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1 Introduction

Let X be a smooth projective algebraic variety defined over a number field
K. We will say that rational points on X are potentially dense if there exists
a finite extension K ′/K such that the set X(K ′) of K ′-rational points is
Zariski dense. What are possible strategies to propagate rational points on
an algebraic variety? We thought of two: using the group of automorphisms
Aut(X) and using additional geometric structures - like elliptic fibrations.
The class of K3 surfaces is an ideal test case for both methods.
One of our main results is:

Theorem 1.1 Let X be a K3 surface defined over a number field K. As-
sume that X has a structure of an elliptic fibration or an infinite group of
automorphisms. Then rational points on X are potentially dense.

Here is a more detailed list of what we learned: We don’t know if ratio-
nal points are potentially dense on a general K3 surface with Picard group
Pic(XC) = Z. In particular, we don’t know if rational points are dense on a
double cover of P2 ramified in a general curve of degree 6. However, we can
prove potential density for a divisor in the space of all such K3 surfaces, cor-
responding to the case when, for example, the ramification curve is singular
(cf. [6]). The overall picture is similar. In any moduli family of algebraic K3
surfaces we can find some union of algebraic subsets, including a divisor, such
that rational points are potentially dense on the K3 surfaces corresponding
to the points of this subset. More precisely,

Theorem 1.2 Let X be a K3 surface, defined over a number field K. As-
sume that rk Pic(XC) = 2 and that X does not contain a (−2)-curve. Then
rational points on X are potentially dense.

Remark 1.3 If rk Pic(XC) = 2 and if X does not contain a (−2)-curve then
either it has an elliptic fibration or it has an infinite automorphism group
(but not both!). For example, a quartic surface in P3 containing a smooth
curve of genus 2 and degree 6 doesn’t admit any elliptic fibrations, but the
group Aut(XC) is infinite (cf. [24] p. 583, [27]).

Theorem 1.4 Let X be a K3 surface over K with rk Pic(XC) ≥ 3. Then
rational points on X are potentially dense, with a possible exception of 8
isomorphy classes of lattices Pic(XC).
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Remark 1.5 If rk Pic(XC) = 3 then there are only 6 types of lattices where
we can’t prove potential density. There are only 2 types when rkPic(XC) = 4.
Potential density holds for all K3 with rkPic(XC) ≥ 5. All K3 surfaces with
rk Pic(XC) = 20 have infinite groups of automorphisms. We use Nikulin’s
classification of lattices of algebraic K3 surfaces (cf. [23], [22]).

First we consider the problem of density for general elliptic fibrations
E → P

1. Suppose that E has a zero section (i.e. E is Jacobian) and that
there exists a section of infinite order in the Mordell-Weil group of E . Then
a specialization argument shows that rational points are dense in Eb for a
Zariski dense set of fibers b ∈ P1 (cf. [28]). It turns out that even in absence
of global sections one can sometimes arrive at the same conclusion.

Definition 1.6 Let E → B be an elliptic fibration andM⊂ E an irreducible
multisection (defined over C) with the following property: for a general point
b ∈ B(C) there exist two distinct points pb, p

′
b ∈ (M∩Eb)(C) such that pb−p′b

is non-torsion in the Jacobian J (Eb)(C) of Eb. We will call such a multisection
an nt-multisection (non-torsion).

For example, if M is ramified in a smooth fiber of E then it is an nt-
multisection (cf. 4.4). We will say that M is torsion of order m if for all
b ∈ B and all pb, p

′
b ∈ M∩ Eb the zero-cycle pb − p′b is torsion of order m in

J (Eb). An easy lemma (but not a tautology!) says that if M is not torsion
of order m for any m ∈ N thenM is an nt-multisection (cf. 3.8). (There are
analogous notions for abelian schemes and torsors under abelian schemes.)

Proposition 1.7 Assume that E → P
1 has an nt-multisection which is a

rational or elliptic curve. Then rational points on E are potentially dense.

We want to study situations when rational or elliptic multisections occur
and to analyze constrains which they impose on the elliptic fibration (possible
monodromy, structure of singular fibers etc). We shall call fibrations with
finitely many (resp. none) rational or elliptic multisections hyperbolic (resp.
strongly hyperbolic). Unfortunately, we don’t know examples of hyperbolic
elliptic fibrations (without multiple fibers). The aim of Section 2 is to prove
the existence of a least one rational multisection on algebraic elliptic K3
surfaces. From this we will deduce in Section 3 the following theorem:
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Theorem 1.8 Let X be an algebraic K3 surface with rk Pic(XC) ≤ 19 ad-
mitting a structure of an elliptic fibration. Then this fibration has infinitely
many rational nt-multisections.

The proof goes roughly as follows: We find elliptic K3 surfaces E ′ → P
1

admitting a dominant map E ′ → X such that the genus of every irreducible
m-torsion multisection M′ ⊂ E ′ is ≥ 2. On the other hand, the deforma-
tion theory argument in Section 2 implies that E ′ contains a rational mul-
tisection which must be an nt-multisection. Its image in X is a rational
nt-multisection.

Acknowledgements. Part of this work was done while both authors were
visiting the Max-Planck-Institute in Bonn. We are grateful to the MPI for the
hospitality. The first author was partially supported by the NSF. The second
author was partially supported by the NSA. We would like to thank Joe Harris
and Barry Mazur for their ideas, suggestions and encouragement.

2 K3 surfaces

In this section we prove that every elliptic fibration on an algebraic K3 surface
has at least one rational multisection.

2.1 Generalities

There are several approaches to the theory of K3 surfaces. Algebraically, a K3
surface S (defined over some field of characterstic zero) is a smooth projective
surface with trivial canonical class KS = 0 and H1(S,OS) = 0. They are
parametrized by an infinite countable set of 19-dimensional algebraic spaces.
The main invariant is the Picard group Pic(S) which is isomorphic to a
torsion free primitive lattice of finite rank (≤ 20) equipped with a hyperbolic
even integral bilinear form.

Another approach is via Kähler geometry. A K3 surface S is a compact
simply connected Kähler surface equipped with a non-degenerate nowhere
vanishing holomorphic (2, 0)-form ωS. To obtain a natural parametrization
we have to consider marked K3 surfaces, which are pairs (S, σ) consisting of
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a K3 surface S and an isometry of lattices

σ : H2(S,Z)
∼→ L ' 3 · H ⊕ 2 · (−E8),

where H is the standard lattice with form xy and E8 is an 8-dimensional
even unimodular positive definite lattice. We will denote by 〈, 〉 the in-
tersection form on H2(S,Z). Marked K3 surfaces are parametrized by the
conformal class σC(H2,0(S,Z)) of their non-degenerate holomorphic forms -
the period. The latter lies in the quadric given by 〈ωS, ωS〉 = 0 (inside
P

21 = P(H2(S,Z)C)). The period (still denoted by) ωS satisfies the inequal-
ity 〈ωs, ωS〉 > 0. Therefore, marked Kähler K3 surfaces are parametrized
by points of a complex homogeneous domain Ω = SO(3,19)(R)/SO(2,18)(R).
(with the standard equivariant complex structure). Unmarked K3 surfaces
correspond to orbits of the group SO(3,19)(Z) on this space.

