738260

9 108 1545 69995 49 760804

10 106 1676 63405 1 2081464

11 110 1744 63208 424 989521

12 85 1279 66727 238 788732

13 84 1365 61831 1 701049

14 81 1321 61608 1 716323

15 85 1317 64281 1 683257

16 78 1209 64418 179 1015396

17 77 1240 61700 5909 840350

18 66 1063 62255 772 1586663

19 65 1077 60607 1367 553069

20 76 1215 62115 1671 1045484

21 69 1050 65938 1 849428

22 62 988 62634 1 601289

23 53 844 63240 1780 510486

24 65 988 65787 3205 592990

25 44 792 55649 1915 589882

26 52 818 63305 1 682582

27 49 771 63252 4669 1776784

28 46 746 61720 1 496079

29 52 823 63234 1 1505769

Table 2 | Descriptive statistics of EBVs for traits used in the analyses.

Trait Abbrev. Mean SD Min. Max.

Milk yield (kg) Mkg 731.04 611.32 −1362.0 2892.0

Fat percentage Fpr −0.097 0.029 −0.10 0.11

Protein percentage Ppr −0.028 0.012 −0.47 0.50

Somatic cell score SCS 100.37 12.08 58.0 139.0

variance of the estimate of fij was used as weight when taking the
average, as proposed by Eding and Meuwissen (2001).

The bulls considered in this study are routinely included in
national genetic evaluations. Hence, fairly complete and deep
information regarding their ancestry was available. A pedigree
comprising 21,646 animals tracing back to 1906 was used. This
information was used for estimating allele frequencies in the
founder population using the mixed model equations method
proposed by Gengler et al. (2007).

VARIANCE COMPONENT ESTIMATION
The proportion of genetic variance contributed by each of the 29
autosomes was estimated with three different approaches, two of
which using estimated genomic kinships.

In method 1 variance components were estimated by resid-
ual maximum likelihood (REML), as implemented in ASReml
(Gilmour et al., 2009). Fitted models related the EBV of a given trait
to an overall mean and a random genomic effect. A full model was
fitted in which the assumed covariance structure of the random
genomic effect was a kinship matrix built using information on the
whole set of 39,557 markers distributed across all autosomic chro-
mosomes. Estimated genomic and residual variances were then
used to compute the proportion of the total variance explained by
the whole genome. The contribution of each chromosome to the
variance explained by the genome was then estimated by fitting
reduced models in which the assumed covariance was a kinship
matrix computed using all but the respective chromosome. The
ratio of variance was computed for the reduced models and the

www.frontiersin.org May 2011 | Volume 2 | Article 19 | 3

www.frontiersin.org
http://www.frontiersin.org/livestock_genomics/archive


Pimentel et al. Genome partitioning of genetic variation

contribution of each chromosome was estimated as the reduction
relative to the proportion of variance explained in the full model.

Method 2 was a regression-based procedure similar to the one
presented in Thomas et al. (2000) for estimating heritability using
inferred relationships. For each trait a phenotypic similarity index
between each pair of animals was computed as:

Zi =
(
yi − ȳ

) (
y ′

i − ȳ
)

σ̂ 2

where Z i is the phenotypic similarity between pair i for a given
trait, y i and y ′

i are the observed trait values for pair i, ȳ is the
estimated mean and σ̂ 2 is the estimated variance of the trait. Pair-
wise relatedness estimates between each pair of individuals were
also calculated using the method of Eding and Meuwissen (2001),
but for each chromosome separately. Estimates of the proportion
of variance attributed to each chromosome were obtained with a
regression model relating the phenotypic similarity to the genomic
relationship relative to the given chromosome as follows:

Zi = 2kiβ + εi

where k i is the estimated kinship coefficient between pair i, β is the
proportion of variance in EBV explained by the variance in kinship
for the given chromosome and ε is a random residual term.

