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Abstract

Stable single-alpha helices (SAH-domains) function as rigid connectors and constant force

springs between structural domains, and can provide contact surfaces for protein-protein

and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are

monomeric and stable in polar solutions, characteristics which distinguish them from coiled-

coil domains and intrinsically disordered regions. Although the number of reported SAH-

domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic

genomes are still missing. Here, we present Waggawagga-CLI, a command-line tool for pre-

dicting and analysing SAH-domains in protein sequence datasets. Using Waggawagga-CLI

we predicted SAH-domains in 24 datasets from eukaryotes across the tree of life. SAH-

domains were predicted in 0.5 to 3.5% of the protein-coding content per species. SAH-

domains are particularly present in longer proteins supporting their function as structural

building block in multi-domain proteins. In human, SAH-domains are mainly used as alterna-

tive building blocks not being present in all transcripts of a gene. Gene ontology analysis

showed that yeast proteins with SAH-domains are particular enriched in macromolecular

complex subunit organization, cellular component biogenesis and RNA metabolic pro-

cesses, and that they have a strong nuclear and ribonucleoprotein complex localization and

function in ribosome and nucleic acid binding. Human proteins with SAH-domains have

roles in all types of RNA processing and cytoskeleton organization, and are predicted to

function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskel-

etal protein binding. Waggawagga-CLI allows the user to adjust the stabilizing and destabi-

lizing contribution of amino acid interactions in i,i+3 and i,i+4 spacings, and provides

extensive flexibility for user-designed analyses.
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Introduction

Stable single α-helices (SAHs) are extended helices that are not buried within globular struc-

tures or coiled-coil helical dimers [1–8]. Their most common function is to serve as rigid con-

nectors or constant force springs between structural domains [1–5,7,9,10], but they also

provide contact surfaces for protein-protein and protein-RNA interactions [7,8]. The latter

function has been found for the inner centromere protein INCENP and for many regions of

spliceosomal proteins in various complexes formed during the pre-mRNA splicing cycle. Inde-

pendent of any tertiary interactions, SAH-domains are stable and monomeric in polar sol-

vents. These features distinguish SAH-domains from other proteins that fold into α-helices

only in the presence of binding partners such as stathmin which is an intrinsically disordered

protein lacking any stable fold in the absence of binding partners, but forms an extended α-

helix when binding to tubulin dimers [11,12].

SAH-domains are extremely rich in glutamate (E), lysine (K) and arginine (R) [4,6,13,14],

which have been shown to stabilize poly-alanine peptides by charge interactions along the

helix [15–20]. Although aspartate (D) can also form stabilizing interactions with K/R [21,22],

aspartates occur less often than isoleucine, leucine, methionine, alanine and glutamine in pre-

dicted, highly likely SAH-domains [13,14]. Especially repeated patterns of four E followed by

four K/R seem to stabilize α-helices, while peptides with repeats of two residues do not show

helical content [3,17,23]. The specific (E4(R/K)4)n pattern has therefore been termed ER/K
motif [6] but this is sometimes mixed up with the term EK/R α-helix (e.g. [8]), which had been

introduced as alternative term to SAH [3]. Another term introduced in the field is charged sin-
gle α-helix (CSAH) [4] but SAH-domains must not have an overall net charge. Protein regions

with stable single α-helices must also not be uninterrupted helices but might include short

breaks leading to multiple successive SAHs behaving as a worm-like chain [10]. To exclude

misunderstandings because of term usage and to include all special cases, we will refer to these

protein regions as SAH-domains from now on.

The experimental identification of SAH-domains first in caldesmon and then L9 ribosomal

protein and class-10 myosin has fostered the idea that SAH-domains might be common struc-

tural motifs and be present in many other proteins. In first analyses with BLAST using the EK/

R motif [3] and the SAH-domain of class-10 myosin [13], 123 distinct proteins in 137 archaea

and eukaryotes and 36 human proteins, respectively, have been identified. In a more exhaus-

tive search against UniProt using two newly developed software tools and requiring a mini-

mum of 40 amino acids for an SAH-domain to be detected, SAH-domains were identified in

all three kingdoms of life and it was estimated that their abundance is less than 0.2% of all pro-

teins of a species [24]. This, however, was a very conservative approach and less stringent crite-

ria might inevitably yield more SAH-domains. Interestingly, the most SAH-domains were

found in the human proteome (165 proteins).

Waggawagga was developed as a web application to visually compare coiled-coil predictions

from various tools using helical-wheel and helical-net representations [25]. These representa-

tions also allow distinguishing between predicted coiled-coils and SAH-domains. A score

summarizing stabilizing and destabilizing interactions was introduced to discriminate SAH-

domains from non-SAH-domains. Although most SAH-domains and non-SAH-domains can

clearly be discriminated, a large-scale analysis of more than 7900 myosin sequences across all

eukaryotes revealed a twilight-zone between the two extremes [14]. Sequences with SAH-

domain-scores within this twilight-zone likely need experimental confirmation to demonstrate

their SAH or non-SAH appearance. Here, we present a new version of Waggawagga, termed

Waggawagga-CLI, intended for the command-line usage to investigate small- and large-scale

protein sequence data.

