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Abstract

Uplands represent unique landscapes that provide a range of vital benefits to

society, but are under increasing pressure from the management needs of a

diverse number of stakeholders (e.g. farmers, conservationists, foresters, govern-

ment agencies and recreational users). Mapping the spatial distribution of

upland vegetation could benefit management and conservation programmes

and allow for the impacts of environmental change (natural and anthropogenic)

in these areas to be reliably estimated. The aim of this study was to evaluate

the use of medium spatial resolution optical and radar satellite data, together

with ancillary soil and topographic data, for identifying and mapping upland

vegetation using the Random Forests (RF) algorithm. Intensive field survey data

collected at three study sites in Ireland as part of the National Parks and Wild-

life Service (NPWS) funded survey of upland habitats was used in the calibra-

tion and validation of different RF models. Eight different datasets were

analysed for each site to compare the change in classification accuracy depend-

ing on the input variables. The overall accuracy values varied from 59.8% to

94.3% across the three study locations and the inclusion of ancillary datasets

containing information on the soil and elevation further improved the classifi-

cation accuracies (between 5 and 27%, depending on the input classification

dataset). The classification results were consistent across the three different

study areas, confirming the applicability of the approach under different envi-

ronmental contexts.

Introduction

Regular monitoring of vegetation in upland areas is

important for biodiversity conservation, land manage-

ment, carbon storage and within a European context,

European Union (EU) policy compliance. Approximately

19% of the area of the Republic of Ireland supports

upland habitats and these have not been adequately

described or their distribution adequately mapped (Perrin

et al. 2009). These upland areas contain the nation‘s

largest expanse of semi-natural habitats and provide many

benefits to society – water supply, climate regulation,

maintenance of biodiversity, and provision of recreational

activities to name but a few. Notwithstanding this, the

uplands are under increasing pressure from a myriad of

issues; grazing management, scrub encroachment, dimin-

ished supports, ageing farming population and abandon-

ment of land that will lead to major landscape changes

into the future (MacDonald et al. 2000; Reed et al. 2009).

These stresses have serious consequences upon the
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composition, extent and conservation status of important

vegetation habitats in these areas (Mehner et al. 2004).

The inaccessibility and scale of the uplands, along with

constraints in time and finance, make monitoring changes

in vegetation covering large spatial areas difficult using

traditional field-based surveys (Lees and Ritman 1991;

Buchanan et al. 2005; Rhodes et al. 2015). The use of

Earth Observation (EO) data can help overcome this

problem (Kerr and Ostrovsky 2003; Gillespie et al. 2008;

Vanden Borre et al. 2011) and help comply with report-

ing obligations under the Birds Directive (Council Direc-

tive 79/409/EEC 1979) and the Habitats Directive

(Council Directive 92/43/EEC 1992). The number of EO

satellites orbiting the Earth is increasing, and concurrent

with algorithmic advances in information extraction capa-

bilities (Lausch et al. 2015), EO datasets offer a real possi-

bility to provide reliable, high-quality and spatially

explicit maps of habitat distribution and monitor habitat

fragmentation at intervals determined by management

needs (Nagendra et al. 2013; Barrett et al. 2014; Pettorelli

et al. 2014a).

In order to obtain sufficient information at the ecotope

level, hyperspectral data can be the preferred choice in

some studies and has been successfully demonstrated

under various conditions (Lawrence et al. 2006; Chan and

Paelinckx 2008; Chan et al. 2012; Delalieux et al. 2012;

Lucas et al. 2015). However, hyperspectral data is not

always or commonly available, and in its absence, multi-

spectral data have also shown their use for habitat map-

ping (e.g. Feilhauer et al. [2014] and Corbane et al.

[2015]). The difficulty of acquiring cloud-free observa-

tions in temperate areas prone to persistent cloud cover-

age, especially during spring and summer periods often

limits the capability of classifying habitats with optical

data as it is not possible to capture the seasonal variability

in the spectral response of the vegetation (Lucas et al.

2011). Additionally, upland areas are usually more prone

to cloud cover due to the effects of orographic lift. Con-

sequently, Synthetic Aperture Radar (SAR) data are

increasingly being investigated for landscape monitoring

as they are largely unaffected by atmospheric conditions

(Baghdadi et al. 2009; Waske and Braun 2009; Evans and

Costa 2013; Barrett et al. 2014). SAR data are sensitive to

vegetation structure and moisture content and in combi-

nation with optical data, may help to further improve

discrimination of habitats that are structurally different

but spectrally similar.

The choice and availability of suitable EO data will ulti-

mately determine the amount of information that can be

extracted to map and monitor habitats to varying degrees

of resolution. In general, most studies are concerned with

using the highest spatial resolution data possible, which

often introduces further challenges in terms of the

maximum coverage that is attainable and financial con-

straints in acquiring the data. In many cases, extremely

detailed imagery may not be needed for a widespread

conservation status assessment and the use of medium

spatial resolution (>10 and ≤20 m) data may be sufficient

to capture the broad extent and spatial patterns of habi-

tats and meet the local needs of stakeholders along with

national requirements in terms of reporting under the EU

Directives (Lucas et al. 2007; Varela et al. 2008; Nagendra

et al. 2013). Within this context, the objective of this

study is to evaluate the use of medium spatial resolution

optical and radar satellite data, together with ancillary soil

and topographic data for identifying and mapping upland

vegetation to complement field studies and help con-

tribute to national policy in the area of upland manage-

ment and the future sustainable development of the

uplands. The definition used in this study for upland

habitats is taken from Perrin et al. (2009) and is the same

as that used by the NPWS of Ireland, whereby uplands

are defined as unenclosed areas of land over 150 m in ele-

vation, and contiguous areas of related habitats that des-

cend below this value. Consequently, the study also

includes areas below the 150 m cut-off to include the

broad band of transitional vegetation and land manage-

ment that exists between lowland and upland habitats.

