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To quantitatively evaluate brain tissue and its corresponding func-
tion, knowledge of the 3D cellular distribution is essential. The
gold standard to obtain this information is histology, a destruc-
tive and labor-intensive technique where the specimen is sliced
and examined under a light microscope, providing 3D informa-
tion at nonisotropic resolution. To overcome the limitations of
conventional histology, we use phase-contrast X-ray tomogra-
phy with optimized optics, reconstruction, and image analysis,
both at a dedicated synchrotron radiation endstation, which we
have equipped with X-ray waveguide optics for coherence and
wavefront filtering, and at a compact laboratory source. As a
proof-of-concept demonstration we probe the 3D cytoarchitec-
ture in millimeter-sized punches of unstained human cerebellum
embedded in paraffin and show that isotropic subcellular reso-
lution can be reached at both setups throughout the specimen.
To enable a quantitative analysis of the reconstructed data, we
demonstrate automatic cell segmentation and localization of over
1 million neurons within the cerebellar cortex. This allows for
the analysis of the spatial organization and correlation of cells
in all dimensions by borrowing concepts from condensed-matter
physics, indicating a strong short-range order and local clustering
of the cells in the granular layer. By quantification of 3D neuronal
“packing,” we can hence shed light on how the human cerebellum
accommodates 80% of the total neurons in the brain in only 10%
of its volume. In addition, we show that the distribution of neigh-
boring neurons in the granular layer is anisotropic with respect to
the Purkinje cell dendrites.

X-ray phase-contrast tomography | 3D virtual histology | human brain
cytoarchitecture | automatic cell counting

D igitalizing the 3D structure of human brain tissue at
(sub)cellular resolution is an essential step toward deci-

phering how brain function is enabled by the underlying cytoar-
chitecture. It can also indicate which changes become relevant
in neurodegenerative disorders such as multiple sclerosis or
in brain tumor development. To this end, 3D data have to
be acquired with sufficient resolution, contrast, and through-
put. The gold standard in biomedical research is histology, a
destructive imaging method in which the specimen is sliced into
micrometer-thick slices, stained with specific staining agents, and
examined under a light microscope. However, artifacts can be
created not only by fixation and staining, but also by the slic-
ing itself via shear forces or due to slicing-associated constraints,
which narrow the choice of fixation or impose changes in tem-
perature. Most importantly, histology provides excellent results
in 2D, but resolution in 3D is always limited by the slice thick-
ness. Hard X-ray computed tomography (CT), when augmented
by phase contrast (1–7), can provide sufficient 3D image reso-
lution and contrast for neuronal tissues (8–10). Compared with
classical absorption radiography, related to the imaginary part
of the X-ray index of refraction n(r)= 1− δ(r)+ iβ(r), X-ray
phase shifts arise from variations in the real part δ(r) which is
orders of magnitude larger for soft biological tissue (11). By free
propagation and self-interference of a coherent beam behind the

object, the phase shifts are converted into measurable signals (1,
2). Nowadays, phase-contrast tomography can indeed be realized
not only with synchrotron radiation (SR), but also with labora-
tory microfocus (µ-CT) instruments, which can be made more
broadly available for clinical and biomedical research or even
clinical diagnostics. This progress has been enabled in particular
by new sources which provide just enough partial coherence to
exploit phase-contrast (12–16) as well as submicrometer resolu-
tion (15, 17). However, sufficient contrast in unstained neuronal
tissue has so far been achieved only for fairly sparse features
such as very large neurons (18), but not for small and densely
populated neurons or dendrites. Visualization of individual cells
required invasive contrast enhancement by staining, for exam-
ple in kidney (19) and in neuronal tissue (10), or by drying (16).
Overall, persisting deficits in image quality have largely restricted
3D analysis of tissues to SR, and even in this case resolution
and contrast for unstained tissue were mostly too modest for
automated detection of cells.