We will identify cycles and forms on S with their (co)homology classes.
We will call a homology class h primitive, if h 6= mZ for somem > 1 and some
effective cycle Z. We denote by Λeff(S) the monoid of all classes in Pic(S)
represented by effective divisors. (This differs slightly from the standard
definition of the effective cone as a cone in Pic(S)R. In particular, the smallest
closed cone in Pic(S)R containing Λeff(S) could be finitely generated with
Λeff(S) being infinitely generated.)

We want to describe, in this setting, the subset of algebraic and elliptic K3
surfaces. A Kähler K3 surface S is algebraic if there is a primitive element x ∈
H2(S,Z) such that 〈x, x〉 > 0 and 〈ωS, x〉 = 0. Conversely, every primitive
x ∈ H2(S,Z) determines a hyperplane {〈ωS, x〉 = 0}. The intersection of this
hyperplane with Ω will be denoted by Ω(x). For a generic point of Ω(x) with
〈x, x〉 > 0 one of the classes ±x defines a polarization of the corresponding
marked K3 surface.

Every element h which is a generator of Λeff(S) with 〈h, h〉 = −2 is
represented by a smooth rational curve. Similarly, every generator of Λeff(S)
with 〈h, h〉 = 0 is represented by a smooth elliptic curve (which defines an
elliptic fibration without multiple fibers S → P

1). In particular, this class
is also represented by a (singular) rational curve, contained in the singular
fibers of the fibration. Therefore, (marked) elliptic K3 surfaces constitute
a set of hyperplanes Ω(h) with 〈h, h〉 = 0 (and primitive h). For a generic
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member of Ω(h) the element h defines the class of a fiber of the corresponding
elliptic fibration.

2.2 Deformation theory

In this section we work over C. An immersion of a smooth curve f : C → X
into a smooth variety X is a regular map of degree 1 onto its image such that
the differential df is non-zero everywhere. An embedding is an immersion
with smooth image.

Remark 2.1 If f : C → S is an immersion of a smooth curve into a smooth
surface then there exists a local neighborhood U of C (abstractly) to which
the map f extends as a local isomorphism f : U → S. The normal bundle
NC(U) of C in U is defined by restriction of the canonical bundle KS to f(C).
In particular, if S is a K3 surface then the normal bundle NC(U) = KC .

Proposition 2.2 Let C0 be a smooth rational curve, S0 a K3 surface and
f0 : C0 → S0 an immersion. Let S → T be a smooth scheme over a complex
ball T of dimension 20 with fibers smooth K3 surfaces St (local deformations
of S0). Consider the smooth subfamily S ′T ′ = S ′ → T ′ corresponding to
deformations such that the class of [f0(C0)] ∈ H2(S0,Z) ' H2(St,Z) remains
algebraic for all t ∈ T ′ (dimension of T ′ equals 19). Then for all t ∈ T ′ (close
enough to t0) there exists a smooth family of smooth curves CT ′ = C → T ′
and a holomorphic map f ′ : CT ′ → ST ′ such that f ′|t0 = f0

Proof. Construct a complex 2-dimensional neighborhood U0 of C0 with
the property that f0 extends to a holomorphic map g0 : U0 → S0 such that
g0 is a local isomorphism. This is possible since df0 6= 0. There is a non-
degenerate (2, 0)-form on U0 induced from S0. The curve C0 is smooth in U0

and its normal bundle in U0 is isomorphic to OC0(−2). It is well known that
in this situation there exists a local neighborhood of C0 which is isomorphic
to a small neighborhood of the zero section in the bundle OC0(−2).

The deformation of the complex structure on S0 induces (by means of g0)
a deformation of the complex structure on U0. We obtain a smooth family
g : UT → ST (with g|t0 = g0) of deformations of complex structures on U0.
The base of the space of versal deformations for U0 is a 1-dimensional disc.
In the neighborhood of t0 ∈ T every deformation of U0 is induced from the
versal deformation space by a holomorphic map. As a preimage of zero we
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obtain a local divisor D0 ⊂ T . It follows that C0 × D0 is contained in the
restriction of the family UT to D0.

On the other hand, outside the divisor T ′ ⊂ T the class [C0] ∈ H2(Ut,Z) =
Z is not algebraic. This is equivalent to the property that the integral of the
holomorphic form ωt over the class [f0(C0)] is not zero. Then the integral of
the induced form g∗(ωt) over [C0] is not equal to zero as well (where ωt is the
non-degenerate holomorphic form on St induced by deformation). Therefore,
the class [C0] ∈ H2(Ut,Z) cannot be realized by a holomorphic curve if t 6∈ T ′.
Since we have obtained a realization of this class over D0 we can conclude
that the local divisor D0 is contained in T ′. Since T ′ is irreducible (it is a
smooth disc), both divisors coincide. Therefore, the map f ′ is obtained by
restriction of g to CD0 = CT ′ .

Remark 2.3 This proof imitates the approach of S. Bloch who introduced
the notion of semi-regularity for embedded varieties ([5]). Here we use a
similar technique for immersed varieties. This deformation technique was
extended to the case of general maps by Z. Ran (cf. [25] and [26]).

2.3 Effective divisors

Theorem 2.4 (Bogomolov-Mumford) Every class in Λeff(S) can be repre-
sented by a sum of (classes of) rational curves.

Proof. The monoid of effective divisors Λeff(S) of a K3 surface S is gen-
erated by classes of (−2)-curves (represented by smooth rational curves),
classes x with 〈x, x〉 = 0 (represented by smooth elliptic curves, cuspidal ellip-
tic curves or nodal elliptic curves) and by primitive classes x with 〈x, x〉 > 0.
Any smooth elliptic curve defines an elliptic fibration. This fibration always
has singular fibers (Euler characteristic) and they consist of rational curves.
It remains to show the following

Proposition 2.5 Let S be a K3 surface. Every primitive effective class in
Pic(S) with 〈x, x〉 > 0 can be represented by a sum of (classes of) rational
curves (with multiplicities).

The rest of this section is devoted to a proof of this fact. An alternative
proof is contained in [21].
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We first show that every primitive class is uniquely determined by its
square. Next we give a direct construction of a K3 surface containing a
rational curve which represents a primitive class, with a given square. Finally
we apply a deformation argument.