Single α-helices across eukaryotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0191924 February 14, 2018 2 / 19

https://doi.org/10.1371/journal.pone.0191924


Results and discussion

Waggawagga-CLI is the command-line version of the web application Waggawagga. It was

developed to provide a tool for large-scale SAH-domain prediction and analysis and should, in

principle, be able to manage protein sequence datasets of any size. Waggawagga-CLI has not

been optimized for speed, but an SAH-domain prediction is likely to be performed only once

for each dataset. The SAH-domain predictions are stored in a mobile database thus allowing

repeated analyses in case the default parameters need to be adjusted. In contrast to the web

application which predicts SAH-domains based on the heptad-repeat assignments of coiled-

coil prediction tools, Waggawagga-CLI assumes each protein sequence to be a continuous α-

helix and predicts SAH-domains in these.

The Waggawagga-CLI version contains all required secondary software libraries and a

lightweight database, SQLite, and therefore does not require any further software installations

by the user. The SQLite database is used for storing analysed sequence data during runtime,

and can be queried by the advanced user afterwards in multiple ways. Waggawagga-CLI pre-

dicts SAH-domains for each of the sequences in the file and subsequently filters the hits by two

cut-offs, the minimum SAH-score for each amino acid to be included in an SAH-domain

(default: 0.25) and the minimum SAH-domain-score, which depends on the length of the

SAH-domain window (default windows: 14, 21, 28, and 49 amino acids). Accordingly, the

window size sets the minimum length of an SAH-domain to be detected. The default SAH-

domain-scores are based on the results of a comprehensive analysis of more than 7900 myosin

sequences across all eukaryotes [14] and range from 0.25 (window 49 aa) to 0.35 (window 14

aa). The results of a Waggawagga-CLI run are provided in text format (and optional gnuplot

SVG images) for each sequence containing a predicted SAH-domain, and in summary tables,

for each SAH-domain window separately. The summary tables comprise an SAH amino acid

distribution analysis, a list of the predicted SAHs by length of SAH-domains, and a detailed

list of all SAH-domains with amino acid sequences and SAH-scores for each amino acid.

To demonstrate the application of Waggawagga-CLI on large-scale datasets such as protein

sequence datasets generated by whole-genome annotations, we selected protein annotation

datasets from species across the eukaryotic tree of life (Table 1). The datasets were obtained

from Ensembl Genomes release 87 [26]. The overall runtime per dataset ranged from a few

hours to seven days depending on dataset size. The average runtime for single sequences ran-

ged from 4.6 to 23.3 seconds. Across all datasets, the average runtime is 8.3 seconds per

sequence which corresponds to 252 aa per second.

SAH-domain distribution in eukaryotes

SAH-domain validation depends on the length of the sequence window for supposed SAH-

domains [14]. Short SAH-domains are not (or considerably less) detected using a large win-

dow (e.g. 49 amino acids), and long but less characteristic SAH-domains are often below the

cut-off when using a short window (e.g. 14 amino acids). Therefore, by default Waggawagga-

CLI determines SAH-domains with four windows, 14, 21, 28, and 49 amino acids. The num-

bers of detected SAH-domains in the analysed eukaryotic genomes are summarized in Table 2.

The lowest total numbers of SAH-domains were found in Cyanidioschyzon merolae (28 SAH-

domains, 21 aa window), and Schizosaccharomyces pombe (34 SAH-domains, 21 aa window),

but these species also have the lowest gene numbers (Table 1). In contrast, Plasmodium falcipa-
rum with only a slightly higher number of genes contains six times more SAH-domains

(Table 2). With respect to the percentage of SAH-domains found per dataset, and the percent-

age of sequences containing SAH-domains per dataset, these species represent the lower

(0.5%) and upper (3.5%) limits of the range of SAH-domains per species (Fig 1). The total

Single α-helices across eukaryotes
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number of SAH-domains and the number of sequences with SAH-domains are very similar

for each dataset indicating that most sequences contain a single SAH-domain. While the data-

sets of the unicellular species contain one transcript per gene, the ab initio and all datasets also

contain alternative transcripts. These transcripts contain identical, overlapping and indepen-

dent SAH-domains (see section below). As a rough estimate, the total number of unique SAH-

domains per genome is the total number of SAH-domains per datasets divided by the average

number of transcripts per gene. In general, we identified less SAH-domains in the ab initio
datasets than in the all datasets (Table 2), except for Oryza sativa andMus musculus, where the

total numbers of SAH-domains in the all and ab initio datasets are likely strongly under- and

overestimated, respectively (Fig 1). Compared to the only other available genome-wide analy-

sis of SAH-domains [24] we find two to six times more SAH-domains per genome. Given that

about 1.5% of all genes of a species contain an SAH-domain, the SAH-domain is not a rare but

a widely distributed and used building block for proteins.