In this work we now demonstrate noninvasive imaging of
paraffin-embedded human brain tissue by phase contrast based
on electron density variations without any additional staining
and at an image quality which enables reliable and automated
rendering of up to 1.8 · 106 neurons in the reconstruction vol-
ume. This progress has been enabled by a careful optimization
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and choice of image recording parameters and reconstruction
algorithms. To this end, we use two optimized tomography
instruments designed and implemented by our group, a labora-
tory µ-CT setup equipped with a liquid jet anode source, as well
as a high-resolution SR instrument with special X-ray waveg-
uide optics for coherence and spatial filtering (20). While the
µ-CT offers large volume, the SR setup provides a zoom-in
into the laboratory dataset at higher resolution. In both cases,
we have optimized optical and geometrical parameters for sam-
ples of low contrast and have identified suitable reconstruction
algorithms. Importantly, we have implemented and validated
algorithms for automated 3D image segmentation and extraction
of neuron locations. For this proof-of-concept demonstration,
we have chosen the example of the human cerebellum. Specifi-
cally, we quantify the positions of all neurons and from these data
the distribution functions describing difference vectors between
neighboring neurons in the densely packed granular layer. We
also cover the interface to the Purkinje cell layer where we show
that image quality and contrast are high enough to segment the
characteristic dendritic trees of Purkinje cells, as well as the
molecular layer with its much sparser population of neurons.

Several approaches have already been introduced to imple-
ment automated segmentation. For example, Dyer et al. (8) first
used manual training of an object classifier to obtain probabil-
ity maps for neurons or for specific sample features. This was
shown to work well for osmium-stained mouse cortex recorded
with synchrotron radiation. Hieber et al. (9) used a Frangi fil-
tering step to extract tubular and spherical microstructures of
Purkinje cells in unstained human cerebellum embedded in
paraffin, also recorded with synchrotron data. To locate up to 106

neurons in a 1-mm punch from a human cerebellum embedded
in paraffin, we here make use of the spherical Hough transform
which we tune to detect the cell nuclei of expected size in the
entire 3D search space. The algorithm does not need any man-
ual training and can accurately locate even unstained and small
neurons. At the achieved level of data volume, image quality,
and segmentation reliability, more statistical quantifications of
anatomical structure become possible. We illustrate this by show-
ing highly resolved histograms of structural parameters, such
as cell–cell distance and gray values representing electron den-
sity. Borrowing concepts from condensed-matter physics, we also
compute the associated pair correlation function and structure
factor from the retrieved cellular position vectors. The result-
ing curves indicate a highly structured 3D assembly for the
granular layer where the first and second correlation shells of
nuclear positions can clearly be distinguished from the associated
maxima.

Results
High-Resolution Synchrotron CT. The synchrotron measurements
were recorded in a highly coherent and divergent 8-keV radia-
tion cone behind the X-ray waveguide optics of the Göttingen
Instrument for Nano-Science with X-rays (GINIX) endstation
(SI Appendix, Fig. S4A), installed at the P10/PETRAIII beam-
line (20). Fig. 1B shows a virtual slice through the tomographic
reconstruction, clearly resolving the transition between the cell-
rich granular layer in the bottom and the low-cell molecular layer
at the top. At the interface, the monocellular Purkinje cell layer
can be identified. One exemplary cell of this layer is depicted in
the presented slice, including its large dendritic tree protruding
into the molecular layer. To better visualize the 3D structure of
the reconstructed volume, a cellular segmentation is shown in
Fig. 2A and in SI Appendix, Movie S1. The automated segmen-
tation of cells in the molecular and granular layer based on the
spherical Hough transform (21, 22) is detailed in Material and
Methods. For the Purkinje cell layer, a semiautomatic approach
was used, as detailed in Materials and Methods. Different char-
acteristics of the cerebellar layers become immediately evident.

biopsy punch

paraffintissue

A B

C

Fig. 1. Virtual histology of human cerebellum. (A) Sample preparation
for tomographic experiments. Biopsy punches were taken from paraffin-
embedded human cerebellum and placed into a Kapton tube for mounting
in the experimental setups. (B) Transverse slice through the reconstructed
volume of the synchrotron dataset revealing the interface between the
low-cell molecular and the cell-rich granular layer, including a cell of the
monocellular Purkinje cell layer. (C, Left) Corresponding slice of the labora-
tory dataset (same plane, same specimen as in B), showing the larger volume
accessible by the laboratory setup while maintaining the resolution required
for single-cell identification. (C, Right) Magnified view of the region marked
by the rectangle in C, Left corresponding to the field of view of the syn-
chrotron dataset in B. [Scale bars: 50 µm (B and C, Right) and 200 µm (C,
Left).]

