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Abstract. Lensless imaging is a high potential and currently intensely targeted
research goal, in view of those fields of applications for which aberration-
free high-resolution lenses are not available, for example for x-ray imaging. A
recently proposed (direct inversion) variant of lensless imaging combines the
advantages of two classical routes toward lensless imaging, the high-resolution
characteristics of iterative object reconstruction, and the direct and deterministic
nature of holographic reconstruction. Here, we use a simple standard optical
setup using visible wavelength, a lithographic test object and a phase-shifting
reference object to demonstrate the approach. Importantly, we show that a phase-
shifting reference object, instead of the absorption mask proposed earlier, is
sufficient for object reconstruction. This is relevant in view of the much easier
implementation in future x-ray applications.

The scalar wavefunction obtained after transmission of a coherent incident wave through
an unknown sample can be reconstructed from the modulus of its Fourier transform alone
(reciprocal space), provided that additional constraints can be applied to the sample and/or the
illumination function (real space) [1]–[3]. In other words, knowledge of the measurable far-
field intensity pattern alone can be sufficient to reconstruct an unknown complex-valued object.
Circumventing or at least alleviating the classical phase problem, this conclusion has fuelled
intensive research in fields where high-resolution or aberration-free lenses are not available,
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in particular in x-ray imaging [4]–[8]. It is obvious that a central issue of fundamental and
practical importance in coherent diffractive imaging (CDI) relates to the nature of the additional
constraints. A known modulus of the wavefunction in real space was the first constraint
considered in this context [2], replaced later by the much less restrictive and experimentally
more amenable constraint of a known support of the real-space wavefunction [1]. Building upon
this seminal work, a family of related algorithms were developed to solve the nonlinear problem
of object reconstruction by applying iterative constraint projections in real and reciprocal
space [1, 9, 16–18]. In addition, more recent generalizations make it possible to reconstruct
extended objects (no compact support) based on scanning the sample in an illumination function
which is not translationally invariant [10, 19], and which itself can be reconstructed along with
the sample [7, 17].

However, despite considerable progress in the iterative algorithms [9, 21], central issues
of uniqueness, convergence, reconstruction speed, as well as optimum choice of initial phases
and parameters in the algorithms, are yet unsolved in a strict mathematical sense. To overcome
these limitations, and to achieve conceptual clarity in CDI, Podorov et al [11] have shown
theoretically that a closed-form analytical solution exists, if the sample is placed in a uniformly
illuminated rectangular hole. The sides of the rectangle must be at least two times larger than
the extensions of the sample. Eight separate deterministic reconstructions of the object can
then be obtained by application of a linear differential operator to the Fourier backtransform of
measured far-field intensity. Since the rectangular frame acts as a reference r to the unknown
object o, this scheme also falls into the category of holographic object reconstruction. Guizar-
Sicairos and Fienup later generalized the approach to a greater class of extended reference
structures [12]. The technique holography with extended reference by autocorrelation linear
differential operation (HERALDO) [12] provides conceptual insight and a direct ‘single shot
phase-amplitude’ retrieval for CDI problems. Compared with in-line or off-axis holography
based on reference beams created by pinholes or waveguides [13, 14, 20], an extended reference
r enables a reconstruction of the object o at a resolution not limited by the size of pinholes or
apertures. Instead, HERALDO is only limited by inherent resolution of the far-field data, as it
is generally the case for CDI, provided that the edges of r are sufficiently sharp. The beam-
size related resolution limit and the complications associated with non-deterministic iterative
reconstructions can then both be overcome simultaneously. At the same time, the overall
geometry of r can be designed to separate images and the corresponding conjugates, avoiding
problems associated with twin images.

Turning towards experimental implementation, one realizes that for hard x-ray imaging,
where lensless techniques are most urgently needed to overcome the lack of high-resolution
lenses, an appropriately sized opaque rectangular hole is extremely hard to achieve. In order to
block a multi-keV beam, the necessary thickness of an absorbing mask counteracts a precise
control of the edges as well as the positioning in or close to the sample plane. Contrarily, if
a thin phase-shifting reference structure r is sufficient for direct inversion, the structure could
be typically orders of magnitude thinner and hence also much better defined by lithography
techniques. The purpose of this paper is twofold: (i) we want to generalize HERALDO to
phase-shifting reference structures r and (ii) to demonstrate deterministic and direct inversion
experimentally using visible light and a pure phase-shifting reference object.