The number of protein sequences with multiple SAH-domains linearly depends on the

total number of sequences with SAH-domains (Fig 2). Thus, species-independent about 15%

of the sequences with an SAH-domain contain at least one further SAH-domain. Only flower-

ing plants, Cyanidioschyzon merolae, and Saccharomyces cerevisiae have considerably less genes

with multiple SAH-domains.

Table 1. Number of sequences and runtime per protein dataset. All datasets were downloaded from Ensembl Genomes. According to the specifications at Ensembl,

datasets specified by “all” represent the super-set of all translations resulting from Ensembl known or novel gene predictions, while datasets specified by “ab initio” include

translations resulting from ab initio gene prediction software tools. Such ab initio predictions are based solely on the genomic sequence and not any other experimental evi-

dence, and, therefore, not all predictions represent biologically real proteins. The sequences listed as Seqs valid represent the part of all sequences which meet the necessary

conditions for processing (e.g. minimum length of sequence).

Organism Seqs total Seqs valid # AA CPU hrs. Time/Seq [sec]

Arabidopsis thaliana [ab initio] 20579 20517 42948060 46,5 8,16

Arabidopsis thaliana [all] 48321 47952 83278520 82,3 6,17

Caenorhabditis elegans 31574 31191 58037112 60,0 6,93

Chlamydomonas reinhardtii 14489 14473 26291352 25,9 6,43

Cyanidioschyzon merolae 4998 4963 10046308 9,7 7,00

Danio rerio [ab initio] 36087 35675 71517964 75,7 7,64

Danio rerio [all] 45336 44759 91282168 93,6 7,53

Dictyostelium discoideum 13267 13025 28052304 29,4 8,13

Drosophila melanogaster [ab initio] 36155 36056 66438088 75,2 7,50

Drosophila melanogaster [all] 30362 30194 80128800 110,1 13,13

Gallus gallus [ab initio] 50996 49017 85316640 88,5 6,50

Gallus gallus [all] 30252 30196 61283944 69,6 8,30

Giardia lamblia 7364 6730 12906580 43,5 23,28

Homo sapiens [ab initio] 50890 50200 84319768 92,8 6,66

Homo sapiens [all] 102915 97110 153405460 181,7 6,74

Leishmania major 8308 8307 20934752 21,2 9,18

Mus musculus [ab initio] 57111 56142 82405740 86,2 5,53

Mus musculus [all] 61440 59075 105206872 118,8 7,24

Oryza sativa [ab initio] 63510 63219 124444320 126,5 7,20

Oryza sativa [all] 42132 41596 55154072 52,8 4,57

Plasmodium falciparum 5352 5350 16345344 17,3 11,67

Saccharomyces cerevisiae 6692 6573 12023708 11,6 6,34

Schizosaccharomyces pombe 5146 5126 9548000 9,2 6,49

Tetrahymena thermophila 24725 24266 64078484 67,8 10,06

https://doi.org/10.1371/journal.pone.0191924.t001
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SAH-domains in human alternative transcripts and evolution

SAH-domains are structural entities in proteins, and it seems likely that extended, combined,

and altered SAH-domains might be obtained as result of alternative splicing. More simply,

SAH-domains might either be present or absent in protein variants of a gene. A previous anal-

ysis of SAH-domains across human and mouse transcripts identified nine and seven cases,

respectively, where the SAH-domains are either present or absent in alternative transcripts

[24]. For a single human gene, AFDN (protein: afadin), transcripts resulting in SAH-domains

of different length were found. Because the human genome annotation is likely the most com-

plete comprising extensive alternative transcripts we used the human dataset “all” to analyse

the role of SAH-domains as structural building block. We distinguish three cases of SAH-

domains resulting from a single gene (presence/absence, including, overlapping; Fig 3), and all

can happen at the same time if a gene is spliced in more than two alternative transcripts, or is

spliced in two alternative transcripts and encodes multiple SAH-domains.

The human dataset “all” contains 97110 transcripts (Table 1) which are derived from 22622

genes. We identified 1262 SAH-domains (14 aa window, Table 2), of which 447 are unique

with respect to genes. Of the 22622 genes, 5577 code for a single and 17045 code for multiple

transcripts. 31 (0.55%) of the single and 265 (1.55%) of the multiple transcript genes encode 51

and 396 unique SAH-domains, respectively. 77 unique SAH-domains are present in all tran-

scripts of the multiple transcript genes while 319 (80.6%) unique SAH-domains are absent in

at least one of the transcripts (Fig 3). 116 unique SAH-domains are present in only a single

Table 2. Number of predicted SAH-domains per protein dataset. SAH-domains were filtered by score for windows of 14, 21, 28, and 49 amino acids. Higher numbers

for SAH-domains per dataset than sequences with SAH-domains per dataset indicate that some sequences contain multiple independent SAH-domains.