The cells of the granular and molecular layer are significantly
smaller compared with the Purkinje cells which have a highly
branched dendritic tree. The segmentation of the single Purk-
inje cells in Fig. 2A, Right (note that the cell in Fig. 2A, Lower
Right is the same as shown in Fig. 1C) also shows the typical flat
shape of the Purkinje cell which is almost 2D.

Cell Quantification in the Molecular and Granular Layer. The output
of the automatic cellular segmentation based on the spherical
Hough transform is depicted in Fig. 3, both for an exemplary slice
and for the entire volume. In total, the algorithm determined
∼40,000 cells in the granular and 1,700 cells in the molecular
layer. To obtain a measure for cellular density, the volume of
the two layers is estimated via an envelope around all cells con-
tained in that layer (Fig. 3C). As a criterion for the separation
between the low-cell molecular layer and the cell-rich granu-
lar layer the mean distance to the 35 nearest neighbors is used.
The density is determined as ρ=9.9 · 104 mm−3 in the molecu-
lar layer and ρ=2.7 · 106 mm−3 in the granular layer. Note that
this corresponds to the average density of the entire layer. In SI
Appendix, Fig. S12, a local density estimation for the granular
layer is depicted, showing large variations throughout the layer.
The cell density is also found to decrease toward the molecular
layer, resulting in a smooth transition between these two layers.

From the positions of the cell nuclei within the volume, several
statistical measures can be determined (Fig. 4). The distribu-
tion of nearest-neighbor distances in the molecular layer (ML)
and granular layer (GL) is shown in Fig. 4 A and B, reveal-
ing mean distances of 9.7± 0.8 µm (ML) and 4.00± 0.02 µm
(GL). Considering the mean radius of cellular nuclei in the two
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Fig. 2. Volume representation of the data. (A) Cellular segmentation of the cells in the granular layer (dark red), the molecular layer (light red), and the
Purkinje cell layer (shades of gray) with two exemplary Purkinje cells shown separately (Right), from front and side views. (B) The same segmentation for
the laboratory dataset. Note that the individual Purkinje cells are the same as for the synchrotron dataset and that the thick branches of the dendritic tree
can already be resolved with the laboratory setup.

layers (2.4 µm in the ML and 2.1 µm in the GL), this indi-
cates that within the GL most of the cells have at least one
neighboring cell in direct contact whereas in the ML the dis-
tance to the nearest cell is several cell radii larger. The mean
gray value within the volume of a single-cell nucleus can be con-
sidered as a measure of electron density, as the reconstruction
value is proportional to the sample’s real part of the refractive
index. In Fig. 4C the corresponding histograms are shown, indi-
cating that the cells of the GL are in general denser than the
cells in the ML. The structural arrangement of the cells in the
GL is further quantified by computing the pair correlation func-
tion and the angular averaged structure factor, as shown in Fig.
4 E and F. The correlation function shows two distinct peaks
at 4.16± 0.04 µm and 8.5± 0.3 µm. Hence, the second corre-
lation shell is about twice the distance of the first one, indicating
a clustering, which can be confirmed by visual inspection. This
is in line with the fact that the first nearest-neighbor distance
r1 =4.14 µm is significantly smaller than the mean internuclei
distance computed from the density rm = ρ−1/3 =7.2 µm. In
contrast to a highly coordinated liquid or amorphous state, e.g.,
with coordination number 12 as for hard spheres, the coordi-
nation number of the present structure is ∼5, again indicating
an arrangement in small clusters. Next, we investigate the angu-
lar distribution of interneuron distance vectors, going beyond
the conventional assumption of isotropy in the computation of
the pair correlation function (SI Appendix, SI Methods). Inter-
estingly, we indeed observe a characteristic enhancement in the
angular probability function along a director axis. This axis, indi-
cating the predominant direction of neighboring neurons, lies
within the plane of the dendritic tree of the Purkinje cells and
parallel to the interface between the ML and GL (Fig. 4G).
We have repeated the analysis chain for tissues of additional
individuals, showing the same behavior (compare SI Appendix,
Figs. S2 and S14).