In method 3 allele substitution effects of all SNPs in the panel
on the analyzed traits were fitted in a multiple random regression
model similar to the BLUP method of Meuwissen et al. (2001).
Estimated SNP effects were calculated from the following mixed
model equations:

[
μ̂

α̂

]
=

[
ιt Wι ιt WX
Xt Wι Xt WX + Iφ

]−1 [
ιt Wy
Xt Wy

]

where μ is an overall mean; α is the vector of allele substitution
effects; ι is a vector of ones, of order equal to the number of geno-
typed bulls; X is the matrix of SNP genotypes, coded as the number
of copies of a given allele; y is the vector of EBVs; W was a diag-
onal matrix with the wkk element equal to the reliability on the
EBV of bull k; I is an identity matrix of order equal to the num-
ber of markers and φ is an assumed ratio of marker to residual
variances. For this estimation of marker effects the numerator was
computed as the additive variance of the trait divided by the num-
ber of markers. Estimated heritabilities from Liu et al. (2001) were
assumed. Estimated allele substitution effects were subsequently
used for computing a variance component for each of the mark-
ers as 2p(1 − p)α2, where p is the frequency of the reference allele
for the given marker. Variance components associated with each
chromosome were then calculated by summing up the estimated
variances of the markers within it.

In order to investigate the role of covariances, we used the
estimates of marker effects from the first step of method 3 and
calculated whole genome breeding values (wgBV = X α̂) and chro-
mosomal breeding values (cBV = Xiα̂i, where subscript i denotes
the set of markers within the given chromosome). Next we com-
puted the variances of wgBV, variances of cBV, and covariances
between all cBV for the four traits.

ESTIMATION OF EFFECTIVE NUMBER OF GENES
We assume that the inheritance of a trait is affected by N loci,which
all contribute the same proportion of genetic variance σ 2

a /N . The
N loci are distributed at random across the genome, i.e., the proba-
bility to be placed on a chromosome which comprises a proportion
p of the entire genome is p. Then, following the concept of method
3 the genetic variance per chromosome is calculated by adding the
variances of the loci assigned to the respective chromosome. Then
a regression of the length of chromosome on the proportion of
variance attributed to the respective chromosome is fitted and the
reliability R2 of this linear regression is calculated. If N is small,
the number of loci assigned to a chromosome will be variable by
chance and R2 will be low. With increasing values of N the pro-
portion of loci assigned to a chromosome will approach its relative
length compared to the whole genome length and R2 will increase
toward one. The effective number of genes for a trait is estimated
by the N value which leads to a similar R2 as obtained with
method 3.

We implemented the suggested approach in a simulation study.
The whole genome was subdivided in 29 autosomes according to
the length as reflected by the map information as given in Table 1.
N was modified from N = 100 to N = 5000 in steps of 100. For
each value, 1000 replicates were generated and analyzed.

RESULTS
Marker allele frequencies in the founder population were esti-
mated in a mixed model framework using observed marker geno-
types and genealogy information among genotyped animals and
their ancestors. Correlation between the estimated allele frequen-
cies in the founder population and the allele frequencies observed
in the sample of genotyped animals was 0.96. The absolute dif-
ference between frequencies ranged from 0 to 0.3 with a mean
and an SD of 0.055 ± 0.043. Kinship coefficients estimated from
marker data were plotted against the relationship coefficients esti-
mated from pedigree data (Figure 1). As in the study by Hayes
and Goddard (2008), marker and pedigree-derived relationship
coefficients were highly associated (correlation of 0.73).

Using method 1, the proportions of variance accounted for by
the genome when the full models were fitted were 0.377 (Mkg),
0.381 (Ppr), 0.369 (Fpr), and 0.438 (SCS). The contributions of
each autosome to the total genomic variance ranged from 0.007
(BTA 29) to 0.030 (BTA1) for Mkg, from 0.008 (BTA29) to 0.032
(BTA1) for Ppr, from 0.008 (BTA29) to 0.041 (BTA14) for Fpr, and
from 0.009 (BTA26) to 0.031 (BTA1) for SCS. The proportions of
variance contributed by each autosome against its physical length
for the four traits are presented in Figure 2.