Materials and Methods

Study sites

Suitable study areas were selected from a list of candidate

sites for an upland monitoring network, proposed by Per-

rin et al. (2009) that is designed to meet part of Ireland‘s

obligations under Articles 6, 11 and 17 of the Habitats

Directive (92/43/EEC). Figure 1 displays the three areas

selected for this study; Mount Brandon, the Galtee Moun-

tains, and the Comeragh Mountains.

Mount Brandon

Mount Brandon is located on the Dingle Peninsula in

west Kerry, in south western Ireland. It is a mountainous

area that includes the second highest peak in Ireland –
Mount Brandon at 952 m. It is a designated candidate

Special Area of Conservation (cSAC 000375, Lat: 52.22,

Long: �10.07) and the area has an oceanic climate with a

mean temperature range of between 7 and 13°C and a

mean annual rainfall of 1560 mm (calculated from the

1981–2010 averages of the nearest synoptic weather sta-

tion at Valentia), although the upland summits often

receive over 3000 mm per annum. The area of the stud-

ied upland site is 162 km2 (16,212 ha) while the area of

the entire region in Figure 1(A) is 1030 km2.

ª 2016 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 213

B. Barrett et al. Upland Vegetation Mapping Using Satellite Data



Galtee Mountains

The Galtee Mountains span across three counties: Cork,

Tipperary and Limerick, and are the highest inland

mountain range in Ireland (Galtymore at 920 m). It is a

designated candidate Special Area of Conservation (cSAC

000646, Lat: 52.36, Long: �8.14), where the mean

recorded temperature range is 5–13°C with a mean

annual precipitation of 820 mm for the lowlands, rising

to 1900 mm for upland regions (meteorological data

recorded at the closest synoptic weather station at Moore-

park in Fermoy, Cork). The area of the studied upland

site is 83 km2 (8279 ha) while the area of the entire

region in Figure 1(B) is 619 km2.

Comeragh Mountains

The Comeragh Mountains are located in county Water-

ford and are a designated Special Area of Conservation

(SAC 001952, Lat: 52.23, Long: �7.56). The central area

of the mountains features a boggy plateau and reaches a

maximum elevation of 792 m. Moorepark is also the clos-

est synoptic weather station to the Comeragh Mountains

and so the historical meteorological data is the same as

Figure 1. Location of the three upland study sites in Ireland. (A) Mount Brandon, (B) Galtee Mountains, and (C) Comeragh Mountains showing

topography in shaded relief.

214 ª 2016 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Upland Vegetation Mapping Using Satellite Data B. Barrett et al.



for the Galtee Mountains. The area of the studied upland

site is 103 km2 (10,329 ha) while the area of the entire

region in Figure 1(C) is 943 km2.

Satellite data

The Advanced Visible and Near Infrared Radiometer type

2 (AVNIR-2) instrument onboard the Advanced Land

Observation Satellite (ALOS) satellite was a multispectral

sensor that acquired data in four visible and near infrared

wavebands corresponding to the blue (0.42–0.50 lm),

green (0.52–0.60 lm), red (0.61–0.69 lm) and near infra-

red (0.76–0.89 lm) spectral channels. The ALOS satellite

was launched by the Japanese Aerospace Exploration

Agency (JAXA) on 19th January 2006 and operated until

12th May 2011. The satellite also had a Phased Array-type

L-band Synthetic Aperture Radar (PALSAR) instrument

onboard that operated at L-band (wavelength

(k) = 23.6 cm). PALSAR level 1.1 data (single-look-com-

plex [SLC]) obtained from the European Space Agency

(ESA) were used in this study. Two different modes were

selected: fine beam single (FBS) and fine beam dual

(FBD) polarization. The characteristics of the satellite data

used in this study are displayed in Table 1. AVNIR-2 and

PALSAR data were selected for this study based on their

spatial resolution, availability and closeness in acquisition

to the field measurements.

Image pre-processing

Avnir-2

All data were received as level 1B2 products: two acquisi-

tions from 2009 and one acquisition from 2010 were

analysed for this study. The spatial resolution of the four

AVNIR-2 bands is 10 m and these were resampled to

15 m using a bilinear resampling to match the resolution

of the PALSAR data. Each of the AVNIR-2 scenes were

geo-rectified using ground control points (GCPs) col-

lected from the Ordnance Survey of Ireland (OSi)

orthophotography and yielded a root-mean-square (rms)

error of less than 0.56 pixel. Atmospheric correction was

performed using the MODTRAN� correction model as

implemented in ATCOR-3� (Richter and Schlapfer

2011). A C-factor topographic correction (Teillet et al.