Next, we quantify the performance of the segmentation algo-
rithm by comparison with a manual segmentation used as ground
truth in several subvolumes of the whole dataset (SI Appendix,
Figs. S6 and S7), yielding mean precision p and recall r values
of (p, r)= (0.89, 0.98) for the ML and (p, r)= (0.994, 1) for the
GL. This indicates an almost perfect performance of the auto-
mated segmentation algorithm. The small difference between
the two regions can be explained by the higher diversity of shapes
in the ML, making it more difficult to find a parameter set
suitable for all cells (SI Appendix, Fig. S10).

Laboratory-Based CT with a Liquid-Metal Jet Source. The labora-
tory measurements were carried out using a liquid-metal jet

microfocus source with Galinstan as anode material (14, 16). A
slice through the tomographic reconstruction of the dataset is
shown in Fig. 1C. The results prove that even in the laboratory

Fig. 3. Results of the automated segmentation procedure, shown in an
exemplary 2D slice through the reconstruction volume as well as in a 3D
view. (A) Overlay of all cell nuclei detected by the algorithm (blue). (B)
Result after manual removal of blood vessels (blue) and separation into ML
(light red) and GL (dark red), based on the mean distance to the 35 near-
est neighbors of each cell. (C) Volume estimation for each layer used for
determination of the cell densities in the two regions. (Scale bars: 50 µm.)

6942 | www.pnas.org/cgi/doi/10.1073/pnas.1801678115 Töpperwien et al.
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Fig. 4. Statistical measures obtained from the automatically determined
cell positions. (A) Histogram showing the nearest-neighbor distances in the
ML. The Gaussian fit reveals a mean nearest-neighbor distance of 9.7±
0.8 µm (95% confidence interval) with SD σ= 7.3± 0.8 µm. (B) Histogram
of the nearest-neighbor distances in the GL, with a Gaussian fit indicat-
ing a mean of 4.00± 0.02 µm with SD σ= 0.45± 0.02 µm. (C) Histogram
showing the mean gray value within the automatically detected cell volume
in the ML. A Gaussian fit leads to (1.17± 0.02) · 10−3 with SD (σ= 2.9±
0.2) · 10−4. (D) Histogram of the mean gray value in the GL. The shape is best
fitted by a 2-Gaussian function with peak values of (1.24± 0.01) · 10−3 and
(1.6± 0.1) · 10−3 and SDs σ1 = (1.6± 0.1) · 10−4 and σ2 = (3.4± 0.1) · 10−4

in an approximate ratio of 30:70. (E) Angular averaged pair correlation func-
tion of the cells in the GL revealing two distinct peaks at 4.16± 0.04 µm
and 8.5± 0.3 µm. (F) Angular averaged structure factor of the cells in the
GL. (G) Angular distribution of nearest neighbors in the GL, where θ' 90◦

corresponds to the plane in which the dendritic tree of the Purkinje cells is
spreading and φ= 90◦ is approximately parallel to the interface between
the ML and GL (SI Appendix, SI Methods).

dataset single cells are resolved in all layers of the cerebellum.
The magnified region in Fig. 1C, Right also reveals the large
Purkinje cell where the thick branches of the dendritic tree can
already be resolved. In Fig. 2B a cellular segmentation of the
sample is shown, again via a semiautomatic approach for the
Purkinje cell layer and the automatic approach based on the
spherical Hough transform for the GL and ML (see SI Appendix,
Fig. S5 and Movie S2, for more details and visualization).

To quantify the performance of the segmentation algorithm,
the precision and recall are also determined for the laboratory
dataset. As the manual segmentation proved to be challenging
due to the lower resolution and signal-to-noise ratio, the auto-
matic segmentation results from the synchrotron are considered
as ground truth (SI Appendix, Figs. S8 and S9). The analysis yields
a precision and recall of (p, r)= (0.71, 0.72) for the ML and
(p, r)= (0.85, 0.93) for the GL. This shows that especially for
the GL the performance of the algorithm is remarkably high and
comparable to results obtained at synchrotron sources (8). In the
ML around 26,000 cells were identified automatically whereas

