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Abstract. We report measurements of the evolution of lines, planes and
volumes in an intensely turbulent laboratory flow using high-speed particle
tracking. We find that the classical characteristic timescale of an eddy at the
initial scale of the object considered is the natural timescale for the subsequent
evolution. The initial separation may only be neglected if this timescale is
much smaller than the largest turbulence timescale, implying extremely high
turbulence levels.
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The transport of material by a carrier fluid is ubiquitous in both the natural world and in engi-
neering applications [1]. When the carrier flow is turbulent, the dispersion of the transported sub-
stance can be very rapid. Turbulent flows are also extremely efficient at mixing [2], since their
nonequilibrium nature drives the production of small scales and sharp gradients where diffusion
can occur rapidly. To study both transport and mixing, it is natural to work in the Lagrangian
framework where the fundamental objects are the trajectories of individual fluid elements [3].

The trajectory of a single Lagrangian particle is, in general, not sufficient for characterizing
turbulent transport. Instead, knowledge of the collective motion of groups of particles is
required [1, 4]. The simplest multiparticle quantity is the growth of the relative distance
between a pair of particles [5]. We have previously measured this relative dispersion [6, 7],
finding excellent agreement with Batchelor’s theoretical predictions [8]. Geometrically, the
two particles in relative dispersion define a line, and therefore a particle pair only gives one-
dimensional (1D) information about turbulent dispersion. An even deeper understanding of
turbulent transport requires the study of higher-dimensional structures: groups of three particles,
which define a plane, and of four particles, which define a volume. While such structures have
been considered before in models and numerical simulations [9]–[11] and in low-Reynolds-
number experiments [12, 13], they have not been investigated at the high Reynolds numbers
that are common in nature.

Here, we present measurements of the shape dynamics of collections of Lagrangian
particles in an intensely turbulent laboratory water flow. We consider lines (two particles)
planes (three particles) and volumes (four particles). In all of these cases, the initial size of the
object plays a strong role: the timescale determined by this initial size, which we denote byt0,
characterizes the experimentally observed evolution [14]. We find that two particles separate
superdiffusively, as is well-known in turbulence, but thatt0 divides two types of separation
behavior. Triangles formed from three particles and volumes spanned by four particles also
grow in time, but assume stationary shapes aftert0, with triangles evolving to a preferred set of
internal angles and volumes flattening into nearly planar structures.

Our measurements are made using optical particle tracking [15] in a swirling water flow
between counter-rotating baffled disks, as described in detail elsewhere [7]. We characterize
the strength of the turbulence with the Taylor-microscale Reynolds numberRλ =

√
15u′L/ν,

whereu′ is the root-mean-square velocity,L is the correlation length of the velocity field, andν

is the kinematic viscosity; here, we report measurements forRλ as high as 815. Our polystyrene
tracer particles are smaller than or comparable to the smallest scale of the turbulence, the
Kolmogorov length scaleη = (ν3/ε)1/4, whereε is the mean rate of energy dissipation per
unit mass, for all Reynolds numbers studied, and faithfully follow the flow [16]. By modifying
our tracking algorithms, we have been able to increase the lengths of measured trajectories
significantly, allowing for the study of longer-time statistics [17].

Let us first consider 1D shape changes by measuring the growth of the separationR(t)
between two particles. For this case, the well-known Richardson–Obukhov law [5, 18] predicts
that

〈R2(t)〉 = gεt3 (1)

in the inertial range, i.e.η � R � L and τη � t � TL, where TL = (L2/ε)1/3 is the large-
eddy turnover time. In equation (1) the dimensionless coefficientg, known as the Richardson
constant, is expected to be universal and independent of initial separationR0. It has
been notoriously difficult, however, to observe conclusive evidence of thist3 scaling

New Journal of Physics 10 (2008) 013012 (http://www.njp.org/)

http://www.njp.org/


3

Figure 1. (a) The separation of two particles in time, compared with a modified
Richardson–Obukhov law, for different initial separations, ranging from 1 to
5 mm. The Reynolds number is fixed atRλ = 690, with a Kolmogorov scale of
η = 30µm. We observe similar behavior at other Reynolds numbers. (b) The
change ofCR with TL/t0, shown for three Reynolds numbers.