1982) was applied to the data using a sun illumination

terrain model derived from a NextMap� 5 m Digital Ele-

vation Model (DEM) (Intermap Technologies, 2008) cov-

ering the scene. The topographic correction was

implemented in GRASS (GRASS Development Team,

2012). Cloud cover was present in each of the scenes and

a mask (manually digitized on screen) was applied in

order to exclude cloud and cloud shadow affected areas.

Shadows cast by topography were identified using the

shadow file output from ATCOR-3 and subsequently

masked.

Vegetation indices

Vegetation indices (VIs) have been used extensively for

monitoring, analysing, and mapping vegetation dynamics

and are often used to remove the variability caused by

bare soil, illumination angles and atmospheric conditions

when estimating vegetation parameters (Sarker and

Nichol 2011). A selection of commonly used vegetation

indices were generated using the atmospherically cor-

rected AVNIR-2 data in order to assess their additional

information contribution to the classification process (see

Table 2). In addition to the VIs, simple reflectance ratios

Table 1. Satellite data used for each of the study sites. Azimuth corresponds to the solar azimuth and elevation corresponds the sun elevation

angle, both in degrees. D corresponds to acquisitions from a descending orbit and A corresponds to acquisitions from an ascending orbit.

Site Sensor Date Track Frame Pass Azimuth Elevation

Mount Brandon AVNIR-2 2009-09-14 358 2540/2550 D 166.53/ 166.19 40.09/ 40.54

PALSAR FBD 2010-05-14 7 1030/1040 A — —

2010-06-29 7 1030/1040 A

PALSAR FBS 2010-03-29 7 1030/1040 A — —

Galtee Mountains AVNIR-2 2010-10-11 354 2540 D 169.91 30.02

PALSAR FBD 2010-06-07 3 1040 A — —

PALSAR FBS 2010-03-07 3 1040 A — —

2011-03-10 3 1040 A

Comeragh Mountains AVNIR-2 2010-10-11 354 2540 D 169.91 30.02

PALSAR FBD 2010-05-21 2 1030/1040 A

2010-07-06 2 1030/1040 A — —

PALSAR FBS 2011-02-21 2 1030/1040 A — —

AVNIR-2, advanced visible and near infrared radiometer type 2; FBD, fine beam dual; FBS, fine beam single; PALSAR, phased array-type L-band

synthetic aperture radar.
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were calculated for all four bands (blue/green; blue/red;

blue/NIR; green/red; green/NIR; and red/NIR) and

included as input in the classifications. Although many of

the VIs are highly correlated, the use of multiple VIs

could offer a more complete characterization of the

upland vegetation classes.

Texture measures

Eight texture measures (mean, homogeneity, contrast,

variance, dissimilarity, entropy, correlation, and second

moment) based on the grey-level co-occurrence matrix

(GLCM) (Haralick et al. 1973) of the near infra-red band

and radar backscatter were created using a 3 9 3 kernel

size. These measures were included as they often provide

unique information concerning the spatial pattern and

variation in surface features and have been shown to

improve classification accuracy (Lu and Weng 2007;

Paneque-G�alvez et al. 2013).

Palsar

The FBS and FBD data were multi-looked by a factor of

2 in range and 4 in azimuth, and 1 in range and 4 in azi-

muth, respectively, to generate 15 9 15 m pixels. The

FBS and FBD scenes for each study area were co-regis-

tered and speckle filtered using a multi-temporal de

Grandi filter (De Grandi et al. 1997), and subsequently

radiometrically and geometrically calibrated and con-

verted to dB using a range-doppler approach and a Next-

Map 5 m spatial resolution DEM. The radar backscatter

returned to the sensor is affected by the topography of

the surface where certain terrain-induced distortions are

present in areas with increased topographic relief. These

areas were subsequently masked for each of the study

sites. For Mt Brandon, 15.08 km2 of the upland area out

of a total of 162 km2 was masked (due to the presence of

cloud and/or shadow and terrain-induced distortions),

corresponding to 9.3% of the total area. For the larger

scene (see Fig. 4), 62.29 km2 was masked out of a total of

581.18 km2 (land area only) which corresponds to 10.7%

of the total land surface area of the scene. 2.74 km2 of

the Comeraghs upland area of 103 km2 and 13.38 km2 of

the total area of 943 km2 was masked, corresponding to

2.7% and 1.4% respectively. 2.27 km2 of the Galtees was

masked, corresponding to 2.7% and 0.4% of the upland

(83 km2) and total area (619 km2) respectively.

Ancillary variables

Two different groups of ancillary variables were chosen

for inclusion in the classifications: (1) Topographic – ele-

vation and slope, and (2) Soils. Soil and subsoil informa-

tion was derived from the Teagasc-EPA Soils and Subsoils

dataset (Fealy et al. 2009) and have a nominal working

scale of 1:50,000 and elevation and slope data were

obtained from a NextMap 5 m DEM. These parameters

can influence the spatial distribution of upland vegetation

species by affecting the amount of solar radiation and

rainfall intercepted by the surface (Bennie et al. 2008,

2010), along with soil nutrient availability and moisture-

holding capacity (Franklin 1995).