Let us briefly review the basic setup for diffractive imaging to fix the coordinate system and
the notation, see also figure 1. A monochromatic plane wave ψi with wave vector Ek propagates
along the z-axis and illuminates the sample. In projection approximation, the exit wave directly
behind the sample is ψe = τ ·ψi , with τ(x, y) denoting the complex transmission function
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Figure 1. Schematic of a laser CDI experiment with the sample represented by
a complex transmission function τ(x, y), followed by free space propagation of
the exit wave ψe along the z-axis toward the detector plane, where the far-field
intensity is recorded as a function of momentum transfer (qx , qy).

representing the projected index distribution of the sample. After a sufficiently long propagation
distance along z into the Fraunhofer far-field regime, the measurable diffraction intensity
I (qx , qy) as a function of momentum transfer is written in kinematic (first Born) approximation
as the squared modulus of the Fourier transform of the exit wave, I (qx , qy)= |F[ψe(x, y)]|2.
The Patterson function P(x, y) as the autocorrelation function in the sample plane is then
obtained by the inverse Fourier transformation of I (qx , qy),

P(x, y)= F−1[I (qx , qy)] ∝ (ψe ⊗ψe)(x, y), (1)

where the ‘⊗’ denotes the cross-correlation f ⊗ g(x, y)≡
∫ ∫

f (ν, µ)g∗(ν− x, µ− y)dνdµ.
Let us assume that the exit wave behind the sample can be represented by a superposition of an
object wave o(x, y) and a reference wave r(x, y), so that ψe = r + o. Following a calculation
described in [12], it is further assumed that for a specific choice of r , there exists a 2D linear
differential operator of order n ∈ N, L(n), with the following property:

L(n)r(x, y)=
∑

j
C jδ(x − x j) δ(y − y j)+ h(x, y), (2)

where δ denotes a Dirac delta function, h(x, y) denotes a compact-supported function
accounting for imperfections in the reference, i.e. the reference r is perfect for
L(n) if h(x, y)= 0. C j are complex-valued arbitrary constants. Applying this operator
now to P(x, y) yields L(n)P ∝ L(n)[ψe ⊗ψe] = L(n)[r ⊗ r + r ⊗ o + o ⊗ r + o ⊗ o] = L(n)r ⊗ r +
L(n)r ⊗ o + (−1)no ⊗L(n)r +L(n)o ⊗ o, to which equation (2) can be applied. Considering the
shifting properties of the Dirac delta function in an autocorrelation, this will result in shifted
copies of the object and the corresponding complex conjugated mirror images, for each delta
function created by the operator:

L(n)P ∝
∑

j
C jr∗(x j − x, y j − y) (3)

+
∑

j
C j o∗(x j − x, y j − y) (4)

+(−1)n
∑

j
C∗

j o(x j + x, y j + y) (5)

+L(n)o ⊗ o + h ⊗ r + h ⊗ o + (−1)no ⊗ h. (6)
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Hence, reconstructions of the reference (3) and the object (4), (5) are obtained, whose origins
are shifted to the positions Ex j = (x j , y j) of the Dirac delta functions. As in off-axis holography,
a single-step reconstruction without superposition of twin images can thus be obtained.

As a special choice of r , we consider now a centered rectangle with edge lengths 2a
and 2b and arbitrary complex-valued transparencies τ1 and τ2 outside and inside the rectangle,
respectively.

r(x, y)= τ1 + (τ2 − τ1)s(x, y), (7)

which is a more generalized form of the opaque/non-opaque rectangular reference structure s,
originally proposed in [11],

s(x, y)=
∑

j
c j2(x − x j)2(y − y j) , (8)

where 2 is the Heaviside step function. The parameters are c j = [1,−1, 1,−1], x j =

[−a, a, a,−a] and y j = [−b,−b, b, b]. With the second-order differential operator
L(2) = ∂2/(∂x∂y)= ∂x∂y , r obviously fulfills equation (2) with C j = c j(τ2 − τ1).

Considering term (3), we obtain

L(2)r ⊗ r =
∑

j
c j(τ2 − τ1)r∗(x j − x, y j − y) (9)

= |τ2 − τ1|
2
∑

j
c j s(x − x j , y − y j), (10)

where the special properties of a centered rectangular reference,
∑

j c j = 0 and s∗(−x,−y)=

s(x, y), have been applied to equation (9). The rectangle s is reconstructed with centers at
the former edge positions (x j , y j) with prefactors c j (see figure 2(b)). Compared with the
previously considered opaque/non-opaque r , the magnitude however, is now modified by
|τ2 − τ1|

2. There is no intensity outside the reconstructed s, although phase structures transmit
throughout the entire sample. Furthermore, the absolute phase of the reference is not obtained
in the reconstruction.