14 21 28 49

Organism #SAH #Seq #SAH #Seq #SAH #Seq #SAH #Seq

Arabidopsis thaliana [ab initio] 151 138 185 173 132 123 86 81

Arabidopsis thaliana [all] 306 270 384 352 272 244 181 165

Caenorhabditis elegans 633 506 698 558 562 460 407 325

Chlamydomonas reinhardtii 119 100 133 113 95 83 63 55

Cyanidioschyzon merolae 22 21 28 27 9 9 5 5

Danio rerio [ab initio] 751 479 770 544 537 392 377 279

Danio rerio [all] 877 747 963 821 687 604 474 415

Dictyostelium discoideum 408 318 437 339 331 273 227 197

Drosophila melanogaster [ab initio] 383 330 432 360 289 249 168 148

Drosophila melanogaster [all] 620 546 694 592 456 398 302 266

Gallus gallus [ab initio] 546 462 619 515 456 391 305 280

Gallus gallus [all] 549 482 639 557 435 383 263 243

Giardia lamblia 36 30 47 39 27 23 17 16

Homo sapiens [ab initio] 887 694 962 767 663 562 441 379

Homo sapiens [all] 1262 1044 1412 1181 969 829 621 539

Leishmania major 70 57 93 71 56 41 42 29

Mus musculus [ab initio] 3403 2931 3591 3108 2780 2522 1847 1722

Mus musculus [all] 844 734 960 804 655 589 450 399

Oryza sativa [ab initio] 487 475 672 655 423 417 387 383

Oryza sativa [all] 161 156 184 180 126 123 77 75

Plasmodium falciparum 167 142 217 183 148 130 130 112

Saccharomyces cerevisiae 49 46 57 55 34 34 21 21

Schizosaccharomyces pombe 31 26 34 30 19 17 11 11

Tetrahymena thermophila 352 306 406 350 266 240 174 158

https://doi.org/10.1371/journal.pone.0191924.t002
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from up to 24 transcripts. We identified only eight cases where unique SAH-domains are

completely part of larger SAH-domains in other transcripts (case including). 28 unique SAH-

domains overlap with unique SAH-domains of other transcripts of the same gene (case over-
lapping; minimum number of overlapping amino acids: 5).

The presence of an SAH-domain region in all transcripts of a gene indicates that the respec-

tive region is an essential structural entity in all resulting proteins. Our analysis shows that

SAH-domains are indispensable in transcripts of only 19.4% of the genes. In the majority of

the cases, SAH-domains are differentially included building blocks and add to the diversity of

protein isoforms. Modulation of the SAH-domain lengths (cases including and overlapping)
happens but is currently rare.

If SAH-domains represent structural building blocks similar to any other structural domain

they should appear in transcripts of orthologous and paralogous proteins. If SAH-domains are

part of exon shuffling processes they might appear in unrelated proteins. Because of the low

amino acid and structural complexity in SAH-domains few mutations could turn these motifs

into intrinsically disordered regions (which still might fold into α-helices upon interaction

with binding partners) or α-helices that aggregate or even form coiled-coil structures. Thus,

sequence homology based methods likely do not provide any specific relations. Instead, we

searched for identical sequences of unique SAH-domains across all genes. Of the 447 human

SAH-domains, 383 are unique with respect to the human genome. 30 SAH-domains are pres-

ent in identical sequence in two to seven different genes. Most of these belong to gene paralogs

such as multiple golgin A6 family and golgin A8 family genes, tropomyosin 3 and tropomyosin 4,
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and the calcium channel subunits CACNA1H and CACNA1I. In addition to these identical

SAH-domains we identified 68 cases where a unique SAH-domain from one protein is part of

a longer SAH-domain in another protein (case including).

Characteristics of SAH-domains

SAH-domains are regions with low sequence homology and low amino acid diversity, and

their comparison is therefore restricted to some basic metrics. In all species analysed SAH-
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datasets with SAH-domains identified with a window size of 14 amino acids were taken. Abbreviations: Dr,Danio rerio; Hs,Homo sapiens; Mm,Mus
musculus; Os,Oryza sativa.

https://doi.org/10.1371/journal.pone.0191924.g002
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domains are enriched in longer proteins (Fig 4). This is consistent with their main function as

connectors between other protein domains, although they might also function as direct bind-

ing site for other proteins. Because of their limited structural and amino acid diversity, direct

protein-protein and protein-RNA binding via the SAH-domains is likely very rare. Mostly,

SAH-domains are anchored to additional domains such as those in myosins [2,5], the Inner

Centromere Protein (INCENP) [7], and in the spliceosomal proteins MFAP1 and Snu23 [8].

Because of this combination with other domains, which has also been found in an earlier anal-

ysis [24], it is evident that SAH-domains are rather found in longer protein sequences.
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Fig 3. Presence of SAH-domains in alternative human transcripts. All predicted SAH-domains from the human “all”
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https://doi.org/10.1371/journal.pone.0191924.g003
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Another characteristic of SAH-domains distinguishing them from any other domain is their

amino acid distribution with up to 80% of the residues being E, K and R [4,13,24]. Of the

various possibilities to build salt bridges, E!R was shown in short peptides to be more α-helix

stabilizing than E!K [27], and both are more stabilizing than the reverse salt bridges R!E and

K!E. E!R salt bridges are also the most favourable for the speed of folding [22]. However,

comparison of long repeats of AEEEXXXwith X being either K or R showed, that such peptides

aggregated when two or three of the X were R [28]. A repeat including one arginine, however,

was more helical and stable than a repeat with only lysines. Repeats with three or five alanines

per heptad also aggregated [28]. Thus, it seems that a certain percentage of charged amino acids

and a mixture of arginines and lysines are the most favourable to stabilize single α-helices.