Classification schema and reference data

The broad-scale habitat classification scheme of Fossitt

(2000) has been widely adopted by government authorities

and the ecological community for habitat mapping in Ire-

land. The classification schema adopted for the NPWS-

funded National Survey of Upland Habitats (NSUH) is

principally based on Fossitt (2000) and has been used in

this study (see Table 3). A total of 15 classes (level 2) were

identified and a stratified random sampling approach

adopted for the selection of sample points. The three study

sites have different class distributions and the proportion

of each class varies relative to each site. Some classes are

not present at some sites (e.g. lowland blanket bog) and

some classes have a lower occurrence at other sites (e.g.

exposed rock and montane heath at the Galtees). The sam-

ple set reflects these differences and as much as possible,

the class proportions of the sample data are representative

of actual class proportions in the study area landscape.

User interpretation of NSUH field survey data for Mount

Brandon (collected between May – Aug 2011), Galtee

Mountains (Aug –Sept 2011), Comeragh Mountains (Mar

– May 2010), Forest Inventory and Planning System

(FIPS) and Microsoft� Bing Imagery aided the distinction

between the different classes.

Table 2. Vegetation Indices selected for this study.

Vegetation Index Reference

Renormalized difference vegetation index (RDVI) (Roujean and

Breon 1995)

Difference vegetation index (DVI) (Tucker 1979)

Modified nonlinear index (MNLI) (Yang et al. 2008)

Normalized difference vegetation index (NDVI) (Rouse et al. 1974)

Soil adjusted vegetation index (SAVI) (Huete 1988)

Optimized soil adjusted vegetation index (OSAVI) (Rondeaux

et al. 1996)

Transformed vegetation index (TVI) (Deering and

Rouse 1975)

Corrected transformed vegetation index (CTVI) (Perry and

Lautenschlager

1984)

Thiam‘s transformed vegetation index (TTVI) (Thiam 1997)
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Classification

The Random Forests (RF) machine learning classifier

(Breiman 2001) was used to relate the vegetation types to

the satellite and ancillary data. RF was chosen as the pre-

ferred classification method as it has consistently demon-

strated its skill for vegetation mapping using various

types of data (Cutler et al. 2007; Chapman et al. 2010;

Bradter et al. 2011; Rodriguez-Galiano et al. 2012; Barrett

et al. 2014; Feilhauer et al. 2014) and can handle high-

dimensional datasets and not suffer from overfitting (Bel-

giu and Dr�agut� 2016). RF builds an ensemble of individ-

ual decision-like trees from which a final prediction is

made using a majority voting scheme. The individual

trees are trained using a bootstrap sample of the training

data (2/3 of samples) with the remaining 1/3 of samples

used to test the classification and estimate the out-of-bag

(OOB) error. In this study, RF models consisted of 200

trees. Separate models were generated to analyse the per-

formance of the different data types separately and collec-

tively. Eight different datasets were analysed to compare

the change in classification accuracy depending on the

selected input variables. These models concentrated on

the use of optical only, radar only and various combina-

tions of optical-derived and radar-derived variables along

with certain ancillary variables. The influence of the dif-

ferent input variables was calculated and the variable

importances (based on the Gini importance) in the initial

models were used to improve model fit and model parsi-

mony. RF was implemented in Python 2.7.8 using the

sci-kit learn library (Pedregosa et al. 2011).

Accuracy assessment

The results of all classifications were assessed using a stan-

dard confusion matrix to calculate the overall accuracy

Table 3. Classification Schema and number of training samples. Class descriptions are adopted from Fossitt (2000).

Level 0 Level 1 Level 2 BR GT CM Description

G Grassland GA Improved GA1 Improved 340 507 407 Grassland on well drained soils, usually consists

of highly managed pastures

GS Semi-

improved

GS3 Dry humid

grassland

266 186 237 Semi-improved grassland over acid soils

GS4 Wet grassland 101 106 114 Semi-improved grassland on poorly drained soils

H Heath HH Heath HH1 Dry siliceous

heath

213 258 158 Usually occurs on free-draining acid soils where

the vegetation is open and dwarf shrubs are

present

HH3 Wet heath 236 171 122 Usually found on lower slopes of upland areas

on peaty soils

HH4 Montane heath 116 57 111 Substantial cover of dwarf shrubs occurring at

high elevation and/or very exposed locations

HD1 Dense bracken 111 162 135 Areas of open vegetation dominated by Bracken

P Peatland PBR Raised Bog PB4 Cutover bog / / / Mostly located in the lowlands of central and

mid-west Ireland where there are accumulations

of deep peat (3–12 m)

PBB Blanket Bog PB2 Upland

blanket bog

271 383 467 Usually occurs on flat or gently sloping ground

(above 150 m elevation) on variable peat

depths (>0.5 m depth)

PB3 Lowland

blanket bog

129 / / Usually confined to wetter regions along the

western seaboard. Occurs on flat or gently

sloping ground below 150 m elevation

W Woodland 381 311 674 Areas dominated by trees and woody vegetation

E Exposed

Rock

ER Exposed Rock ER1/ER3 Exposed siliceous

rock/scree and

loose rock

163 55 109 Areas of natural and artificial exposure of bedrock

and loose rock (excluding sea cliffs)

DG Disturbed

Ground

ED1/ED2 Exposed sand,

gravel or till.