Let us now include the object with the transmittance τo(x, y). For separation purposes, we
restrict the object position to the top left corner of the rectangle, i.e. in the area [ − a, 0] × [0, b],
such that

o(x, y)=

{
τo(x, y)− τ2, for (x, y) ∈ [−a, 0] × [0, b],

0, otherwise.
(11)

According to terms (4) and (5) (i.e. L(2)r ⊗ o and o ⊗L(2)r ), the conjugated and inverted
reconstructions are in the bottom right corners of the reconstructed rectangles, whereas the
unmirrored but shifted reconstructions are still in the top left corner (figures 2(c) and (d)).
Within the stated assumptions, a straightforward calculation gives the reconstruction using
equations (3)–(6), (10) and (11). For the first quadrant (x, y > 0), one gets

L(2)P ∝


(τ I−

o − τ1)
∗(τ2 − τ1), (x, y) ∈ [a, 2a] × [0, b],

(τ I +
o − τ1)(τ2 − τ1)

∗, (x, y) ∈ [0, a] × [b, 2b],

|τ2 − τ1|
2, (x, y) ∈ [a, 2a] × [b, 2b],

0, (x > 2a ∨ y > 2b).
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Figure 2. Numerical example of HERALDO with arbitrary transmissions τ1, τ2,
and τo and rectangular reference. The phase is color-encoded according to its
angle in the complex area (see center graph). The reconstructions (b–d) have
been scaled by |τ2 − τ1|

2. (a) Scalar wave-function after transmission ψe with
coordinates of the reference corners. (b) Reconstruction of the reference and
(c) the 8 object reconstructions. (d) Superposition of all contributions including
L(2)o ⊗ o located at the center.

with τ I +
o (x, y)= τo(x − a, y − b) and τ I−

o (x, y)= τo(a − x, b − y). As expected, a pure phase
shift of Z · 2π introduced by the reference will not result in any reconstruction. The object
transmittance τo(x, y) is measured relative to the reference transmittance τ1 and amplified by
the difference (τ2 − τ1). Thus, the highest possible signal amplification is given by a phase shift
of π yielding |τ2 − τ1| = 2, a factor of two higher compared with the opaque reference frame.
For the special case τo(x, y)= τ1, the reconstructions of the reference and the object have two
real values, as the object reconstruction values become zero just like outside the reconstructed
rectangles (see figure 3(f)). In order to obtain the object transmittance values τo, knowledge of
τ2 and τ1 is required. The relative contrast α of the object and the reference in the reconstruction
is given by α = 1 − (τ2 − τ0)(τ2 − τ1).

The experimental setup consisted of a 10 mW HeNe laser (i) at λ= 632.8 nm, (ii) two
linear polarizers for beam attenuation, (iii) a spatial filter consisting of a microscope objective
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Figure 3. Experimental results. The length of the white scale bars corresponds
to a length of 500µm. (a) Diffraction image combined from 7 image
series at different sensitivities; displayed is the logarithmic intensity log10 I .
(b) Inline microscope image that has been obtained using an additional
50 mm lens. (c) Reconstruction L(2)P(x, y)= L(2)F−1[I (qx , qy)] ∝ L(2)(ψe ⊗

ψe)(x, y) normalized to the mean value. The phase is color-coded according to
its angle in the complex area (see graph in bottom left corner). (d) Magnification
of the object part in the microscope image. (e) Magnification of one of the 8
reconstructions (marked with a white square in (c)). (f) Numerical simulation of
π phase shifting binary sample with uniform illumination.

(20×) and a 20µm pinhole, followed by (iv) a collimating lens to obtain a quasi-plane wave
illumination with a Gaussian intensity profile of variance σill ' 1.26 mm. The sample (v) is
mounted on an xyz-stage and consisted either of a document type slide or a patterned layer of
photoresist deposited on an optical plane glass substrate (see below). Behind the sample a lens
(vi) with 50 mm focal length was placed to image the diffraction pattern formed in the rear focal
plane onto the CCD sensor (vii). The images were collected by a CoolSnap EZ Progressive Scan
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CCD camera (Photometrics, USA), operating with a Sony ICX285 CCD-chip with 1392 × 1040
pixels at 6.45µm pixel size. To increase the dynamic range in the image, a set of image series
at different sensitivities, i.e. different exposure times, were stitched to a final image of high
dynamic range. The exposure time between different elements of the set was increased by a
factor of 10. Overexposed pixels were discarded. Altogether, the set comprised seven series,
with exposure times from 10−6 to 1 s, each series consisting of 100 individual background
corrected images. The combined final image was 761 × 761 pixels in size and had a maximum
value of about 1010 registered counts in the highest intensity pixels, compared with a noise level
of over 102 per pixel, resulting in a dynamic range of roughly 108, see figure 3(a). The image
analysis software was written in MATLAB.