in the GL the algorithm found ∼1,760,000 cells, resulting in
densities of 7.4·104 mm−3 and 3.4·106 mm−3, respectively. The
deviation in the ML compared with the synchrotron results can
be explained by the lower precision and recall for this layer.
Contrarily, in the GL where precision and recall are high in
both cases, the difference in the determined cell density must be
attributed to the different probing volumes, as the synchrotron
dataset probes a much smaller subvolume compared with the
laboratory dataset. As can be recognized in SI Appendix, Fig.
S13, the cellular density decreases when approaching the tran-
sition to the ML and the highest cell densities occur in the center
of the GL. This indicates that the dataset recorded at the syn-
chrotron comprises a less dense part of the GL, which explains
the difference in overall cell density. To confirm this assumption,
the cell density in the corresponding subvolume of the labora-
tory dataset is determined as well, resulting in 2.9·106 mm−3.
This value deviates by about 11% from the synchrotron dataset,
which is in agreement with the precision and recall values for
this layer. The laboratory dataset also confirms that the grainy
structure of the local density, resulting from a clustering of cells,
persists throughout the entire GL. This is further visualized in SI
Appendix, Fig. S13.

From the segmentation results the same statistical measures as
for the synchrotron dataset are determined (Fig. 5). The mean
cell radii for the ML and GL are 1.6 µm and 1.5 µm, respec-
tively. The distribution of nearest-neighbor distances in the ML
and the GL is shown in Fig. 5 A and B. An estimate for the
relative electron density is given by the mean gray value within
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Fig. 5. Statistical measures obtained from the laboratory dataset. (A) His-
togram of the nearest-neighbor distances in the ML. The Gaussian fit reveals
a mean nearest-neighbor distance of 8.6± 0.4 µm (95% confidence inter-
val) with SD σ= 7.8± 0.4 µm. (B) The same histogram for the cells detected
in the GL. A 2-Gaussian function with peaks at 3.93± 0.02 µm and 2.64±
0.02 µm with SDs σ1 = 0.77± 0.03 µm and σ2 = 0.35± 0.04 µm (approxi-
mate aspect ratio 86:14) fitted the data best. (C) Histogram of the mean gray
value within the volume of a single cell. The 2-Gaussian fit leads to peaks at
(1.72± 0.01) · 10−4 and (1.21± 0.02) · 10−4 with SDs σ1 = (2.4± 0.1) · 10−5

and σ2 = (1.1± 0.2) · 10−5 and an approximate weight ratio of 90:10. (D)
Histogram of the mean gray values within the detected cells of the GL. The
2-Gaussian fit reveals peaks at 1.936± 0.001 · 10−4 and 1.483± 0.001 · 10−4

with SDs σ1 = (2.92± 0.01) · 10−5 and σ2 = (1.23± 0.02) · 10−5 (approxi-
mate aspect ratio 90:10). (E) Pair correlation function of the cells in the GL
with the two principle peaks at 4.74± 0.04 µm and 8.7± 0.1 µm and also
a minor modulation at 2.50± 0.05 µm. (F) Structure factor of the GL.

Töpperwien et al. PNAS | July 3, 2018 | vol. 115 | no. 27 | 6943

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 N
ie

de
rs

ae
ch

si
sc

he
 S

ta
at

s-
 u

nd
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 G
oe

tti
ng

en
 o

n 
O

ct
ob

er
 2

6,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

13
4.

76
.2

2.
13

0.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801678115/-/DCSupplemental


the volume of the single cells (Fig. 5 C and D). Note that in this
case, this is an effective value due to the broad bremsspectrum of
the laboratory source used for imaging and the contrast forma-
tion. Further, the reconstruction values correspond to a mixed
contrast with a superposition of attenuation as well as phase
effects. However, as this applies equally for the entire sample,
a relative comparison between the two layers is still reasonable,
indicating that the cells of the GL show a slightly higher electron
density. The pair correlation function and structure factor of the
entire GL are shown in Fig. 5 E and F. In the correlation func-
tion three maxima at 2.50± 0.05 µm, 4.74± 0.04 µm, and 8.7±
0.1 µm are visible, the first of which is only a very small modula-
tion. This again indicates a characteristic local structure associ-
ated with the clustering of the cells in this layer, which is already
visible in the local density shown in SI Appendix, Fig. S13. Note
that the peak with the smallest radial distance has only a hardly
recognizable counterpart in the synchrotron dataset, indicating
that either these smaller cell distances are a property of the inner
part of the GL, which is not inside the field of view of the syn-
chrotron dataset, or this small feature is an artifact of falsely
detected cells. Analogous to the synchrotron dataset, the angu-
lar distribution of nearest neighbors in the GL can be computed,
which again shows that the majority of cells are distributed in par-
allel to the large dendritic tree of the Purkinje cells (SI Appendix,
Fig. S3).