Exercise 2.6 Let L be an indefinite unimodular lattice containing 3 · H,
whereH is the standard form given by xy. The orbit of any primitive element
under the group SO(L) is uniquely determined by the square of this element.

Proof. First we show it for elements with x with 〈x, x〉 = 0. Indeed,
since x is primitive, there exists a y with 〈x, y〉 = 1. Then x, y generate a
sublattice H ⊂ L. Since any sublattice H is a direct summand, we have the
result. Similarly, if z is any element such that 〈z, x〉 = 1 for some x ∈ L with
〈x, x〉 = 0 then z is equivalent to the element with coordinates (〈z, z〉, 1) in
the sublattice H (with standard coordinates). This concludes the exercise
(see also [12], p. 224).

Corollary 2.7 Let S be a K3 surface. Every primitive class in Λeff(S) is
uniquely determined by its self-intersection.

Proof. Identify Pic(S) with a sub-lattice in L = 3 · H ⊕ 2 · (−E8).

Proposition 2.8 For any even n ∈ N there exists a pair f : C ↪→ S con-
sisting of a smooth rational curve C immersed in a K3 surface S and having
self-intersection equal to n.

Proof. Let R be a curve of genus 2 and J (R) its Jacobian. Let Z/`Z ⊂
J (R) be a cyclic subgroup of odd order `. Consider the map π : R →
J (R)/(Z/`Z).

Lemma 2.9 For a generic R the curve π(R) contains exactly 6 points of
order 2 of the quotient abelian variety J (R)/(Z/`Z). These points are non-
singular points of π(R).

Proof. It suffices to show that the only torsion points of J (R) contained
in R (for a generic R) are the standard 6 points of order 2. (Indeed, a point
π(Q), where Q ∈ R is a point of order 2 in J (R) is a singular point of π(R)
if and only if there exists a point P 6= Q in R such that ` · P = Q in J (R).
Thus P has to be a torsion point of order 2`.)

Consider the universal family C → M(2, 2) of smooth curves of genus
2 with 2 level structure. This family is imbedded as a subvariety into the
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universal family of principally polarized abelian varieties J →MJ(2, 2) (Ja-
cobians) of dimension 2 and level 2. The family C →M(2, 2) has 6 natural
sections (points of order 2 in the Jacobian). The family J → MJ(2, 2) has
16 natural sections and 6 of them are contained in C.

The monodromy of the family C → M(2, 2) is a congruence subgroup
of the group Sp4(Z) (which we denote by ΓC). The torsion multisections
of J → MJ(2, 2) split into a countable union of irreducible varieties Tm
corresponding to the orbits of monodromy ΓC on (Q/Z)4.

Thus if a generic element Rt contains a torsion point of order ` then it
also contains its ΓC orbit. Remark that for odd ` this orbit consists of all
primitive elements of order ` in the torsion group of the fiber. If ` = 2n then
the corresponding orbit contains all primitive torsion points x, y of order `
with nx = ny. Thus the intersection cycle Rt+a∩Rt (where a is an element
of order ` or n = `/2 in the even case) consists of primitive points x such that
x+a is also primitive. The degree of this cycle is ≥ φ(`)`2 (where φ(`) is the
Euler function.) (In fact, for any primitive a the degree is greater than the
number of points x which are primitive modulo the subgroup generated by a -
hence the number of primitive points in (Z/Z`)3 estimates the corresponding
number from below.) On the other hand 〈Rt + a,Rt〉 = 2. Hence we obtain
a contradiction if m > 2.

It shows that the only torsion points which can lie on a generic curve of
genus 2 are the points of order 2. Since any point of order 2 which lies on
Rt has to be invariant under the standard involution there are exactly six
points of this kind on any R.

Lemma 2.10 The self-intersection 〈π(R), π(R)〉 = 2`.

Proof. Indeed, the preimage π−1(π(R)) consists of translations of R by
Z/`Z. Since 〈R,R〉 = 2 we have 〈π(R), π(R)〉 = 1

`
· 2`2.

Lemma 2.11 For every even n > 0 there exists a K3 surface Sn containing
a rational curve which represents a primitive class cn such that 〈cn, cn〉 = n.

Proof. After dividing J (R)/(Z/`Z) by Z/2Z we obtain a rational curve
π(R)/(Z/2Z) on the singular Kummer surface J (R)/D2` (where D2` is the
dihedral group). After blowing up J (R)/D2` at the images of the 16 points of
order 2 on J (R)/(Z/`Z) we obtain an immersed rational curve with square
` − 3. This curve represents a primitive class because its intersection with
each of the 6 blown up (−2)-curves equals to one.
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Lemma 2.12 Let S be any K3 surface with an effective primitive class x
with square equal to n. Then there exists a 1-dimensional smooth family of
K3 surfaces f : S → T1 such that x is an effective class in Pic(St) for all
t ∈ T and such that St0 = S, St1 = Sn (for some t0, t1 ∈ T ) and the class
x ∈ Pic(St1) is represented by an immersed rational curve.

Proof. Consider a subvariety in the moduli space of marked K3 surfaces
where a given class x is algebraic. It is given by a hyperplane section with
the equation 〈ω, x〉 = 0 in the intersection of the open domain 〈ω, ω〉 > 0
with the quadric 〈ω, ω〉 = 0. This is a connected smooth domain, which we
denote by Ω(x). This domain is invariant under the action of a subgroup of
SO(2,19)(R). The arithmetic subgroup Γ(x) ⊂ SO(3,19)(Z) stabilizing x acts
discretely on Ω(x) (since it stabilizes a 3-dimensional subspace generated by
x, ω, ω which has a positive definite intersection form) and the quotient is
a possibly singular algebraic variety with at most quotient singularities. It
is a (coarse) moduli space of K3 surfaces with a fixed class x. There exists
a subgroup Γ(x)′ of finite index in Γ(x) which acts freely on Ω(x). The
quotient Ω̃(x) is the fine moduli space of K3 surfaces with a fixed class x
such that for a generic point of Ω̃(x) the corresponding K3 surface carries
a polarization with class x. There is a point in Ω(x) which corresponds
to a Kummer surface Sn with a class cn = x represented by an immersed
rational curve. (Indeed, the classes cn, x lie in the same orbit under the
action of SO(3,19)(Z).) We have a smooth algebraic curve T̃ (x) ⊂ Ω̃(x) which
connects the projections of points corresponding to Sn and S. Observe that
we can choose the curve T̃ (x) such that it contains only a finite number of
points t̃ where x is not a polarization of the corresponding K3 surface St̃.
The family of effective cycles Ct̃(x) (represented by sums of rational curves)
which represent the class x in the group Pic(St̃) is an algebraic ruled surface
which projects surjectively onto the generic point of T̃ (x) (this follows from
the surjectivity in the neighborhood of Sn). Hence, there is a smooth relative
compactification of this ruled surface with a proper (fiberwise) map to the
corresponding family of K3 surfaces. The class of the image of any fiber
Ct̃(x) is x.