When method 2 was applied, the proportion attributed to
each autosome ranged from 0.023 (BTA25) to 0.16 (BTA1) for
Mkg, from 0.019 (BTA25) to 0.158 (BTA14) for Ppr, from 0.018
(BTA25) to 0.34 (BTA14) for Fpr, and from 0.024 (BTA25) to
0.153 (BTA4) for SCS. Proportions of variance explained by the
autosomes against their physical lengths are shown in Figure 3.
Regression analyses were also performed using the kinship coeffi-
cients computed with all the markers in the panel (analogously to
the full model in method 1). The estimated proportions of total
variance accounted for by the whole genome were 0.761 (Mkg),
0.512 (Ppr), 0.624 (Fpr), and 0.753 (SCS).
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In method 3, the proportions of variance explained by each
marker (expressed as the ratio of estimated marker variance to the
sum across the whole genome) are illustrated in the Manhattan

FIGURE 1 | Kinship coefficients estimated from marker data against

relationship coefficients estimated from pedigree data.

plots presented in Figure 4. The contribution of each chromo-
some to the total genomic variance was computed as the sum of
the estimated variances at each marker within the given chromo-
some. Proportion attributed to each chromosome ranged from
0.021 (BTA27) to 0.084 (BTA14) for Mkg, from 0.018 (BTA28) to
0.113 (BTA14) for Ppr, from 0.014 (BTA26) to 0.23 (BTA14) for
Fpr, and from 0.02 (BTA27) to 0.05 (BTA5) for SCS. The propor-
tions of variance attributed to each chromosome plotted against
their physical lengths are presented in Figure 5.

The degree of agreement among the results obtained from
each of the three estimation methods applied was also assessed.
Spearman correlation coefficients between proportions of vari-
ance explained by each chromosome across methods and traits
are presented in Table 3. In general, a greater degree of agreement
between the results of analyses with methods 1 and 3 was observed.
A comparison of results from the three methods suggests that the
chromosomal variance from method 2 is overestimated. Methods
1 and 3 use information on the whole genome simultaneously,
either by contrasting a full model considering the whole genome
with a reduced model leaving one chromosome out, or by using
all markers in the genome in a multiple regression framework.
Method 2 uses only information from a given chromosome at a
time, which might explain this overestimation.

DISCUSSION
The regressions of the proportion of variance accounted for by a
given chromosome on its physical length fitted very well a linear
relationship, as illustrated by fitted lines (Figures 2, 3, and 5) and

FIGURE 2 | Proportion of genetic variance for milk yield (blue), protein percentage (orange), fat percentage (green), and somatic cell score (brown)

explained by each autosome (estimated using method 1) against physical length of the chromosome.
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FIGURE 3 | Proportion of genetic variance for milk yield (blue), protein percentage (orange), fat percentage (green), and somatic cell score (brown)

explained by each autosome (estimated using method 2) against physical length of the chromosome.

corresponding coefficients of determination (R2). These results
suggest that the larger the chromosome the more genetic variance
it explains. This was observed in the three estimation methods
applied here but more pronouncedly in methods 1 and 3. The
overall trend observed with our data is in agreement with results
from Visscher et al. (2007), who analyzed data on human height
and reported statistically highly significant relationship between
the proportion of additive genetic variance explained by a chro-
mosome and its genetic length. They concluded that their results
imply that genetic variation for human height can be explained by
many loci distributed across all autosomes with an additive mode
of gene action.

One major exception from this relationship was observed with
our data, though. The amount of genetic variance explained by
BTA14 deviated dramatically (especially for Fpr and Ppr) from
the general trend stated above. The reason for that is already well
known to dairy genetics researchers and is clearly illustrated in the
Manhattan plots of Figure 4. The plots of Mkg, Ppr, and Fpr show
a high peak toward the centromeric end of BTA14, in the region of
the DGAT1 (diacylglycerol O-acyltransferase 1) gene. Grisart et al.
(2002) reported that a polymorphism in DGAT1 explained 51% of
the variance in sire’s daughter yield deviations for fat percentage,
14% of the variance in protein percentage, and 18% of the variance
in milk yield. The deviation of the proportion of variance in Mkg,
Ppr, and Fpr explained by BTA14 from what would be expected
from its physical length was most pronounced with estimation