The analysis of the amino acid distribution in the predicted SAH-domains across the eukary-

otes shows that aspartate is rarely used in SAH-domains and that glutamate is the dominating

negatively charged amino acid (Fig 5). This is consistent with earlier extrapolations from few

data [4,13,24] and in agreement with studies on short peptides showing considerably less stabiliz-

ing effects of D!K and D!R salt bridges compared to their glutamate homologs [21,23]. Across

the eukaryotes there are strong differences for the preference of the positively charged amino

acid (Fig 5). In plants, green and red algae, diplomonads, kinetoplastids, and metazoans, argi-

nines are preferred to lysines, while lysines are strongly preferred in alveolates, amoebae, and

yeasts. The finding of twice as many arginines than lysines in red algae, diplomonads, and kineto-

plastids seems to contract the findings of aggregating peptides with similar arginine to lysine pro-

portions [28]. However, these peptides were based on repeats of three negatively and three

positively charged amino acids, and natural peptides might form stabile single α-helices if the

same salt bridges were randomly distributed and not present in such ordered three-to-three

repeats. In total, about 80% of the supposed heptad positions are occupied by charged residues or

asparagine and glutamine, which corresponds to about 5,5 heptad positions (Fig 6). Species with,

in total, less E/K/R have more aspartates, asparagines or glutamines. This also corresponds with

the results obtained from the AEEEXXX repeats that showed that peptides aggregated if three or

more positions of the heptads are occupied by alanines [28]. Alanines show the widest distribu-

tion from all uncharged amino acids found to be present in SAH-domains (Fig 5), with the high-

est fractions found in green and red algae, diplomonads, and kinetoplastids. In contrast, alanines

are rarely present in Plasmodium falciparum andDictyostelium discoideum SAH-domains.

Next we were interested in identifying the most common patterns in natural SAH-domains

(Fig 7). Compared to total numbers of SAH-domains and lengths of SAH-domains the most

common heptad repeats are rather rare within each species. For example, the most common

heptad pattern in human SAH-domains, RERERER, is present in only 3.6% of the sequences

with SAH-domains and accounts for only 0.7% of the amino acids of all SAH-domains. This

indicates that SAH-domains do not have certain, common patterns but instead are highly vari-

able with respect to their sequences. The most common patterns across most species contain

duplets of oppositely charged amino acids, [D/E][K/R]. To our knowledge, such repeats have

not extensively been studied experimentally yet. Repeats of (EK)n were shown to be at least

partially helical [23], but it is not known whether these are monomeric or aggregate, or even

form stable single α-helices at all. However, only a minor fraction of the SAH-domains

Fig 4. Distribution of SAH-domains with respect to protein sequence length. As examples for comparing the

lengths of protein sequences in general with the presence of SAH-domains in proteins, the proteins from the

Plasmodium falciparum, Saccharomyces cerevisiae and human [all] datasets were plotted. The latter proteins comprise

the translations of all annotated gene transcripts. Proteins were combined in bins of 50 amino acids for better

visualization, and proteins with length>3000 aa were omitted. All SAH-domains identified with the 14 aa window are

counted and shown.

https://doi.org/10.1371/journal.pone.0191924.g004
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exclusively consists of such [D/E][K/R] repeats. In most cases, such repeats are part of pre-

dicted SAH-domains with variable sequence such as the SAH-domain in human Myo10, “AEK
REQEEKKKQEEEEKKKREEEERERERERREAELRAQQEEETRKQQELEALQKSQKEAEL”

(ENSP00000421280). We suspect that these [D/E][K/R] repeats are enriched in the analysis

because of their very simple pattern. If regions exclusively consisting of [D/E][K/R] repeats do

not form stable single α-helices, a small fraction of false-positive predictions might be present

in a Waggawagga analysis.
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Fig 5. Proportion of the most abundant amino acids within SAH-domains with respect to dataset and eukaryotic domain. For computing the amino acid

proportions, the SAH-domains predicted with the 14 aa window were used. The proportions within the four windows are almost identical for each species.

https://doi.org/10.1371/journal.pone.0191924.g005
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Other common heptad patterns contain alanines and glutamines (Fig 7) and resemble the

widely studied peptides based on poly-alanine backbones onto which oppositely charged

amino acids were placed in all possible spacings. Heptad patterns based on oppositely charged

amino acid triplets such as (AE3[K/R]3)n [28] were not found. Octad patterns with quadru-

plets of glutamates and arginines/lysines (E4[K/R]4), which have systematically been studied

experimentally [3,23], are extremely rare in natural SAH-domains of eukaryotes. Also, they are

not present in repeated patterns indicating that these octad patterns appeared by chance but

are in fact part of heptad patterns. If clusters of identical amino acids were found, then these

appear in repeated heptad patterns from triplets and quadruplets (Fig 7, see patterns of Arabi-
dopsis thaliana and Saccharomyces cerevisiae, for example).