Remark 2.13 Let x be a primitive class which is one of the generators of
Λeff(S). Then it is represented by an irreducible rational curve.

Remark 2.14 There are similar results about immersions of stable curves
(not necessarily rational curves) and substantially more general theorems
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on the existence of curves and families of curves. For example, Mori and
Mukai proved that a generic K3 surface can be covered by a family of elliptic
curves (cf. [20]). Yau, Zaslow and Beauville found a formula for the number
of (singular) rational curves in a given class on generic K3 surfaces ([31],
[4]). Xi Chen constructs such curves deforming them from combinations of
rational curves on degenerations of K3 surfaces (cf. [8], [9]). (However, their
results don’t imply the existence of infinitely many rational multisections on
elliptic K3 surfaces.) Let us also mention the work of C. Voisin on Lagrangian
immersions of algebraic varieties into hyperkähler varieties. We decided to
include the initial argument of the first author since it is direct, transparent
and sufficient for our purposes.

Proposition 2.15 The set M(S, h) of elliptic K3 surfaces E → P
1 with a

fixed Jacobian J (E) = S is given by M(S, h) = {ωt = ωS + th}t∈C ⊂ Ω(h),
where t is a complex parameter and h is a representative of the class of the
elliptic fiber Sb (b ∈ P1).

Proof. Let h be any (1, 1)-form induced from the base P1. Then the
form ωh := ωS + th defines a complex structure on S. Indeed, ωh is non-
zero everywhere, its square is identically zero, it is a closed form and it is
non-degenerate on the real sub-bundle of the tangent bundle. If its class is
homologous to zero then the variation is trivial. Otherwise, we obtain a line
M(S, h) in the space Ω(h).

Assume now that E ′ → P
1 is an elliptic K3 surface with the same given

Jacobian S. Then there is a smooth (fiberwise) isomorphism ι : E → E ′
which is holomorphic along the fibers. The holomorphic forms ωE and ωE ′
correspond to the sections s, s′ of H0(P1,O). Therefore, the difference ωE −
ι∗(ωE ′) is a closed form which has a non-trivial kernel on the tangent sub-
bundle to elliptic fibers. Therefore, this difference is a form of rank at most
2 induced from the base of the elliptic fibration.

3 Elliptic fibrations

3.1 Generalities

In this section we continue to work over C. We have to use parallel theories
of elliptic fibrations in the analytic and in the algebraic categories. All alge-
braic constructions carry over to the analytic category. As in the case of K3
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surfaces there are some differences which we explain along the way.

Definition 3.1 Let E be a smooth projective algebraic surface. An elliptic
fibration is a morphism ϕ : E → B onto a smooth projective irreducible curve
B with connected fibers and with generic fiber a smooth curve of genus 1. A
Jacobian elliptic fibration is an elliptic fibration with a section e : B → E .

To every elliptic fibration ϕ : E → B one can associate a Jacobian elliptic
fibration ϕJ : J = J (E) → B (cf. [1]). Over the generic point Jb is
given by classes of divisors of degree zero in the fiber Eb. The zero section
eJ corresponds to the trivial class. A Jacobian elliptic fibration J can be
viewed simultaneously as a group scheme over B (defining a sheaf over B)
and as a surface (the total space). In order to distinguish, we will sometimes
use the notation J and S(J ), respectively. Most of the time we will work
with B = P1.

We will only consider elliptic fibrations without multiple fibers. They are
locally isomorphic to the associated Jacobian elliptic fibration J = J (E)
(for every point in the base b ∈ B there exists a neighborhood Ub such
that the fibration E restricted to Ub ⊂ B is Jacobian). The fibration E is a
principal homogeneous space (torsor) under J and the set of all (isomorphism
classes of) E with fixed Jacobian is identified with H1

et(B,J ) (where J is
considered as a sheaf of sections in the Jacobian elliptic fibration). In the
analytic category we have a similar description of elliptic fibrations E with
given Jacobian J (where J is always algebraic). The group of isomorphism
classes of E with a given Jacobian J is identified with H1

an(B,J ).

In the presence of singular fibers we have

H1(B,J ) = H2(S(J ),O)/Image(H2(S(J ),Z)).

The subgroup of algebraic elliptic fibrations H1
et(B,J ) coincides with the

torsion subgroup in this quotient ([10], Section 1.5). It can also be described
as the union of the images of H1

an(B,Jm), noting the exact sequence

H0
an(B,J )→ H1

an(B,Jm)→ H1
an(B,J )

where Jm is the sheaf of elements of order m in J (the elements of order m
lie in the image of H1

an(B,Jm)).
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3.2 Multisections

Definition 3.2 Let ϕ : E → B be an elliptic fibration (analytic or algebraic).
We say that a subvariety (analytic or algebraic) M⊂ E is a multisection of
degree dE(M) if M is irreducible and if the degree dE(M) of the projection
ϕ : M → B is non-zero. The definition of degree extends to formal linear
combinations of multisections.

Remark 3.3 If an analytic fibration E → B has an analytic multisection
then both the fibration and the multisection are algebraic.

There is a natural map

Rest : Pic(E)→ Pic(Eb)/Pic0(Eb) = Z.

Definition 3.4 The degree dE of an algebraic elliptic fibration E → B is the
index of the image of Pic(E) under the map Rest.

Clearly, the degree of any multisection M of E is divisible by dE .

Lemma 3.5 There exists a multisection M⊂ E with dE(M) = dE .

Proof. Let D be a divisor in E representing the class having intersection
dE with the class of the generic fiber of E . Then there is an effective divisor
in the class of D′ = D + n · Eb for some n ≥ 0. Indeed, consider 〈D′,D′〉 =
〈D,D〉+ 2ndE(D). By Riemann-Roch, the Euler characteristic is

1

2
〈D′,D′ −KE〉+ c2

1 +
c2

12
=

1

2
〈D,D〉+ ndE(D)− 〈KE ,D〉+ c2

1 +
c2

12

Hence, for n big enough, it is positive. By Serre-duality, we know that

h2(E ,D′) = h0(E ,KE −D′) = 0,

since the latter has a negative intersection with the generic fiber Eb. Thus,
the class of D′ contains an effective divisor and D′ ∩ Eb = dE(D) = dE . Then
the divisorM is obtained from this effective divisor by removing the vertical
components (clearly, M is irreducible).

Corollary 3.6 The order of [E ] ∈ H1(B,J ) is equal to dE .
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Definition 3.7 A multisection M is said to be torsion of order m if m is
the smallest positive integer such that for any b ∈ B and any pair of points
pb, p

′
b ∈ M ∩ Eb the image of the zero-cycle pb − p′b in Jb is torsion of order

m. We call a multisection an nt-multisection (non-torsion), if for a general
point b ∈ B there exist two points pb, p

′
b ∈ M ∩ Eb such that the zero-cycle

pb − p′b ∈ Jb is non-torsion.