method 3 (Figure 5), but could also be observed with the other
two estimation methods, especially for Ppr and Fpr (Figures 2
and 3). The impact of DGAT1 on these traits is also illustrated by
the influence of the BTA14 data point on the measure of fit of
the linear regression of proportion of variance on physical length.
For instance, the R2 of the regression for SCS with method 1 was
0.90 compared to 0.47 for Fpr (Figure 2). Similar contrasts can
also be observed by comparing the R2 of the regressions from the
other methods as well (Figures 3 and 5). We performed the same
regression analyses but leaving the BTA14 out of the data set and
checked the difference in proportion of variability in the data set
accounted for by the regression model. Comparisons of R2 val-
ues from the regressions with and without the BTA14 data points
reveal a clear increase in the goodness of fit for Mkg, Ppr, and Fpr
when this chromosome was left out (Table 4). Values of R2 from
these regressions are particularly large for methods 1 and 3. In
comparison with method 1, the R2 from method 3 are lower due
to a peak at the end of BTA5, which is especially more pronounced
for Fpr (Figure 4). For SCS hardly any change could be observed,
which reflects the fact that this trait is not strongly influenced by
DGAT1. Results for SCS are therefore similar to the ones reported
by Visscher et al. (2007) for human height, providing evidence that
SCS in dairy cattle also seems to be governed by many loci with
small effects distributed across the whole genome.

In method 1, the sums of the estimated contributions from each
autosome to the total genomic variance for the four traits were
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FIGURE 4 | Proportion of genetic variance for milk yield (Mkg), protein percentage (Ppr), fat percentage (Fpr), and somatic cell score (SCS) explained

by each marker in the panel (estimated using method 3).

0.459 (Mkg and Ppr), 0.465 (Fpr), and 0.503 (SCS). These values
are greater than the proportions of variance attributed to the whole
genome, as estimated when fitting the full models. The sums of
the proportions of variance attributed to each chromosome with
method 2 were even farther from the ones estimated for the whole
genome and actually above 1, namely 2.78 (Mkg), 1.88 (Ppr),

2.33 (Fpr), and 2.74 (SCS). Hayes et al. (2010) estimated pro-
portions of genetic variance attributed to segments of the genome
and also reported that the sums of the segment variances were
much greater than the total (204, 107, and 213% for fat percentage,
overall type, and proportion of black in Australian Holstein,
respectively). As an explanation, they mention that segments next
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FIGURE 5 | Proportion of genetic variance for milk yield (blue), protein percentage (orange), fat percentage (green), and somatic cell score (brown)

explained by each autosome (estimated using method 3) against physical length of the chromosome.

Table 3 | Spearman correlation coefficients between proportions of variance explained by chromosomes across the three estimation methods

for the four traits.

Milk yield Protein percentage Fat percentage SCS

M1 M2 M1 M2 M1 M2 M1 M2

M2 0.54 0.58 0.52 0.42

M3 0.79 0.75 0.89 0.73 0.94 0.60 0.79 0.66

Table 4 | Coefficients of determination (R2) of regressions of proportion of variance on physical length of each chromosome, including and

excluding BTA14 from the analyses.

Milk yield Fat percentage Protein percentage SCS

With Without With Without With Without With Without

Method 1 0.88 0.91 0.47 0.95 0.91 0.94 0.90 0.90

Method 2 0.44 0.52 0.03 0.27 0.19 0.40 0.32 0.32

Method 3 0.33 0.82 0.03 0.64 0.21 0.77 0.77 0.79

to the ones containing important genes (e.g., DGAT1) also explain
large amounts of variance, so that the variances associated with
these genes are counted more than once. Another way of inter-
preting this multiple counting of variances would be to attribute
them to the existence of positive covariances between segments.

The variances of wgBV were 335097 (Mkg), 132.67 (Ppr), 819.65
(Fpr), and 110.62 (SCS), whilst the sums of variances of cBV were
180338 (Mkg), 80.09 (Ppr), 483.1 (Fpr), and 57.14 (SCS). The
contributions of the sums of (co)variances among cBV to the total
variances (wgBV) of the four traits are illustrated as stacked bars
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in Figure 6. In the analyzed sample, the magnitudes of the covari-
ances between pairs of chromosomes were much lower than the
chromosomal variances, but the summed covariances across all
chromosomes explained between 40 and 50% of the total genomic
variance.

The relative magnitudes of the variances of cBV also concurred
with the results from the variance component estimation, in the
sense that larger chromosomes contributed a larger proportion of
variance (more clearly noted for SCS) and a sharply higher con-
tribution from BTA14 was observed for the other traits, especially
Ppr and Fpr.