/ 67 102 Areas of exposed sand, gravel or till

B Built land 139 252 338 All developed land, including transportation

infrastructure and human settlements

C Coastland 134 / / Includes sea cliffs and sand dunes

M Water body 305 45 242 Bodies of permanent fresh and/or salt water

Total 2905 2560 3216
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and the user‘s and producer‘s accuracies (Congalton

1991). An additional independent validation was also car-

ried out for comparison to the RF OOB accuracies. A

total of 876, 839, and 881 samples were randomly selected

throughout the Mt Brandon, Galtee Mts, and Comeragh

Mts study areas to create the independent accuracy assess-

ment dataset. The statistical significance of the differences

between the classification datasets was evaluated, using

the Mc Nemar‘s test (Foody 2004), using the following

formula:

z ¼ f 12 � f 21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 12 þ f 21

p ; (1)

where f12 indicates the number of samples correctly classi-

fied in the first classification, but incorrectly in the second

classification, and f21 represents the number of samples

correctly classified in the second classification, but incor-

rectly classified in the first classification. The Mc Nemar‘s

test has been commonly used in previous studies to eval-

uate the variability between classifications (Duro et al.

2012; Belgiu et al. 2014). In this study, the significance

level a is set at 0.05 (z critical value = 1.96).

Results

The accuracy assessments (overall accuracy, user’s and

producer‘s accuracy) for the different classification data-

sets are shown in Table 4. The overall accuracy (OA)

values among the datasets vary from 59.8% to 94.3%

across the three study locations. The highest overall accu-

racies (93.2–94.3%) were obtained for the combined opti-

cal, radar and ancillary data (viii), across all three study

areas. Most datasets achieved high accuracies (>~85%)

with the exception of the radar and texture measures

dataset (≤68%). The RF classifier displayed a relatively

consistent overall performance across the three study

sites, however certain differences between classes were

observed.

Figure 2 displays the producer‘s (PA) and user‘s (UA)

accuracies for each of the eight classification datasets

and provides more insight into the classification errors

that are unique to specific classes. The producer‘s and

user‘s accuracy represent the omission and commission

errors respectively. The radar dataset (ii) displays the

highest variation between PA and UA for many of the

vegetation classes indicating that the radar and texture

data tend to overestimate and when used alone, cannot

reliably separate these classes. The lowest values for most

datasets are confined to the heath classes, where differ-

ences between the study areas become more readily

apparent. When both optical and radar datasets are

combined with the ancillary datasets (viii), these differ-

ences between the study areas are less obvious.

It can be seen that the increases in the accuracies

achieved in some of the datasets by the addition of cer-

tain variables are not large. RF produces a measure of the

variable importance by analyzing the deterioration of the

predictive ability of the model when each predictor vari-

able is replaced in turn by random noise (Vincenzi et al.

2011). In general, the texture measures and radar data

have low importance scores. The class-specific contribu-

tions of different variables to the models are shown in

Figure 3. Due to their negligible influence, the texture

measures (optical and radar) have been omitted. In all

three study areas, all models strongly relied on distinct

spectral bands and band ratios. The influence of the ancil-

lary data is variable between classes and study sites. The

RF models were applied across the entire study areas to

obtain vegetation cover for the whole regions (see Fig. 4),

while the upland subsets in these study areas are shown

in Figure 5. These maps were created using the (vii) data-

set, without the inclusion of the soils and elevation ancil-

lary data. A 3 9 3 pixel majority filter was applied to the

thematic outputs to improve the homogeneity of the final

product. As can be seen from Figure 4, the dominant veg-

etation cover in all areas is grasslands, and this is relatable

to most areas in Ireland. There is very little forest cover

on the Dingle Peninsula, while both the Galtee and

Comeragh study areas have considerably larger forest

areas, especially along the lower slopes of the upland

areas. These areas usually represent lands that are mar-

ginal for agriculture and since the 1950s, large extents

have been afforested, supported through various govern-

ment and EU incentive programmes. Concentrating on

the upland subsets in Figure 5, the true value of upland

areas in terms of habitat diversity is apparent. Mount

Brandon (Fig. 5A) has extensive areas of wet heath, semi-

improved (dry-humid acid) grasslands, blanket bog and

dry siliceous heath. Large areas of montane heath are

observed, especially along the western edge of the area

making it quite distinctive when compared to the Galtee

and Comeragh Mountains. From Figure 5(B), the domi-

nant classes for the Galtee Mountains are dry-humid acid

grassland along the north-west of the area, dry siliceous

heath and blanket bog. Wet heath occurs less frequently,

compared to the Mount Brandon area, though there are

increased areas of wet grassland. Similar to the Galtees,

the dominant classes in the Comeragh Mountains area

(Fig. 5C) are blanket bog, dry siliceous heath and dry-

humid acid grassland. Small areas of wet heath are scat-

tered throughout the area and areas of dense bracken are

prevalent along the eastern edges of the upland area.

The results of the Mc Nemar’s test between classifica-

tion (vii) and the others are displayed in Table 5 for all

study sites. McNemar0s test is non parametric and based

on the classifier‘s confusion matrices with the null
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hypothesis of no significant differences between classifica-

tions (e.g. (i) = (vii)). For all three sites, the difference

between (vii) and (ii) and (vii) and (v) were significantly

different (P < 0.001). The difference between (vii) and

(iii) was significantly different (P < 0.001) at both the Mt

Brandon and Comeragh Mts sites. Mt Brandon displayed

significant differences (P < 0.05) between all classifica-

tions except (vii) and (iv) while the Comeragh Mts also

displayed significant differences (P < 0.001) between (vii)

and (iii) and (vii) and (vi).