Lemma 3.8 If an irreducible multisection M⊂ E is not a torsion multisec-
tion of order n for any n ∈ N then M is an nt-multisection.

Proof. We work over C. The union of all torsion multisections of E is a
countable union of divisors. So it can’t cover all ofM unlessM is contained
in some torsion multisection.

Let E → B be an elliptic fibration (without multiple fibers). There is a
natural set of elliptic fibrations Jm = Jm(E) over B parametrizing classes
of cycles of degree m on the generic fiber of E . The Jacobian of each Jm

is isomorphic to J 0 = J . The class [Jm] ∈ H1
an(B,J ) equals m · [E ]. If

β is a cocycle defining J β then the cocycle m · β is defined by pointwise
multiplication by m in the Jacobian fibration. Thus, we obtain the fibration
Jmβ.

We have natural rational maps of algebraic varieties Jm×B J k → Jm+k

which fiberwise is the addition of cycles. These maps provide the set of
isomorphism classes of Jm with the structure of a cyclic group. The order
of this group for algebraic E coincides with dE . The identification J dE =
J 0 is not canonical. It is defined modulo the action of H0(B,J ) on J dE

(for example, choosing a multisection of degree dE in J 1 = E will fix the
identification).

The construction provides maps ηm : J 1 → Jm for any m ∈ N, since
J 1 imbeds diagonally into the fiber product of m copies of J 1. All the
above maps are well defined on the open subvarieties obtained by deleting
the singular fibers of the fibrations. They are algebraic and they extend to
meromorphic maps.

We obtain an action of J = J 0 on E = J 1 which is regular in non-
singular points of the fibers of J and E and which induces a transitive action
of the fibers Jb on Eb (for smooth fibers).

The maps ηm allow to transfer irreducible multisections between the el-
liptic fibrations Jm (modulo dE). More precisely, we have
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Lemma 3.9 Let M⊂ J k be a torsion multisection of order t (with dJ k |t).
Consider the map ηm : J k → J km. Then ηm(M) ⊂ Jmk is a torsion
multisection of order exactly t/gcd(t,m). Moreover, if M is non-torsion or
torsion of order coprime to m then the restriction ηm : M → ηm(M) is a
birational map and dJ k(M) = dJ km(ηm(M)).

Proof. Locally, we have a Jacobian elliptic fibration and the map ηm is
multiplication by m. Therefore, if ηm(x) = ηm(y) for some x, y ∈ J k then
m·(x−y) = 0 (in J ). SinceM is irreducible, either (x−y) is torsion of order
gcd(t,m) for any pair of points x, y ∈ J k

b for a general fiber b or these pairs
constitute a divisor in M. In the latter case, it follows that the restriction
of ηm to M is a birational map and hence ηm(M) is a multisection of Jmk

of the same degree.

Corollary 3.10 Let p be a prime number and E an elliptic fibration with
dE = p. Let M be a torsion multisection of E. Then M admits a surjective
map onto one of the p-torsion multisections of E or onto one of the non-zero
p-torsion multisections of J (E).

Proof. Suppose that M is a torsion multisection of order pkt where
(t, p) = 1 and k ≥ 1. If k = 1 choose an α such that αt = 1 mod p.
We have a map

ηαt : J 1(E)→ J αt(E) ' J 1(E)

and ηαt(M) is a torsion multisection of order p.
If k > 1, then ηp

k−1t(M) is a non-trivial p-torsion multisection (but not
a section) in J (E).

Definition 3.11 Let Z be any cycle of degree dE(Z) on E which is given by
a combination of multisections with integral coefficients. We define a class
map

τZ : E → J

by the following rule:

τZ(p) = [dE(Z) · p− TrZ(ϕ(p))]

for p ∈ E . Here we denote by TrZ(b) the zero-cycle Z ∩ Eb.
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3.3 Monodromy

Denote by b1, ..., bn the set of points in B corresponding to singular fibers
of E . Consider the analytic fibration E∗ → B∗, where B∗ = B\{b1, ..., bn},
obtained by removing all singular fibers from E . We have a natural action of
the free group π1(B∗) on the integral homology of the fibers. The group of
automorphisms of the integral homology of a generic fiber Eb which preserve
orientation is the group SL2(Z). One of the main characteristics of an elliptic
fibration E → B is its global monodromy group Γ.

Definition 3.12 The global monodromy group Γ = Γ(E) of E → B is the
image of π1(B∗) in SL2(Z). Denote by ind(Γ) = [SL2(Z) : Γ] the index of the
global monodromy. A cycle around a point bi (for any i = 1, ..., n) defines a
conjugacy class in π1(B∗). The corresponding conjugacy class in SL2(Z) is
called local monodromy around bi. So we obtain (a class of) cyclic subgroups
Ti ⊂ SL2(Z) (up to conjugation).

Remark 3.13 The monodromy group Γ = Γ(E) of an elliptic fibration E
coincides with Γ(J ) of the corresponding Jacobian elliptic fibration. In par-
ticular, for locally isotrivial elliptic fibrations the monodromy group Γ(E) is
a finite subgroup of SL2(Z). For non-isotrivial elliptic fibrations E → P

1 we
have ind(Γ(E)) <∞.

The group SL2(Z) has a center Z/2Z and we shall denote by Γc the
subgroup of SL2(Z) obtained by adjoining the center to Γ.

Remark 3.14 A generic elliptic fibration E → P
1 has monodromy group

SL2(Z). More precisely, SL2(Z) has two standard nilpotent generators a, b.
Assume that all singular fibers of E are nodal (rational curves with one self-
intersection). In this case, we can select a system of vanishing arcs from
some points in B∗ so that all Ti split into two clusters Ia and Ib (of equal
cardinality) such that Ti = 〈a〉 for i ∈ Ia and Ti = 〈b〉 for i ∈ Ib (cf. [10],
p. 171). In particular, any two local monodromies corresponding to different
classes generate SL2(Z).

Jacobian elliptic fibrations over P1 arise in families Fr parametrized by
an integer r which is defined through the standard Weierstrass form

y2 = x3 + p(t)x+ q(t)
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where p (resp. q) is a polynomial of degree 4r (resp. 6r), satisfying some
genericity conditions. There are lists of possible singular fibers, possible local
monodromy groups and actions of these groups on the torsion sections of the
nearby fibers as well as a list of possible torsion groups of the singular fibers
(cf. [13] or [1]).

For any non-isotrivial elliptic fibration E → B we have a map jB : B → P
1

defined by jB(b) := j(Eb) (where j is the standard j-invariant of an elliptic
curve with values in P1 = PSL2(Z)\H).