The reported results are not suited to proof that an infinites-
imal model of inheritance is underlying the traits studied (after
correction for DGAT1). Nevertheless the observed results are close
to what would be expected if an infinitesimal model was the true
state of nature. This will be illustrated with the results from the
simulation study that was performed in order to assess the effec-
tive number of genes that underlie the trait under consideration.
The boxplots of R2 values from the regression of chromosome
length on number of loci within it, for different number of total
simulated loci are shown in Figure 7. The whiskers of the boxplot
cover the 95% quantile of the obtained R2 values.

To estimate the effective number of genes underlying the traits
considered, we compare these values with the empirical R2 val-
ues obtained with method 3 in the actual data set. To avoid a too
strong influence of the presence of the DGAT1 gene on the results,
we use as a comparison the R2 values after exclusion of chromo-
some BTA14 as shown in Table 4. The mean R2 values range from
R2 = 0.64 for Fpr to R2 = 0.82 for Mkg. These values are shown
in Figure 7 as horizontal lines. The observed value for fat percent-
age is in close agreement with the mean simulated value obtained
with N ≈ 400, but R2 = 0.64 is within the 95% quantile obtained
with 200 ≤ N ≤ 600. For milk yield, the best estimate of the effec-
tive number of genes is N ≈ 900 with a 95% confidence range
600 ≤ N ≤ 1500. The corresponding values for protein percent are
N ≈ 700 with a 95% confidence range 400 ≤ N ≤ 1100 and for SCS
N ≈ 800 with a 95% confidence range 500 ≤ N ≤ 1300.

FIGURE 6 | Sums of variances (pink) and covariances (grey) between

predicted chromosomal breeding values. Traits are milk yield (Mkg),
protein percentage (Ppr), fat percentage (Fpr), and somatic cell score (SCS).

It should be noted that the suggested estimate of the effec-
tive number of genes is a conservative (lower bound) estimate
of the true number of genes involved. Most of the assumptions
made in this approach lead to a downward bias in the estimate
of N. If the proportion of variance assigned to each gene is not
uniform but skewed, with few major genes contributing large
variation and many genes contributing little variation, the pro-
portion of genetic variance allocated on one chromosome will be
dominated by the number of major genes allocated on that chro-
mosome. Due to their small number, the distribution of genetic
variance will be more unbalanced and resulting R2 values will
be reduced. A skewed (exponential or gamma-like) distribution
of absolute additive allele effect sizes was demonstrated empiri-
cally, e.g., for Drosophila melanogaster (Shrimpton and Robertson,
1988; Dilda and Mackay, 2002), cattle (Hayes and Goddard, 2001),
and pigs (Bennewitz and Meuwissen, 2010), which will result in a
less uniform distribution of genetic variance across chromosome
segments, as empirically demonstrated by Hayes et al. (2010). Sim-
ilarly, a non-random distribution of genes, as reflected,e.g.,by gene
clusters (see, e.g., Larson et al., 2006), will lead to a chromosomal
accumulation of genes and by this reduce the expected R2.

The obtained estimates of N ≈ 400 (for fat percentage) to
N ≈ 900 (for milk yield) effective genes, estimated with a con-
siderable standard error, are rather high, even more so since
they have to be considered as lower bound estimates of the true
numbers. Studies to estimate the total number of underlying loci
for quantitative traits are mainly based on QTL studies in crosses
or mapping designs (Otto and Jones, 2000). Following such an
approach, Chamberlain et al. (2007) suggested that at least 30

FIGURE 7 | Boxplots of R 2 values from the regression of chromosome

length on number of loci within it, for different number of total

simulated loci. Horizontal lines depict the 95% quantile bounds for the
number of loci inferred from R2 values (method 3, without BTA14) for milk
yield (blue), protein percentage (orange), fat percentage (green), and
somatic cell score (brown).
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QTL were likely to be segregating for milk production traits in the
Holstein population. This type of estimation is heavily affected
by the power of the underlying QTL mapping experiment, so
that the authors suggest that this number will likely increase if
the power of the experiment increases. Although Otto and Jones
(2000) have suggested an approach to use QTL-based estimators
to assess how many loci may have been missed, it must be doubted
that the number of loci with minor effects will be estimated with
reasonable precision.