Discussion

The results from this study demonstrate the advantage of

integrating EO satellite data from multiple sensors to

improve vegetation mapping in upland regions. Even

though it may not be surprising that the multispectral data

outperforms the radar data, there is merit in incorporating

both data types in the classifier models. One of the first

published studies to investigate radar differences between

upland and lowland vegetation was by Krohn et al. (1983)

using L-band SEASAT data. Since then, few published

studies on the use of radar for mapping uplands can be

found in the literature. The results from this study reveal

that a short time series of L-band radar data cannot exclu-

sively separate all the distinct vegetation classes used in this

analysis. The results show that combined optical and radar

data obtain the highest classification accuracies, in agree-

ment with previous studies (e.g. Bagan et al. (2012)). The

inclusion of ancillary datasets containing information on

the soil and elevation further improves the classification

accuracies (between 5 and 27%, depending on the input

classification dataset) and is similar to that found in previ-

ous studies for both optical (Sesnie et al. 2008) and radar

data (Barrett et al. 2014). When several vegetation classes

are grouped into broader habitat types, classification accu-

racies also show an improvement. There is little difference

between level 0 and level 1 accuracies and in most cases,

the lower level classifications show only a marginal

improvement upon level 2 accuracies (see Fig. S1 and

Tables S1, S2). To determine the stability of the level 2 clas-

sification results, 25 iterations of the RF classifications were

run for the optical and radar dataset (vii) where the maxi-

mum variation observed in OA for Mt Brandon was

1.01%, Galtee Mts was 0.71%, and Comeragh Mts was

0.69%.

Relative importance of explanatory
variables

It can be seen from Figure 3 that the radar data has low

importance scores for most of the vegetation classes,

with the lowest scores obtained for the GS3 and PB2T
a
b
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classes. This is likely due to the long wavelength of the

radar signal (k = 23.6 cm) which penetrates through the

vegetation canopy and returns mostly information about

the underlying soil properties. Shorter wavelength (e.g.

C- or X-band) backscatter is influenced more by the

vegetation canopy and may provide more information

on the plant geometry that could facilitate the distinc-

tion of different upland vegetation classes. Within the

optical domain, the NIR signal is particularly useful for

discriminating between grassland types (GA1, GS3 and

GS4) while the green and red spectral bands perform

well for distinguishing between the heath classes (HH1,

HH3 and HH4) and blanket bog (PB2). The spectral

band ratios (blue/red and green/red) performed espe-

cially well in separating dense bracken (HD1), and in

general performed better than the vegetation indices.

The greater importance of these band ratios is likely due

to the higher reflectance of bracken compared to other

vegetation in autumn, especially in the red wavelengths

due to the higher amount of underlying dead litter.

Similar findings were observed by Holland and Aplin

(2013) for winter acquisitions.

Factors such as the bare soil, moisture conditions,

solar zenith angle and the atmosphere can impact on

the effective use of VIs for distinguishing vegetation

types (Jackson and Huete 1991). Soil-adjusted indices

such as SAVI and OSAVI minimise the soil background

influence but do not outperform other VIs, indicating a

likely negligible influence of bare soil on the classifica-

tions. In fact, the nine VIs investigated in this study

perform similarly across the different study areas. The

exception is for the improved grassland (GA1) class

where the DVI and renormalized difference vegetation

index (RDVI) revealed the highest discriminatory power

for the Mount Brandon and Comeragh Mountains. In

both of these areas, the NIR channel also had a higher

influence than other spectral bands or indices. This is

likely due to the strong absorption of electromagnetic

Figure 2. Producers and User‘s accuracies, represented as the first and second column at each of the three study sites is displayed for the eight

different classification datasets (i–viii) and correspond with those as presented in Table 4.
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radiation in the red wavelengths (0.61–0.69 lm) by

chlorophyll in pastures and it‘s high reflectance in the

NIR region. RDVI is similar to NDVI but tends to be

more sensitive to changes in vegetation coverage under

low leaf area index conditions.

Elevation is one of the most important factors deter-

mining the broad-scale distribution of upland vegetation

as it influences precipitation and temperature. Thus, ele-

vation controls the ecological and physiological adapta-

tions of various plant species (Lomolino 2001) and the

significance of this variable and to a lesser extent, the

slope can be seen across most of the classes. The high

explanatory power of these variables is not surprising, as

upland grasslands and heaths tend to occur on sloping

ground, and montane heaths generally occur at high ele-

vations. Similarly, blanket bogs usually occur on level

ground or gentle slopes. Furthermore, they generally

occur on deep peaty soils and the results indicate that the

soil and subsoil variables had a high importance in this

class also. The particular importance of soil characteristics

for vegetation mapping has been demonstrated in previ-

ous studies by Rogan et al. (2003), Barrett et al. (2014),

and Gartzia et al. (2014).