Remark 3.15 If B = P
1 and E ∈ Fr then jB = 4p3

4p3+27q2 . Hence, the degree
of the map jB in this case is bounded by 12r.

Proposition 3.16 Let E → B be a non-isotrivial elliptic fibration. Then
ind(Γ) ≤ 2 deg(jB).

Proof. The map jB is the same for an elliptic fibration E and for the
Jacobian of E . Thus we reduce to the case of Jacobian elliptic fibrations.
Consider the Γ-covering Ẽ∗ → B∗. It is a Jacobian elliptic fibration over
an open analytic curve B̃∗. Since it is topologically trivial the map jB lifts
to a holomorphic map j̃B : B̃∗ → H (where H is the upper-half plane).
This map is Γ-equivariant and it defines a map jΓ : B∗ → Γ\H. Therefore,
the map jB on B∗ is a composition jB = rΓ ◦ jΓ, where rΓ is the map
rΓ : Γ\H → SL2(Z)\H. The group Γ acts on H through its homomorphism
to PSL2(Z). Therefore, the degree of rΓ is equal to the index ind(Γc) if Γ
contains the center Z/2 and equal to 1

2
ind(Γ) otherwise.

Corollary 3.17 The number of possible monodromies in any family of el-
liptic fibrations with bounded degree of jB is finite. In particular, for the
families Fr with a given r all monodromy groups have index ≤ 24r.

Remark 3.18 If we have an algebraic variety which parametrizes elliptic
fibrations then global monodromy changes only on algebraic subvarieties,
where the topological type of the projection ϕ : E → B changes. This vari-
ation normally occurs in big codimension. Indeed, the monodromy is com-
pletely determined by its action outside of small neighborhoods of singular
fibers. Hence, it doesn’t vary under small smooth variations of E .
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Example 3.19 For the family Fr the monodromy is SL2(Z) provided that
at least two nodal fibers from different clusters Ia, Ib remain unchanged. The
dimension of the subvariety in Fr with monodromy different from SL2(Z) is
≤ 1

2
dimFr + 1.

3.4 Torsion multisections

In this section we will work over C. Let ϕ : E → B be an elliptic fibration
and M an irreducible multisection of E .

Proposition 3.20 Let J → P
1 be a non-isotrivial Jacobian elliptic fibration

with global monodromy Γ ⊂ SL(2,Z). Then there exists a constant c (for
example, c = 6

π2 ) such that for all torsion multisections M ⊂ J of degree
dJ (M) and order m we have

dJ (M) >
c ·m2

ind(Γ)
.

Proof. For each b ∈ P1 we have an action of Γ on the cycle M∩Jb and
also an action of Γ on the set of points of order m of this fiber. It follows that
M∩Jb must coincide with an orbit of Γ on the m-torsion points. The size of
the corresponding orbit for the full group SL(2,Z) acting on primitive torsion
points of order m (e.g., points of order exactly m) is equal to the product
m2 ·

∏
p|m(1 − 1/p2). Hence, the size of any orbit of Γ on the primitive

m-torsion points of a general fiber is

>
m2

ind(Γ)
·
∏
p|m

(1− 1/p2).

Proposition 3.21 Let Γ ⊂ SL2(Z) be a subgroup of finite index. There
exists a constant m0(Γ) such that for all non-isotrivial Jacobian elliptic fi-
brations J → B, with at least 4 singular fibers, with global monodromy Γ
and for all torsion multisections M ⊂ J of order m with m > m0(Γ) we
have g(M) ≥ 2.

Proof. Although this fact is probably well known we decided to give an
argument.

Every orbit of the (linear) action of Γ on m-torsion points defines an irre-
ducible m-torsion multisection in J (and vice versa). Thus we can identify
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the orbit for a given multisection with the quotient Γ/Γ′, where Γ′ is a sub-
group of finite index in Γ. The corresponding orbit for a singular fiber Jbi
is equal to the quotient Γ/Γi where Γi is a subgroup of Γ generated by Γ′

and the local subgroup Ti (even though Ti are, in principle, defined only up
to conjugation in Γ, but specifying the multisection we also specify the pair
Ti,Γ

′ modulo common conjugation). Therefore, the Euler characteristic of
the normalization M̃ of M will be equal to

χ(M̃) = |Γ/Γ′| ·

(
χ(B)−

∑
i

(1− ai)

)
, (1)

where the sum is over the set of singular fibers and the contribution ai for a
singular fiber is computed as follows: denote by pii′ the reduced irreducible
components of the zero cycleM∩Ebi . The number ai is computed as a sum
of local contributions from pii′ , via monodromy.

The above formula calculates the Euler characteristic of the topological
normalization of M - the latter amounts to the separation of different local
branches ofM over the base. Therefore, it is equal to the Euler characteristic
of the algebraic normalization ofM. In order to prove our theorem it suffices
to observe that this formula implies the growth of the absolute value of χ(M)
(and consequently the genus of the normalization of M) as m→∞.

The fibration J → B contains at least one fiber of potentially multiplica-
tive reduction (pullback of ∞ of the j-map). The local monodromy around
any fiber of this type is an infinite cyclic group which includes a subgroup of

small index (2,3,4,6) generated by the unipotent transformation

(
1 k
0 1

)
where k is the number of components in the fiber. The number of m-torsion
elements in this singular fiber is at most m · k. But the degree of the torsion
multisection grows like m2 (cf. 3.21). Hence the contribution ai for such
fiber tends to zero when m→∞. Indeed,

ai =

∑
d bd∑
d bdd

,

where bd is the number of branches ofM (around Eb) of local degree d. The
sum

∑
d bdd is equal to the global degree of M over P1 which for a torsion

multisection of order m grows like m2. On the other hand the sum
∑

d bd
can be estimated by m1+ε (this follows from local computations).
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Similarly, for singular fibers with potentially good reduction the corre-
sponding local monodromy groups are among the standard finite subgroups
of SL2(Z) : Z/2Z,Z/3Z,Z/4Z,Z/6Z. They all act effectively on the points
of order m for m ≥ 5. Hence, every fiber of this type contributes at least 5/6,
3/4, 2/3 or 1/2, respectively (again this follows from local computations).

Asymptotically, for m � 0, the contribution from every singular fiber
of potentially multiplicative reduction will tend to 1, the contribution from
other fibers is ≥ 1/2. Since we have at least 4 singular fibers, the theorem
follows.

An alternative argument would be to observe thatM admits a map onto
a modular curve. Choosing a point on M amounts to choosing an elliptic
curve and an m-torsion point on it. As m increases the genus of M has to
go up.