experimentally [5]. In our previous measurements of relative dispersion [6, 7], we instead
found that the initial separation of the pairR0 plays an important role, as first suggested by
Batchelor [8]. He predicted that

〈δRi δRi 〉 = (11/3)C2(εR0)
2/3t2, (2)

whereδR(t) ≡ R(t) − R0 and C2 = 2.13± 0.22 is the scaling constant for the second-order
Eulerian velocity structure function [19]. Batchelor additionally predicted that this scaling law
should hold fort � t0, where

t0 ≡ (R2
0/ε)

1/3, (3)

may be regarded as the lifetime of an eddy of scaleR0.
It has been suggested that the failure to observe the Richardson–Obukhov law is due to

the influence of particle pairs that separate anomalously slowly or quickly, so that they bring
in non-inertial-range effects [20, 21]. This will occur unless the inertial range is sufficiently
wide and the effects of both the dissipation and integral scales are negligible, requiring
very large Reynolds numbers. In addition, the finite measurement volume in experiments
may introduce a bias against quickly separating particle pairs [22]. We have therefore also
measured〈R2/3(t)〉 − R2/3

0 , which is less affected by the finite-volume bias and may display
scaling behavior at Reynolds numbers accessible in current experiments [6]. If the Richardson–
Obukhov law holds, then

(〈R2/3(t)〉 − R2/3
0 )/R2/3

0 = CR(t/t0), (t0 � t � TL, R0 � R � L), (4)

whereCR should be a constant related to the Richardson constantg. The compensated plot
(〈R2/3(t)〉 − R2/3

0 )/R2/3
0 /(t/t0) should collapse to a plateau in the inertial range, independent

of initial separationR0. As shown in figure1(a), plateaus, though short, do exist fort � t0. We
find, however, that the initial separationR0 again plays a role:t0 is the timescale of the transition
to the〈R2/3

〉 ∼ t scaling and the plateau values depend onR0. These observations support our
earlier argument that a very large separation betweenTL andt0 (corresponding to a very large
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Figure 2. (a) The change of the energy of relative motionδu2(t) − δu2(0)

following particle pairs, normalized by(11/3)(εR0)
2/3, the theoretical average

relative energy at the initial separation of the pairs, whereδu is the relative
velocity of the particles. (b) The rate of energy change dE/dt normalized by
the turbulence dissipation rate, whereE = (δu2)/2. Both (a) and (b) are from
the Rλ = 690 experiment, with a Kolmogorov scale ofη = 30µm. The legends
give the initial separations in millimetres. We observed similar behavior at other
Reynolds numbers.

Reynolds number) is required to observeR0-independent Richardson–Obukhov scaling [6],
which is also supported by recent work using a stochastic model [22]. To quantify the effect, we
plot in figure1(b) the change ofCR with TL/t0 at three different Reynolds numbers, whereCR

is measured from the peak value in the plateau region of the compensated curves. The largest
TL/t0 in this plot are taken fromR0 ≈ 30η, the lower bound of the inertial range [23]. It can be
seen that the measurements from three different Reynolds numbers collapse very well, and that
the R0-independent region is not reached even atRλ = 815.

The absence of universal Richardson–Obukhov scaling even atRλ ∼ 103 may be better
understood from the evolution ofδu, the relative velocity of fluid particle pairs. Figure2(a)
shows the change of the energy of relative motion,δu2(t) − δu2(0), following the pairs, and
figure2(b) shows the rate of change, dE/dt , following the pairs, whereE ≡ δu2/2. The energy
of relative motion initially decreases before eventually increasing. As the initial separation
increases, it takes a longer time to reach a regime where dE/dt > 0. These observations are
in good agreement with results from numerical simulations [24], where the same change of
the energy of relative motion was found for a ‘cloud’ of tracer particles. This initial decrease
of relative-motion energy can be linked to the large correlation length of forcing in 3D
turbulence [4]. In light of figure2, the relative motion between a pair of particles slows down at
first, and it takes a time comparable tot0 for the relative motion to accelerate again. Therefore,
the further apart the particles are initially, the longer the relative motion slows down. Only after
this initial decreasing period can the Richardson regime potentially be observed.