Studies within different scientific disciplines (e.g. bioin-

formatics, statistics, ecology) suggest RF variable impor-

tance measures can display a bias towards highly

Figure 3. Variable importance scores of the different classes for the three study areas. Apart from the mean, all texture measures were excluded

as their importance was negligible. Radar backscatter data (black) represent the first four (Galtee Mountains) and five (Mount Brandon and

Comeragh Mountains) variables followed by the four spectral bands (b1, b2, b3, b4) and spectral band ratios (b1b2, b1b3, b1b4, b2b3, b2b4,

b3b4) in green. The vegetation indices (NDVI, SAVI, OSAVI, DVI, CTVI, TVI, TTVI, RDVI, and MNLI) are in blue with the band 4 mean, HH

polarization mean, and HV polarization in light grey. The final four variables are the soil, subsoil, elevation, and slope (dark grey). NDVI,

normalized difference vegetation index; OSAVI, optimized soil adjusted vegetation index; RDVI, renormalized difference vegetation index; SAVI,

soil adjusted vegetation index.
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Figure 4. Maps derived from the optical and radar datasets (vii) for (A) Mount Brandon, (B) Galtee Mountains, and (C) Comeragh Mountain

study areas. The delineated regions correspond to the upland areas of interest within each area.
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Figure 5. Maps of the upland areas of (A) Mount Brandon, (B) Galtee Mountains, and (C) Comeragh Mountain study areas. These areas

correspond to the delineated regions in Figure 3.
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correlated variables (Strobl et al. 2008; Genuer et al. 2010;

Ellis et al. 2012). This bias can be lessened by increasing

the subsample size of input variables at each node but at

the expense of increasing the generalization error and

decreasing the overall accuracy (Breiman 2001). Although

not considered here, approaches such as the conditional

permutation method (Strobl et al. 2008) could be

explored as an alternative importance measure in future

studies.

Predicted output map uncertainty

The retrieval of habitat information in upland areas using

EO data is challenging due to the variable topography

and the difficulty of obtaining cloud-free acquisitions in

these regions. Furthermore, habitat delineation is more

difficult to achieve as the landscape is more heteroge-

neous (in terms of composition and structure) and con-

sists of a number of interlinked habitats at different scales

(spatial, temporal and spectral) (Varela et al. 2008). In

this study, misclassification has occurred within and

between subclasses of the main vegetation classes of inter-

est (grassland, heaths, and blanket bog). An important

feature of the RF algorithm is the ability to compute class

probabilities in order to quantify the level of uncertainty

in the predicted output maps. The probability of correct

classification for each class was calculated to make this

uncertainty explicitly available, whereby the relative pro-

portion of each vegetation class per pixel is provided in

Figure 6. The predicted probabilities of the main vegeta-

tion classes are shown, where the darkest areas represent

the pixels with the lowest uncertainty of the assigned

class. The classes with the highest overall probabilities in

each of the study sites are dry humid acid grasslands

(GS3), blanket bogs (PB2), and dry siliceous heath

(HH1). Ireland is the most important European country

for blanket bog habitats and contains almost 8% of the

worldwide blanket bog resource, thus these areas are of

prime conservation value. Furthermore, these expanses

represent a significant active natural carbon sink (Tomlin-

son 2005; Bullock et al. 2012).

Comparison with additional independent
validation dataset

Evaluation of classification accuracy, using the OOB accu-

racies reported in the RF algorithm have generally been

shown to be a reliable measure of classification accuracy

(Lawrence et al. 2006; Devaney et al. 2015). Belgiu and

Dr�agut� (2016) suggest that this claim requires further val-

idation using a variety of datasets and application areas.

In this study, an additional independent validation was

performed and the results are presented in Table S3. In

all cases, the accuracies obtained for the independent vali-

dation were, on average 5.1 � 2.5% lower than the

achieved OOB accuracies for all three study areas. The

radar and ancillary dataset (v) had the largest differences,

ranging between 8.4 and 11.6%, while the optical and

radar (including texture measures and VIs) (vii) had the

lowest, ranging between 2.5 and 3.3%. Although many

studies have demonstrated the ability of RF to perform

well on high dimensional data, Millard and Richardson

(2015) found that RF can underestimate the error and

recommend reducing the dimensionality of high dimen-

sional datasets to significantly reduce the difference

between OOB and independent assessment accuracies.

EO data acquisition timing and spatial
resolution

The similarity of accuracies between the study areas may

be attributable in part to the similar acquisition periods

of the optical and radar data for each of the study areas.

The AVNIR-2 scenes were acquired in September (Mount

Brandon) and in October (Galtee and Comeragh Moun-

tains) while the radar acquisitions were acquired between

February and March and May and July for the FBS and

FBD mode data respectively. The different modes of PAL-

SAR data were only available for certain times of year, as

part of JAXA‘s systematic observation strategy, whereby

FBS mode acquisitions were available between January

and April, and FBD mode acquisitions were available

between May and October.

Table 5. Summary of the classification comparisons for the three study areas.