Although heptad patterns are shown in Fig 7, most of these patterns are built from even-

numbered smaller motifs. Heptad repeats tend to form supra-molecular structures because the

repeat moves around the helix axis, as is evident from coiled-coil structures, where hydropho-

bic residues form a left-handed helical seam along the surface of the right-handed α-helix

which is buried in the centre of the dimer. In contrast, patterns of even-numbered motifs are

supposed to form straight α-helices and to rather aggregate in stacks, if at all, than in inter-

twined supra-molecular helices.

Functional analysis of SAH-domains in Saccharomyces cerevisiaeand

human

To determine whether proteins with SAH-domains are particularly involved in certain cellular

processes, localizations and molecular functions, we performed gene ontology enrichment

analyses of the Saccharomyces cerevisiae and human datasets. Yeast (Saccharomyces cerevisiae)
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proteins with SAH-domains have not been analysed at a whole-genome level yet, because yeast

was not among the species with highest numbers of SAH-domain containing proteins in an

UniProt analysis [24]. Yeast proteins with SAH-domains are particularly enriched in the GO

terms macromolecular complex subunit organization, cellular component biogenesis and

RNA metabolic processes. Enriched GO terms also include nuclear and ribonucleoprotein

complex localization, and function in ribosome and nucleic acid binding. Cytoskeleton associ-

ated processes and functions were not among the enriched terms for the yeast proteins. The
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possible heptads were determined and ranked by frequency, given as numbers next to each heptad sequence.
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recent discovery of a few spliceosomal proteins with potential SAH-domains [8] is consistent

with the observed enrichment of the yeast proteins.

The human proteins with SAH-domains have roles in all types of RNA processing (mRNA

processing, mRNA metabolic processes, RNA splicing) and cytoskeleton organization. They

are enriched in cytoskeleton and adherens junction localization terms, and are predicted to

function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskel-

etal protein binding. In contrast to earlier analyses based on considerably smaller datasets of

human proteins with SAH-domains that showed a wide distribution of cellular localizations

and functions [4,13,24], the analysis of our extended whole-genome based dataset demon-

strates a strong enrichment in RNA- and cytoskeleton-related processes and localizations.

Customized usage of Waggawagga-CLI

SAH-predictions are based on scoring statistics. In our previous analysis of almost 8000 myo-

sins from species across all eukaryotes we showed that the scores from SAH-predictions were

scoring-window-dependent and could be placed on a continuously increasing line [14]. The

exponential shape of the curve allowed defining a lower and an upper cut-off, below which

and above which the probability to not-have and to have, respectively, identified an SAH-

domain is high. The scores between these cut-offs, in the so-called “twilight”-zone, do not

allow a simple “is” or “is not” decision. To provide full flexibility to the prediction and analysis

of SAH-domains, Waggawagga-CLI allows adjusting the scoring matrices and the cut-offs for

result filtering. There are two amino acid matrix files, one each for amino acids in (i, i+3) and

in (i, i+4) spacings, where stabilizing and destabilizing interaction scores can be defined for

every amino acid combination. Modifying these files allows, for example, fine-tuning the

search for specific sub-types of SAH-domains or adapting to species- or lineage-specific

parameters such as general amino acid usage. Waggawagga-CLI also allows separating the

steps of SAH-domain prediction and analyses so that users experienced in database interaction

can easily design additional analyses.

Conclusions

Waggawagga-CLI is a complementary tool to predict functional domains in whole genome

annotations. Our predictions included all previously proposed SAH-domains as far as they

were particularly named such as the 36 human proteins identified by BLAST [13]. While

BLAST is based on sequence homology, Waggawagga-CLI uses a dedicated scoring scheme for

potential i,i+3 and i,i+4 interactions along the sequence and we were, therefore, able to predict

more than ten times more SAH-domains. Waggawagga-CLI is thus similar to other SAH-

domain prediction software such as SCAN4CSAH and FT_CHARGE [24] but, in contrast to

these, allows users to modify the scoring schemes and to adjust cut-off parameters to individ-

ual analysis needs. Several proteins from spliceosomal complexes have recently been suggested

to contain SAH-domains [8] but most of these rather represent isolated α-helical segments

that folded upon binding to other proteins. In MFAP1, the regions with considerable SAH-

score are shorter than the minimum window of 14 amino acids that we used in our analysis.

There were few potential charged interactions along the α-helix of MFAP1 [8] and similar

numbers of potential charged interactions are found for most predicted coiled-coil regions.

We suppose that by altering Waggawagga’s scoring scheme to include MFAP1 and similar pro-

teins many false positive coiled-coil proteins will also appear in the list. Adjusting the scoring

scheme might, however, be useful if subsets of proteins are analysed that likely do not contain

any coiled-coil proteins.
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Materials and methods

Implementation

Waggawagga-CLI is available for the main operating systems Linux (arch. x86 and 64-Bit) and

macOS (10.10 or higher) [and Windows]. It comes in precompiled system-specific packages

with a portable Ruby environment (Traveling-Ruby) and a mobile SQLite-database, where the

analysed sequence data are stored for direct or later use. Waggawagga-CLI runs out of the box,

not requiring any further installations after downloading and extracting the tarball.