We have a similar result for non-Jacobian elliptic fibrations. Before stating it
we recall some generalities: Let E → P

1 be a (non-Jacobian) elliptic fibration
and J (E) the associated Jacobian elliptic fibration. The fibration J (E)
contains the grouplike part G, obtained by removing multiple components
and singular points of singular fibers. All the sections of J (E) are contained
within G. The fibers Gb, (for b ∈ B) are abelian algebraic groups - sometimes
nonconnected.

The fibration E contains an open subvariety which is a principal homo-
geneous space under G. It is defined by a cocycle cE ∈ H1(P1,Gl) if l is
the order of E in the Tate-Shafarevich group. Here Gl is the l-torsion group
subscheme of G, whose generic fiber Gl is isomorphic to Tl := Zl + Zl. We
have:

1. The minimum degree of a multisection in E is l;

2. The fibration of relative zero cycles of degree l, El ' J (E).

The latter isomorphism is unique up to the action of the group of global
sections H0(P1,J (E)).

Consider the restriction of E onto the open part B∗ ⊂ P1 where the fibers
of E are smooth. Now we define a cocycle cM ∈ H1(B∗,Gl) as follows: we
have a variety Tl which fiberwise (in smooth fibers) is defined as the set of
points of E which differ fromM by torsion of order l (in the Jacobian). Thus
we have an accociated cocycle cM on the open part B∗ and a locally constant
sheaf Tl with fiber Tl together with an affine action of π1(B∗) on Tl. Here
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we consider Tl as an affine plane over Zl. Thus we get a homomorphism
Ac : π1(B∗) → ASL2(Zl) to the affine group ASL2(Zl). The linearization of
this homomorphism is the composition of the monodromy homomorphism
π1(B∗)→ Γ ⊂ SL2(Z) with the reduction mod l: SL2(Z)→ SL2(Zl). Denote
by Hc the image of π1(B∗) in ASL2(Zl). Thus the fiber of Tl is a finite affine
module (Zl + Zl).

It also defines E as a (compactification of a) principal homogeneous space
under J (under the natural embedding of sheaves Tl → J . It follows that
the order of the cocycle cE divides the order of the cocycle cM.

The total space Tl → B∗ is a union of connected components. One of
these components is the open part of M∗ of M lying over B∗. Now it is a
simple topological fact that connected components of Tl correspond to the
orbits of Hc on Tl (under the affine action Hc ⊂ ASL2(Z). Thus M defines
in fact several torsion multisections (which are components of the subset of
points in E which fiberwise differ from M by torsion elements).

Proposition 3.22 Let Γ ⊂ SL2(Z) be a subgroup of finite index. There
exists a p0 > 0 (which depends only on Γ) such that for every elliptic surface
E → P

1 with at least 4 singular fibers, global monodromy Γ and for any
torsion multisectionM⊂ E of order p > p0 (where p is a prime number) the
genus of the normalization of M is ≥ 2.

Proof. The minimal index of a proper subgroup of SL2(Z/pZ) grows
with p. This implies that for any subgroup Γ of finite index in SL2(Z) its
projection onto SL2(Z/pZ) is surjective for all p > p0.

Lemma 3.23 Suppose that Γ surjects onto SL(2,Zp), that the elliptic fibra-
tion E is non-Jacobian and that M ∈ E has torsion order p. Then M∩ Eb
has cardinality p2 (for almost all b).

Proof. The fiber ofM over the generic point is an orbit of Hc in Tp where
Hc ⊂ ASL2(Zp) surjects on SL2(Zp) and Hc is not contained in SL2(Zp)x ⊂
ASL2(Zp)x for all x in the affine space Tp (where SL2(Zp)x is the subgroup
stabilizing x). In other words, Hc can not be linearized - otherwise we would
have a global section of E → P

1. Then Tp is the only orbit of Hc.
If Hc is not isomorphic to SL2(Zp) (under the linear projection) then it

contains the group of translations Z2
p and we are done. Otherwise, we have

two conjugate semisimple elements of order p− 1 with different fixed points
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and different invariant directions. The orbit under the group generated by
these elements is the whole Z2

p.
We return to the proof of Proposition 3.22. Now we use Formula (1)

and we obtain that in this case the contribution from each singular fiber is
at least 1/2 and that there is at least one singular fiber with contribution
asymptotically (for p→∞) 1. Thus the absolute value of Euler characteristic
of the normalizaton of M grows as p2/2.

Proposition 3.24 For every finite index subgroup Γ ⊂ SL2(Z) there exists
a p0 such that for all primes p > p0 and all (non-isotrivial) non-Jacobian
elliptic fibrations E → P

1 of degree dE = p, with at least 4 singular fibers
and with global monodromy Γ every torsion multisection M of E has genus
g(M) ≥ 2.

Proof. First observe that the class of order p in the Shafarevich-Tate
group corresponds to a cocycle with coefficients in the p-torsion sub-sheaf of
J (E). Therefore, the elliptic fibration E corresponding to a cocycle of order
p contains a p-torsion multisection M.

By 3.10, we know that every torsion multisection M′ ⊂ E admits a map
onto the p-torsion multisection in M ⊂ E or a p-torsion multisection in the
corresponding Jacobian elliptic fibration J (E). Now we apply 3.22.

Proposition 3.25 Let E → P
1 be an elliptic fibration (with at least 4 sin-

gular fibers and fixed monodromy group Γ as above). Let p > p0 a prime
number not dividing the degree dE . Let E ′ → P

1 be an elliptic fibration of
degree p · dE , obtained by dividing the cocycle corresponding to E by p. Then
E ′ has no rational or elliptic torsion multisections.

Proof. Let E ′′ = E ′dE . It is a fibration of order p (with the same mon-
odromy group Γ.) Any torsion multisection of E ′ is mapped to a torsion
multisection of E ′′. By 3.24, the genus of any torsion multisection in E ′′, and
therefore in E ′ is ≥ 2.

Lemma 3.26 Any elliptic K3 surface S → P
1 with Pic(S) ≤ 19 has at least

4 singular fibers, including at least one potentially multiplicative fiber.

Proof. The proof is topological and works for Jacobian and non-Jacobian
elliptic fibrations. Denote by χ(Eb) the Euler characteristic and by r(Eb)
the rank of the lattice spanned by classes of the irreducible components of
the singular fiber Eb. Then χ(Eb) − r(Eb) = 1 if the fiber has multiplicative
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reduction (Type In), or χ(Eb)− r(Eb) = 2 otherwise. We have
∑
χ(Eb) = 24

and
∑
r(Eb) ≤ 18 (for more details see, for example [32], pp. 7–9).

Remark 3.27 In [3] Beauville proves that every semi-stable non-isotrivial
elliptic fibration has at least 4 singular fibers and classifies those which have
exactly 4. (These are 6 modular families, cf. [2], p. 658.) There is a complete
classification of elliptic K3 surfaces with 3 singular fibers in [32]. For recent
work concerning the minimal number of singular fibers in fibrations with
generic fiber a curve of genus ≥ 1 see [29], [32].