The sample consisted of a patterned layer of positive photoresist (AR-P3120, Allresist,
Germany), spin-coated onto an optically plane glass substrate, and developed using contact
lithography (Mask Aligner MJB4, Suess Microtech, Germany) from a chromium mask (ML&C
Jena, Germany). Figure 3(b) shows the pattern of a coffee mug positioned into a square aperture
of 2 mm length. After developing, the remaining resist (coffee mug, reference structure outside
the rectangle) had a thickness of about 550(±10) nm, yielding a phase shift of ' 1, 13π with
an optical index of n = 1.65.

The experimental setup is depicted in figure 1. Figure 3 comprises the results. Figure 3(b)
shows an in-line transmission image of the sample. It was obtained by placing two lenses
of f = 50 mm behind the sample. The absorption contrast of the sample is negligible and
edge contrast appears, if an according shift from the focal plane (defocus) is intentionally
set, as is well known for near field (Fresnel) imaging. Figure 3(c) shows the eight copies of
reconstructions, which are all visible in either intensity or phase contrast. Figure 3(f) shows
the corresponding numerical simulation for uniform illumination and perfect reference. The
reconstructions obtained from the experimental data deviate from the simulation, most likely
due to the non-uniform illumination and the non-perfect combination of different exposures. The
noise in the reconstruction is due to Poissonian noise in the diffraction images and to random
phase perturbations, e.g. as introduced by surface roughness. In particular, the Fourier inversion
process requires diffraction patterns of large dynamical range, which are difficult to obtain with
current CCD detectors. The aquisition of multiple frames as used here is a compromise, since it
is inefficient and also induces noise.

However, according to our experience, the illumination conditions are the most critical
point for reconstruction. This issue is understandably more difficult for the phase shifting r
than for opaque r , where the absorbing frame blocks the tails of the beam. Note that for phase
objects it is important to determine the center of the diffraction pattern very accurately, before
performing the Fourier transform. Otherwise, plane wave-like phase modulations occur. Given
imperfections in r , the (last) three terms in (6) may not vanish. While this goes beyond the scope
of this work, we note that if h(x, y) is a spread out function, i.e. due to phase perturbations
from air, substrate related phase shifts etc, (6) will yield a noisy background signal. In the
opposite case of localized imperfections, sudden changes in the phase shift are amplified by
differentiation, and therefore make the imperfections ‘detectable by L(n)’. Hence, in this case (6)
is expected to yield disturbing background patterns, which are much harder to distinguish in the
reconstruction. Such effects can be caused by artifacts in the pattern definition of r , dust, layer
thickness variation, deformed edges, as well as from non-uniform and unknown illumination.
However, the two terms containing h can be evaluated to predict and to model imperfections,
opening up a route for future correction strategies. In summary, we have demonstrated that
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direct-inversion CDI introduced in [11] and generalized in [12] is experimentally feasible for
optical wavelengths. Importantly, it can be generalized to phase shifting reference structures
and/or samples. This generalization is of great importance for the next step to use the approach
in hard x-ray imaging, where extended phase contrast objects can be prepared more easily
than absorption masks or reference beam pinholes. Moreover, it is likely that the reference
mask and the sample do not need to be positioned exactly in the same plane, if a correction
for Fresnel propagation between the reference object and the sample is taken into account,
somewhat similar to a phase-shifting mask [15]. In contrast to all previous variants of CDI, the
reconstruction would still be based on a fast and deterministic reconstruction step. The fact that
the object should be smaller than the reference frame could be held against this approach, since
many of the most interesting samples in materials and life science applications are extended.
However, the eight different copies of the object appear as linear superpositions. It remains to
be verified whether, by scanning an extended sample through the reference frame, the different
superpositions could be decomposed in a deterministic manner, if three quarters of the rectangle
have been reconstructed by an earlier step.
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