Discussion
The present work shows that propagation-based phase-contrast
tomography can be used for virtual histology of paraffin-
embedded unstained human brain tissue, digitalizing 3D volumes
with isotropic resolution and subcellular detail. In contrast to
classical histology the 3D density maps can be virtually sliced
in every possible orientation, and much larger volumes can be
sampled. The optimized compact laboratory tomography setup
and image reconstruction pathway make this method also avail-
able for a broad range of studies which cannot easily be carried
out at large-scale synchrotron facilities, for example because they
require continuous availability. Ongoing technological progress
both in source and in detection could substantially decrease
scanning time at the laboratory and pave the way for biomed-
ical studies requiring a large number of samples. Note that by
carefully adjusting the geometrical parameters of the setup, com-
parable results can also be obtained at microfocus sources with
a larger source diameter (SI Appendix, Fig. S15), enabling the
implementation of 3D virtual histology at the laboratory scale
even with quite standard commercial instrumentation.

The demonstrated data quality enables automatic cell segmen-
tation of up to millions of neurons in millimeter-sized tissue.
This allows for the analysis of 3D cell distributions and their spa-
tial organization with high statistical significance and for a large
number of specimens as required for biomedical studies. The dis-
tribution of cells in the GL exhibits average densities in good
agreement with manual cell counting in 2D histological sections
(23), but in addition shows a strong short-range order leading
to a local clustering of cells accompanied by characteristic posi-
tional correlations as quantified by pair correlation functions.
The large amount of different statistical measures which can
be inferred from the location of neurons enables approaches
to correlate tissue function with structure and possibly also the
identification of structural biomarkers for diagnostic or research
purposes, e.g., in the course of neurodegenerative diseases or
tumor growth. The capability to study cellular distributions in 3D
allows for a precise quantification of nearest-neighbor distances
or pair correlation functions. This information is not accessible
from thin histological sections without additional assumptions
(24). In the present example this has enabled us to observe
anisotropies governed by the principle directions of the Purkinje
cell layer and interface which persist deep in the granular layer.

This could possibly be explained by an optimized morphology for
the projections of granule cells to the Purkinje cell dendrites.

Materials and Methods
Sample Preparation. Formalin-fixed and paraffin-embedded cerebellar tis-
sue obtained at routine autopsy in agreement with the ethics committee of
the University Medical Center Göttingen was studied. For CT experiments, a
1-mm punch was taken from the embedded tissue and mounted in a Kapton
tube which was glued to a sample holder (Fig. 1A).

Synchrotron Setup (P10@PETRAIII). A sketch of the main components of the
GINIX setup (20), installed at the P10 beamline of the PETRAIII storage ring at
Deutsches Elektronen-Synchrotron (Hamburg), is shown in SI Appendix, Fig.
S4A. The X-rays are generated by an undulator and monochromatized to an
energy of 8 keV by a Si(111) channel-cut monochromator. Subsequently, the
X-rays are prefocused by a pair of Kirkpatrick–Baez (KB) mirrors to an approx-
imate size of 300 × 300 nm2 and coupled into an X-ray waveguide placed
in the focal plane (25). This leads to a smooth illumination with increased
spatial coherence, as well as a secondary source size below 20 nm (bidirec-
tional). Farther downstream, the sample is placed on a fully motorized sample
stage which allows for a precise alignment of the sample’s region of interest
into the field of view. Approximately 5 m behind the sample a scintillator-
based fiber-coupled scientific CMOS detector with a pixel size p = 6.5 µm
(2,048 × 2,048 pixels; Photonic Science) is placed. Due to the geometrical
magnification of the setup, the effective pixel size can be tuned by vary-
ing the source-to-sample distance z1. Together with the sample-to-detector
distance z2 this leads to a geometrical magnification of M = (z1 + z2)/z1

and therefore an effective pixel size peff =
p
M . Detailed information about

experimental parameters is listed in SI Appendix, Table S1.