While studying the two-particle case tells us how particles separate along lines in
turbulence, groups of three particles can show richer dynamics since they form 2D objects. We
therefore measured the shape statistics of triangles formed from three particles. Here, we report
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Figure 3. The evolution of Lagrangian triangles atRλ = 815(η = 23µm),
characterized by (a) the mean-squared lengths of the triangle edges and (b) the
mean triangle angles.R0, the initial edge length, varies from 4 to 6 mm. As in
the two-particle case, the data for different initial sizes collapse when time is
scaled byt0.

only the statistics of triangles that were initially nearly equilateral. We then measured the growth
of the sides of the triangles, analogous to the evolution of the mean-squared separation of two
particles considered above, and the distortion of the triangles, information that is unavailable
from pair separation measurements.

Figure3(a) shows the evolution of the mean-squared lengths of the triangles〈32
i 〉 (with

31>32>33) for three different initial triangle sizes. When time is scaled byt0, defined now
with the side length of the initially equilateral triangles, the data collapse for different initial
sizes. Additionally, scaling in this fashion collapses data taken at different Reynolds numbers
(not shown). We note that unlike the monotonic increase of〈32

1〉 and〈32
2〉, there is initially a

slight decrease in〈32
3〉, an effect that is absent in the statistics of particle pairs. This result shows

the importance of studying higher-dimensional structures in 3D turbulence. We shall discuss this
initial decrease in more detail when considering four-particle statistics below.

In addition to a mean growth, three particles can assume nontrivial 2D configurations. To
quantify these shapes, we show the evolution of the means of the three triangle angles〈θi 〉 in
figure3(b). Just as for the edge lengths, the angle data collapse when time is scaled byt0. We
also observe that our initially equilateral triangles become distorted over a time of ordert0 to
stationary, obtuse shapes, with angles of 0.56π, 0.27π and 0.17π . These values appear to be
independent of Reynolds number: indeed, our observations are in agreement with earlier results
from 3D numerical simulations [10] and 2D experiments [12], even though they were performed
at significantly lower Reynolds number.

The evolution of triangles has given us more insight into transport than the two-particle
case, but for 3D turbulence, we must consider volumes for a full characterization. We therefore
consider groups of four particles, the minimum number of points required to define a volume.
Such groups form ‘tetrads,’ which have previously been used to construct a stochastic model of
the coarse-grained velocity gradient tensor [9]. Following Chertkovet al [9], we characterize
the spatial arrangement of the particles with the eigenvaluesgi (with g1> g2> g3) of the
‘inertia’ tensorgi j ≡ Xik Xk j . The column vectors of the tensorXi j are defined based on the
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Figure 4. The evolution of Lagrangian tetrads atRλ = 690(η = 30µm),
characterized by (a) the mean eigenvalues of the inertia tensor scaled by the
initial tetrad size and (b) the mean normalized eigenvalues for initial sizes
ranging from 10 to 20 mm. Once again, the data for different initial sizes collapse
when time is scaled byt0.

relative separation between the four points:

X1 = (x2 − x1) /
√

2, X2 = (2x3 − x2 − x1) /
√

6, X3 = (3x4 − x3 − x2 − x1) /
√

12, (5)

wherexn(n = 1, 2, 3 and 4) is the position of thenth Lagrangian particle. The volume of the
tetrad is given byV = (

√
g1g2g3)/3, and its radius of gyration isR2

g = g1 + g2 + g3 [10, 11]. We
also define normalized eigenvaluesI i = gi /R2

g to describe the tetrad shape:I1 = I2 = I3 = 1/3
defines an isotropic tetrad,I3 = 0 means that the four points are coplanar, andI2 = I3 = 0 means
that they are collinear. As with the triangles studied above, we considered only tetrads that were
initially nearly isotropic, with the length of all edges within 10% of a nominal sizeR0.