In general, to be fully functional the software requires Ruby version 1.9 or later, and the fol-

lowing gems: Active-Record (> 4.0.x), BioRuby (1.5.0) [29], and SQLite3 (1.3.9). Besides the

textual result files, full-sequence prediction score graphs (depicted along the full sequences)

are additionally available as SVG, if the graphical toolkit GnuPlot (http://www.gnuplot.info) is

pre-installed on the user’s system.

Waggawagga-CLI in contrast to webserver Waggawagga

The focus of Waggawagga-CLI is explicitly on the SAH-domain prediction in large protein

sequence datasets (instead of just one at a time). The CLI-version analysis workflow separates

prediction and analysis. Sequences are parsed, scored and imported in a single step and can be

evaluated with different parameter preferences later-on. The scoring process itself can be

adjusted as well, by modifying the pre-installed scoring matrices. The application should run

with FASTA-files of any size, although it was tested with only the datasets presented here. The

prediction result files are strictly organized in subfolders in the results directory named by the

working title parameter (‘id’). Only results with scores above the initial cut-off are kept for

later inspection by the user.

SAH scoring algorithm

The SAH prediction is based on the classical helical net diagram which is the representation of

a single α-helix opened along a line parallel to its axis and laid flat [30]. Each sequence is con-

sidered as a continuous right-handed α-helix and each position in the helix is assumed to be

repeated every eighth amino acid. Thus, each sequence can be depicted as a repeat of heptads

in the helical net diagram. The amino acid positions within each heptad are formalized as let-

ters a-g and the first amino acid of each sequence is set to position a of the first heptad. This is

an important difference to the Waggawagga-webinterface version, where the positions of the

amino acids within the heptads are derived from the coiled-coil prediction tools and accord-

ingly allow for gaps and any other pattern within the helical net diagram. According to the clas-

sical representation the α-helix in the helical net diagram is opened along the f column. In

contrast to the classical representation, which is read from bottom to top, we adopted the view

introduced for SAH-domains in which SAH sequences are depicted from top to bottom [2,13]

and which seems to be used by most if not all in the SAH community.

For each position in the helical net amino acid interactions between interacting residues in

i,i+3 and i,i+4 distance are drawn. These interactions are classified into strong, medium and

weak stabilizing types, a helix-supporting type and types of destabilizing interactions. But this

is only a linguistic differentiation; the interactions can be assigned every possible score. In

Waggawagga-CLI, the values for possible amino acid interactions are taken from customizable

scoring matrices. The standard scoring files are located in the config-directory, are named

‘scoring_matrix_i_3.csv’ (for interactions in i,i+3 distance) and ‘scoring_matrix_i_4.csv’ (for

interactions in i,i+4 distance; S1 Fig), and can freely be edited. In addition to these binary

amino acid interactions, we consider two types of interaction networks: i) Subsequent
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hydrophobic amino acids (V, I, L, M, F, Y) in i,i+3,i+6, i,i+3,i+7, i,i+4,i+7 and i,i+4,i+8 dis-

tance are regarded as destabilizing (because of potentially stabilizing hydrophobic seams in

coiled-coil dimers) and contribute a negative network-score. ii) Subsequent oppositely charged

amino acids in i,i+3,i+6, i,i+3,i+7, i,i+4,i+7 and i,i+4,i+8 distance are known to stabilize α-

helices more than the sum of the respective binary interactions, and thus contribute an addi-

tional positive network-score. These network-scores can be adjusted in the config-file. In con-

trast to the SCAN4CSH algorithm, we did not consider interactions of identically charged

residues in i,i+3 and i,i+4 distance, and of oppositely charged amino acids in i,i+1 and i,i+2
distance, which were regarded as destabilizing [4]. Because such interactions are present in

most patterns that are regarded as exemplary SAH-domains, e.g. EEEEKKK, we suspect that

inclusion of these interactions does not help in distinguishing between SAH-domains and

non-SAH-domains.

Computing the SAH-score

For computing an SAH-score, all amino acid interaction scores in a helical net representation

of a certain sequence window are summed up. By default, Waggawagga-CLI computes SAH-

scores for windows of 14, 21, 28 or 49 amino acids. Because we consider the protein query

sequence to be a continuous α-helix there are also interactions to and from amino acids at the

first and the last helical turn within the scoring window. By definition we include all amino

acid interactions from residues of the last helical turn of the window (positions d-g) to amino

acids of the next heptad in the SAH-score. The sum of the interaction scores of each window is

then normalized with respect to the highest possible score for the respective window, which is

obtained by summing all interactions of an EEEEKKK repeat and which is set to “1”. If indi-

vidual interaction scores are changed in the scoring matrices (see above), the highest possible

scores for each window need to be adjusted accordingly. This is done in the config-file. The

user needs to keep in mind that the heptad repeat pattern that will result in the highest possible

score, might also change when the scoring matrices change. This interplay between individual

interaction scores and accordingly unlimited possibilities for the pattern resulting in the high-

est possible score is the reason why we keep the window sizes for computing SAH-scores fixed.