Experimental studies have revealed that for major biological
mechanism a substantial proportion of all genes plays an indis-
pensable role. In a study based on knockout-mice, Reed et al.
(2008) found that 31% of the knocked out genes had an effect on
body weight, resulting in an estimate of ∼6000 genes underlying
growth. Slightly smaller, but still substantial proportion of rele-
vant genes for indispensable traits were obtained in experimental
studies with flies, worms, and yeast (Ross-Macdonald et al., 1999;
Giaever et al., 2002; Kamath et al., 2003). Since milk production
and milk composition are traits of crucial importance in mam-
malian species, a similar proportion of genes underlying this trait
complex in dairy cattle seems reasonable, so that the estimated
400–900 effective genes fit well into the general picture.

The number of genes underlying quantitative traits in dairy
cattle also was discussed in the context of the accuracy of pre-
diction of genomic breeding values (Daetwyler et al., 2010). The
authors argue that (i) accuracy of prediction using genomic BLUP
(Meuwissen et al., 2001) mainly depends on the number of inde-
pendently segregating chromosome segments Me, which in turn
is a function of genome length and effective population size; and
(ii) accuracy of prediction using BayesB (Meuwissen et al., 2001)
is mainly dependent on the number of QTL N QTL involved in
the inheritance of the trait. They further argue that accuracies
obtained with both methods will be similar if N QTL is large and
that in real data set Me is an approximate upper limit for possi-
ble estimates of N QTL. When applying Eq. 4 of Daetwyler et al.
(2010) to accuracies obtained with BayesB in Norwegian Red Cat-
tle (Luan et al., 2009) for milk yield the resulting estimate for N QTL

is 745 with a 95% confidence interval 548 < N QTL < 1013. Since
the estimate for Me derived from the accuracies obtained with
genomic BLUP in the same dataset is 734, the estimated number
of 745 underlying QTL must be considered as a lower bound esti-
mate. In any case it is in the same order of magnitude as the result
(N ≈ 900) obtained in our study for milk yield. Despite the fact
that these results cannot be considered as a proof of the valid-
ity of the infinitesimal model underlying the studied traits, the

study provides another strong piece of evidence that a very large
number of genes is involved in the inheritance of milk yield and
composition traits.

In genomic selection programs, availability of genomic infor-
mation may also be used to improve upon the conventional
method and allow for even higher genetic progress through an
increase in accuracy of evaluation resulting from the use of better
knowledge about the genetic architecture underlying quantitative
traits. Daetwyler et al. (2010) and Hayes et al. (2010) showed how
different genetic architectures may influence the performance of
genomic evaluations and how this information can be used in
order to define methods that appropriately take that into account.
Such approaches would be applicable in cases where genomic
predictions are made in a two step procedure, i.e., estimation of
marker effects with subsequent summation of values of all marker
genotypes across the genome. In this case, whenever a quantitative
trait is regarded to be influenced by a very large number of loci each
with a small effect and none with large effects then an estimation
method that treats SNPs homogenously (e.g., BLUP of Meuwissen
et al., 2001) should be more appropriate. Daetwyler et al. (2010)
showed this with simulated data and Hayes et al. (2010) with
data on overall type in Holstein cattle. When the genetic archi-
tecture underlying a given quantitative trait suggests the presence
of genomic regions with outstanding relevance, a procedure that
allows for such variation (e.g., a Bayesian method) should appro-
priately account for that. If genomic evaluations are to be done
in a single step, where the genomic information is used for com-
puting realized relationship matrices and then setting up mixed
model equations (e.g., Legarra et al., 2009; Misztal et al., 2009),
then an option to account for the underlying genetic architecture
could be the application of weighting factors when computing
the marker-based relationship coefficients. This could account for
the underlying genetic architecture and make the proper adjust-
ments whichever class of trait (regarding distribution of effects
or associated variances) is under consideration. A first simple and
obvious choice one may think of would be the use of some esti-
mate of marker variance (e.g., the ones resulting from method 3)
as weights, but further research should be done in order to find
appropriate approaches.
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