In figure4(a), we show the evolution of the tetrad eigenvalues scaled by the initial tetrad
size. Data for different initial sizes collapse when time is scaled byt0, as it would for different
Reynolds numbers. Here, it is clear that while the two larger eigenvalues increase monotonically,
the smallest eigenvalue decreases. This observation provides direct experimental evidence for
earlier theoretical and numerical work [9] that in 3D turbulence the large-scale, coarse grained
strain-rate tensor has, on average, two positive eigenvalues and one negative eigenvalue.
The negative eigenvalue causes the initial compression in one direction, and consequently
the decrease in〈g3〉. The normalized eigenvalues, shown in figure4(b), also collapse for
different sizes when scaled byt0. We also find that the tetrads develop towards a nearly planar
configuration after a time of ordert0. Within the experimental resolution, we determine the
stationary values of the normalized eigenvalues to be〈I2〉 = 0.25 and〈I3〉 = 0.06 (note that
〈I1〉 = 1− 〈I2〉 − 〈I3〉), similar to our earlier results where we did not select only the initially
nearly isotropic tetrads [25]. We note that we did not observe a Richardson-likegi ∼ t3 for any
Reynolds number or initial size accessible.

Our results are qualitatively similar to the recent numerical simulations of Lagrangian
tetrads in [11], performed atRλ = 280, where stationary values of〈I2〉 = 0.16 and〈I3〉 = 0.02
were reported, indicating an even stronger tendency towards planar tetrads than in our data.
To compare our results further, we show in figure5 the evolution of the probability density
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Figure 5. The evolution of the PDF of the shape factor〈I3〉 for tetrads with an
initial size of R0 = 20 mm. The legends show the time (in units ofτη) at which
the PDFs are measured. Similar changes are observed for tetrads with initial size
of 10 and 15 mm. (a)Rλ = 690(η = 30µm); (b) Rλ = 815(η = 23µm).

function (PDF) of the smallest shape factor〈I3〉. Again, the evolution of the PDFs is consistent
with simulation results from [11] for tetrads with initial separations in the dissipative range. It
can be seen that after 60∼ 70τη (approximatelyt0), the PDFs are still slowly evolving. Beyond
that time, the tetrads, on average, have been swept away from their initial positions by half
the size of our measurement volume and disappear from view. Therefore, our measurement of
〈I i 〉 might be affected by the finite measurement volume. In addition, it is more probable for a
vertex of an extremely deformed tetrad to move out of the finite measurement volume. There is
therefore a potential bias towards smaller deformation in our experiments.

The initial sizes of the tetrads studied in [11] are in the dissipation range (R0 ∼ η), whereas
our smallest initial separation wasR0 ∼ 300η, well into the inertial range. In [11], the initial
decrease ing3, similar to that shown in figure4(a), was attributed to dissipative effects, which
were also presumed to be responsible for the lack of observed Richardson scaling. Since we
observed very similar behavior withR0 well in the inertial range, however, we attribute the lack
of t3 scaling to a small separation betweent0 and TL, just as for the case of pair separation.
The correspondence between our inertial-range results and the smaller-scale numerical results
suggests additionally that the statistics of the coarse-grained velocity gradient tensor [9] may be
very similar to those of the true velocity gradient. Further study of these similarities will be an
excellent opportunity to bring together complementary information gleaned from experiments
and numerical simulations.

Even though many tetrad properties may be the same as those of material volumes, there are
differences. A true material volume in our flow will be incompressible, and its volume will not
change in time no matter how its shape distorts. Tetrads, however, are minimal parameterizations
of volumes, and may not show incompressibility. We therefore show in figure6 the evolution of
the average tetrad volume for different initial tetrad sizes. The volume remains constant initially
for time t < 0.1t0, but then decreases in volume before eventually increasing. This decrease
has not been observed in previous numerical work [10] or experimental measurements [13].
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Figure 6. The evolution of the average tetrad volume〈V〉, normalized byR3
0, for

(a) Rλ = 690(η = 30µm) and (b)Rλ = 815(η = 23µm).

A potential reason for the behavior in our data is that the tetrads are large enough to feel the
effect of the mean strain in our flow.

In summary, we have measured multiparticle Lagrangian statistics in an intensely turbulent
laboratory flow. We studied the evolution of lines, planes and volumes, each parameterized by
the minimum number of Lagrangian points. We find that, in 3D turbulence, material volumes
tend to flatten into planar shapes, in agreement with previous numerical and experimental
studies at much lower Reynolds numbers. Our results clearly indicate that the initial particle
separation is an important parameter in each of these cases and must be included in models.
Only when the ratio of the largest turbulence timescale and the timescale based on the initial
size of the object is very large, implying a very large Reynolds number, may the initial size be
safely neglected.
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