The SAH-score for the respective window is then assigned to the central amino acid (windows

21 and 49) or amino acids 8 and 15 (windows 14 and 28) of the window, respectively. Scores

for the first and last 7, 10, 14 and 24 amino acids (depending on window size) of the protein

sequences are calculated by filling the window with dummy amino acids at the N- or C-termi-

nus. By definition, these dummy residues are strictly neutral and do not have interactions with

other amino acids. The computed SAH-scores vary considerably from amino acid to amino

acid along the sequence depending on how many interactions are lost and gained on each side

of the amino acid window. To term a protein sequence region an SAH-domain, the scores of

all amino acids within this region need to be above a user-defined SAH-score cut-off (default:

0.25).

Computing the SAH-domain-score

To be able to compare and rank SAH-domains, we developed the SAH-domain-score. By defi-

nition, SAH-domains have a minimum length of 14 amino acids with SAH-scores for each of

the 14 amino acids above the SAH-score cut-off. 20% of the amino acids within the full SAH-

domain are allowed to have SAH-scores below the cut-off to avoid splitting long SAH-domains

into multiple short SAH-domains separated by just one or a few amino acids. However, SAH-

domains need to start and to end with amino acids having SAH-scores above the cut-off

(default: 0.25). Taking the average of all SAH-scores within an SAH-domain as SAH-domain-
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score would introduce strong bias by peak values and therefore strongly influence a compari-

son of short with long SAH-domains. To allow length-independent comparison of SAH-

domains we thus developed a score based on a certain amino acid window. Accordingly, the

SAH-domain-score is the maximum of the scores computed as the average of SAH-scores

within a window of neighbouring amino acids (default: 14 amino acids). For example, given

an SAH-domain of 20 amino acids (scores of all 20 aa above the 0.25 score cut-off) six SAH-

domain-scores (each possible 14 aa window) are calculated and the highest of these scores is

taken as SAH-domain-score for the respective SAH-domain. The length of the window for

determining SAH-domain-scores can be adjusted (Advanced Mode parameter).

Data sources and analyses

The following protein sequence files were downloaded from Ensembl release-87 (ftp://ftp.

ensembl.org/pub/release-87/): Arabidopsis_thaliana.TAIR10.pep.abinitio, Arabidopsis_thali-

ana.TAIR10.pep.all, Caenorhabditis_elegans.WBcel235.pep.all, Chlamydomonas_reinhardtii.

v3.1.pep.all, Cyanidioschyzon_merolae.ASM9120v1.pep.all, Danio_rerio.GRCz10.pep.abini-

tio, Danio_rerio.GRCz10.pep.all, Dictyostelium_discoideum.dicty_2.7.pep.all, Drosophila_-

melanogaster.BDGP6.pep.abinitio, Drosophila_melanogaster.BDGP6.pep.all, Gallus_gallus.

Gallus_gallus-5.0.pep.abinitio, Gallus_gallus.Gallus_gallus-5.0.pep.all, Giardia_lamblia.

GCA_000002435.1.pep.all, Homo_sapiens.GRCh38.pep.abinitio, Homo_sapiens.GRCh38.

pep.all, Leishmania_major.ASM272v2.pep.all, Mus_musculus.GRCm38.pep.abinitio, Mus_-

musculus.GRCm38.pep.all, Oryza_sativa.IRGSP-1.0.pep.abinitio, Oryza_sativa.IRGSP-1.0.

pep.all, Plasmodium_falciparum.ASM276v1.pep.all, Saccharomyces_cerevisiae.R64-1-1.pep.

all, Schizosaccharomyces_pombe.ASM294v2.pep.all, Tetrahymena_thermophila.JCVI-TTA1-

2.2.pep.all. The SAH-domain predictions presented and analysed in this study were produced

with the latest Waggawagga-CLI version using default parameters.

Gene Ontology enrichment analysis

Gene Ontology enrichment analyses were done with WebGestalt [31]. The lists of unique

genes in gene symbol format were uploaded to WebGestalt and the GO Enrichment Analysis

selected. The entire Saccharomyces cerevisiae and human genome annotations, respectively,

were set as background and 0.05 as threshold for the p-value for the significance test using the

default statistical method "hypergeometric”.

Software and data availability

Waggawagga-CLI is available for download from http://waggawagga.motorprotein.de. The

software and all results from data analysis as presented in this study (SAH-domain predictions

and GO analyses) are also available from figshare (doi: 10.6084/m9.figshare.5435947).

Supporting information

S1 Fig. Composition of the SAH-score. The figure shows publications and the respective

peptides and amino acid interactions analysed. From the reported observed helicities and

measured energies of side chain interactions we build the scoring scheme shown in the

table at the bottom. The table lists the score of each interaction taken for computing the

SAH-score.

(PDF)
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