Mt Brandon Galtees Mts Comeragh Mts

Class 1 Class 2 |z| P value |z| P value |z| P value

(i) (vii) 3.035 0.002 1.331 0.183 2.373 0.176

(ii) (vii) 14.284 <0.001 13.844 <0.001 12.736 <0.001

(iii) (vii) 3.428 <0.001 1.825 0.068 3.582 <0.001

(iv) (vii) 0.447 0.655 1.281 0.200 0.681 0.496

(v) (vii) 6.167 <0.001 6.972 <0.001 3.618 <0.001

(vi) (vii) 2.331 0.020 1.543 0.122 2.592 <0.001

(viii) (vii) 4.587 <0.001 1.643 0.100 1.709 0.087
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Figure 6. Prediction probabilities for the main classes of interest for the upland areas of Mount Brandon (left), Galtee Mountains (middle) and

Comeragh Mountains (right). Darker areas represent higher probabilities while the lighter areas indicate low probabilities. Class designations

correspond to those in Table 3.
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Vegetation has unique spectral signatures which evolve

with the plant life cycle during the year. Characteristics such

as pigmentation, water content and physiological structure

affect the reflectance, absorption, and transmittance of

plant leaves, stems and flowers. In this regard, the time of

year of image acquisition will have a strong bearing on the

classification accuracy and the ability to distinguish differ-

ent types of vegetation. Nonetheless, it is difficult to identify

an optimal temporal window for operational monitoring of

all upland vegetation types (Cole et al. 2014), although

acquisitions around September are considered optimum as

most upland vegetation types are fully developed (Mills

et al. 2006). The spectral similarity between different vege-

tation types during the summer often limits the ability of

acquisitions during these months to reliably distinguish

between vegetation types. Ideally, a dense time series of data

would allow this to be investigated further as the use of

multitemporal data can account for the seasonal variation

in vegetation and provide more accurate classifications

(Gillanders et al. 2008). This could also open up the possi-

bilities of monitoring grazing management (under- and

over-grazing) more effectively and identify burning.

In addition to multitemporal data, a higher discrimina-

tion between classes where misclassifications were high

could be achieved with data from several spectral bands.

For example, Feilhauer et al. (2014) successfully demon-

strated the use of simulated multispectral data at 6 m,

10 m, 20 m and 60 m spatial resolution in providing

detailed information on the distribution of habitat types.

Similarly, Holland and Aplin (2013) found 4 m spatial res-

olution IKONOS imagery not to be comprehensively supe-

rior to Landsat (30 m spatial resolution) for mapping

bracken at an uplands site in the UK. Similar findings were

observed by Rocchini (2007) and Nagendra et al. (2010).

All of these studies found spectral information to be much

more important than spatial resolution. With the success-

ful launch of medium spatial resolution sensors such as

Sentinel-2 on 23rd June 2015 and future launch of the

environmental mapping and analysis program (EnMAP)

hyperspectral satellite (providing global coverage at 30 m

spatial resolution in 232 spectral channels) in 2018, a valu-

able and inexpensive source of information to derive spa-

tially complete vegetation information for upland areas in

a consistent and regular manner can be provided. More-

over, the perceived inadequacy of medium spatial resolu-

tion data may be overcome by incorporating information

on the class probabilities as a measure of quantifying the

level of uncertainty in the predicted output maps.

Conclusion

In upland areas, meteorological, hydrological and ecologi-

cal conditions often change substantially over relatively

short distances and thus contain a high diversity of habi-

tats and species. Improving our knowledge on upland

environments will give valuable insights into holistic envi-

ronmental processes, aiding the development of sustain-

able land management strategies for managing the effects

of climate change, dormancy and promote conservation

of terrestrial and aquatic biodiversity (Nogu�es-Bravo et al.

2007; Ramchunder et al. 2009; Hodd et al. 2014). EO

provides the only means of measuring the characteristics

of habitats across broad areas and detecting environmen-

tal changes that occur as a result of human or natural

processes in these areas on a frequent basis (Kerr and

Ostrovsky 2003; Turner et al. 2003; Duro et al. 2007;

Nagendra et al. 2014). With the current availability of

satellite EO data at low or no cost and an increased num-

ber of satellites in orbit or planned, there has never been

a better time to incorporate EO data into operational veg-

etation mapping and monitoring programmes. EO data

will never likely provide the fine-scale information that

only field measurements can provide but can offer a pow-

erful complimentary information source (Spanhove et al.

2012; Feilhauer et al. 2014; Pettorelli et al. 2014b; O’Con-

nor et al. 2015). From this study, it can be concluded that

medium spatial resolution (~15 m) satellite data acquired

from optical and microwave sensors offers a basis for

supporting mapping and monitoring of upland vegeta-

tion. The mapping approach has been demonstrated over

large areas in three distinctive upland regions, indicating

the consistency and the transferability of the method.
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Figure S1. Overall accuracies for the classification datasets

at level 0, level 1, and level 2 for (A) Mount Brandon,

(B) Galtee Mountains, and (C) Comeragh Mountains.

The classification datasets (i–viii) correspond to those as

presented in Table 4.

Table S1. Level 1 classification results for the different data-

sets at each of the three study sites. BR, Mount Brandon;

GT, Galtee Mountains; and CM, Comeragh Mountains.

Table S2. Level 0 classification results for the different data-

sets at each of the three study sites. BR, Mount Brandon;

GT, Galtee Mountains; CM, Comeragh Mountains.

Table S3. Level 2 classification results (PA, producer accu-

racy; UA, user accuracy) for the different datasets at each of

the three study sites for the independent validation. BR,

Mount Brandon; GT, Galtee Mountains; CM, Comeragh

Mountains.
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