As a corollary we obtain Theorem 1.8 stated in the introduction:

Corollary 3.28 Every algebraic elliptic K3 surface S → P
1 with rk Pic(S) ≤

19 has infinitely many rational nt-multisections.

Proof. If S is Jacobian we denote by S ′ some algebraic non-Jacobian
elliptic K3 surface with Jacobian J (S ′) = S. Otherwise, we put S ′ = S.
Dividing (the cocycle defining) S ′ by different primes p > p0 we obtain el-
liptic K3 surfaces Ep (of different degrees). By proposition 3.25, Ep don’t
contain rational or elliptic torsion multisections. At the same time, by de-
formation theory, they contain rational multisections of degree divisible by
dEp . Therefore, we can produce a sequence of rational nt-multisections in S ′

(and consequently, in S) of increasing degrees.

4 Density of rational points

4.1 Multisections

From now on we will work over a number field K and we restict to the case
of the base B = P1.

Proposition 4.1 [7] Let ϕE : E → P
1 be an elliptic fibration defined over K

with a nt-multisection M. Then for all but finitely many b ∈ ϕJ (M(K)) ⊂
P

1(K) the fibers Eb have infinitely many rational points.

Proof. Since M is an nt-multisection, we have a birational map

τ : M→ τ(M) ⊂ J (E).
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An argument using Merel’s theorem (or simply base change to τ(M)) implies
that rational points are dense in the fibers Jb for almost all b ∈ ϕJ (τ(M)(K))
(for a sufficiently large finite extension K/Q). Then one can translate points
in (Eb ∩M)(K) (for b ∈ ϕ(M(K))) to obtain a Zariski dense set of rational
points in the fibers Eb and consequently in E .

Corollary 4.2 Let S → P
1 be an elliptic K3 surface defined over a number

field K. Then rational points on S are potentially dense.

Proof. By 3.28, every algebraic elliptic K3 surface with rk Pic(S) ≤ 19
has infinitely many rational nt-multisections. If rk Pic(S) = 20 we use 4.10.

Definition 4.3 Let ϕ : E → B be an elliptic fibration. A saliently ramified
multisection of E is a multisection M which intersects a fiber Eb at some
smooth point pb with local intersection multiplicity ≥ 2.

Proposition 4.4 [6] Suppose that M⊂ E is a saliently ramified rational or
elliptic multisection. Then it is an nt-multisection. Consequently, rational
points on E are potentially dense.

Corollary 4.5 Let S be an algebraic surface admitting two elliptic fibrations
over P1. Then rational points on S are potentially dense.

Remark 4.6 An alternative approach to potential density of rational points
on elliptic K3 surfaces E → P

1 would be to show that there exists an family
of elliptic curves “transversal” to the given elliptic fibration. Then a generic
elliptic curve in the transversal elliptic fibration is a saliently ramified mul-
tisection of E → P

1. It remains to apply 4.4.

4.2 Automorphisms

Let X be a K3 surface defined over a number field K. We have a hyperbolic
lattice Pic(X) := Pic(XC) ⊂ L where L = 3 · H ⊕ 2 · (−E8) and a monoid
of effective divisors Λeff(X) ⊂ Pic(X). We denote by Aut(X) the group of
(regular) algebraic automorphisms of X (over C). Observe that Aut(X) is
finitely generated. We can guarantee that Aut(X) is defined over K ′, for
some finite extension K ′/K.

Remark 4.7 V. Nikulin proved that there are only finitely many isomor-
phism types of lattices Pic(X) for K3 surfaces with rk Pic(X) ≥ 3 such that
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the corresponding group Aut(X) is finite (cf. [23]). We can prove potential
density for those surfaces from Nikulin’s list which contain (semipositive)
elements with square zero. For example, there are 17 lattices that give finite
automorphism groups Aut(X) for rk Pic(X) = 4 and of those 17 lattices 15
contain elements with square zero (and therefore admit elliptic fibrations)
(cf. [30], [23]).

Example 4.8 There exists a K3 surface of rank 4 with the following Picard
lattice: 

2 −1 −1 −1
−1 −2 0 0
−1 0 −2 0
−1 0 0 −2


There are no elements or square zero and the group of automorphisms Aut(X)
is finite. We don’t know whether or not rational points on X are potentially
dense.

Lemma 4.9 Suppose that Aut(X) is infinite. Then Λeff(X) is not finitely
generated.

Proof. If suffices to identify Aut(X) (up to a finite index) with the sub-
group of Aut(L) which preserves Λeff(X). The set of generators of Λeff(X) is
preserved under Aut(X). If this set is finite Aut(X) must be finite as well.

Theorem 4.10 Let X be a K3 surface over a number field K with an infinite
group of automorphisms. Then rational points on X are potentially dense.

Proof. It suffices to find a rational curve C ⊂ X such that the orbit
of C under Aut(X) is infinite. The monoid Λeff(X) is generated by classes
of (−2)-curves, curves with square zero and primitive classes with positive
square. It follows from (2.13) that every generator of Λeff(X) is represented
by a (possibly singular) irreducible rational curve. Suppose that orbits of
Aut(X) on the generators of Λeff(X) are all finite. Then the group Aut(X)
is finite and the number of elements is bounded by a function depending
only on the rank of the lattice. (Indeed, any group acting on a lattice of
rank n embedds into SLn(Z3). The normal subgroup of elements in SLn(Z3)
equal to the identity modulo 3 consists of elements of infinite order. Hence
any subgroup of the automorphisms of the lattice has a subgroup of finite
index which consists of elements of infinite order.) So there exists an element
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of infinite order. For this element the orbit of some generator of Λeff(X) is
infinite. This class is represented by a rational curve C. The orbit of C is
not contained in any divisor in X. Extending the field, if necessary, we can
assume that rational points on C are Zariski dense. This concludes the proof.

Remark 4.11 Certainly, there are algebraic varieties X such that the orbit
under Aut(X) of any given rational point is always contained in a divisor.
For example, consider a generic Jacobian elliptic surface J with a non-torsion
group of sections. Then Aut(J ) is generated by the group of fiberwise in-
volutions with respect to the sections. In particular, inspite of the fact that
the group is infinite the fibers are preserved and the orbit of any point is
contained in a divisor. However, rational points on X are Zariski dense, as
there is a rational section of infinite order (in Aut(X) and in J ).

Corollary 4.12 Let X be a K3 surface such that rk Pic(X) ≥ 2 and Pic(X)
contains no classes with square zero and square (−2). Then Aut(X) is infi-
nite and rational points on X are potentially dense.

Proof. The monoid Λeff(X) is infinitely generated.
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