Data Processing (P10). Phase retrieval was performed with the contrast
transfer function (CTF)-based algorithm proposed by Cloetens et al. (2,
26) on all empty-beam corrected projections. The different effective pixel
sizes in the images due to the changing source-to-sample distances are
accounted for by scaling all images to the one with the smallest effective
pixel size, aligning them to each other, and cropping them to the same field
of view. Before tomographic reconstruction, a simple ring removal algo-
rithm was applied (27). The 3D information was reconstructed by using the
Matlab (Mathworks) integrated function iradon with a standard Ram-Lak
filter. The 3D visualization of the reconstructed data was carried out with
Avizo Lite 9 (FEI Visualization Sciences Group). For the segmentation of the
Purkinje cells, the Magic Wand tool, using a gray-value–based region grow-
ing algorithm, was applied. As smaller structures could not be segmented
automatically with this tool due to a comparably low signal-to-noise ratio,
the segmentation was manually refined.

Laboratory Setup. A sketch of the laboratory setup is shown in SI Appendix,
Fig. S4B (14–16). It consists of a liquid-metal jet microfocus X-ray source
(Excillum) with Galinstan as anode material, yielding a characteristic pho-
ton energy of 9.25 keV (Ga-Kα). It was operated at 40 kV acceleration
voltage with an electron power of 57 W at a projected focus size of
10× 10 µm2 (FWHM). As in the case of the synchrotron setup the sam-
ple is placed downstream on a fully motorized sample tower. Behind the
sample a scintillator-based lens-coupled CCD detector with a pixel size of
0.54 µm is located (2,504 × 3,326 pixels; Rigaku). Due to the high resolu-
tion of the detector, the sample is placed in close proximity so that source
blurring effects can be minimized (14, 16). The experimental parameters are
listed in SI Appendix, Table S1.

Data Processing (Laboratory Setup). Phase retrieval was performed with the
Bronnikov aided correction (BAC) algorithm (28) on all empty-beam cor-
rected projections. The tomographic reconstruction was carried out via the
cone-beam reconstruction implementation of the ASTRA toolbox (29, 30).
For a better signal-to-noise ratio, all projections were resampled by a factor
of 2 before tomographic reconstruction and the tomographic slices were fil-
tered with a Gaussian filter with a SD of 1 pixel. The 3D visualization was
performed the same as for the synchrotron data.

Automatic Cell Segmentation. The automatic cell segmentation is based on
the spherical Hough transform which is designed to find (imperfect) spheres
of varying radius in a 3D dataset. Here, a slightly modified version of the
Matlab implementation by Xie was used (31), based on the algorithm pub-
lished in ref. (22). More information on the algorithm can be found in SI
Appendix, SI Methods.
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Erythrocytes, which are contained in the blood vessels, are of similar size
to that of the granule cell nuclei (SI Appendix, Fig. S11) and are there-
fore segmented as well. To remove these false positives, they are manually
excluded from the automatic segmentation. In the future, vessel segmenta-
tion based for example on the Frangi filter (9) could be used to automatize
the identification of these regions. For the division into ML and GL, the
mean distance to the 35 nearest neighbors was chosen as a measure and
the threshold was again set based on visual inspection. The volume of
each of the layers, used for the calculation of the cell density, was deter-
mined via the Matlab-implemented function boundary which determines a
3D hull enveloping all cells contained within the ML or GL. This function also
enables the choice of a shrinking factor, where 0 gives a convex hull and 1
gives a compact boundary. Here, the standard shrinking factor of 0.5 was
chosen.

The nearest neighbor was determined by calculating all cell-to-cell dis-
tances and finding the minimum for each individual cell. For the mean gray

value, the values of the pixels contained in each single cell were summed
up and divided by the corresponding cell volume. A pixel was included
if its radial distance to the center pixel was smaller than the radius. The
pair correlation function was calculated by counting the number of cells
in a spherical shell of a given radius and 0.5-pixel width around a single
cell in the GL and averaging this over all cells. For the structure factor the
angular average over the 3D Fourier transform of the array containing the
center positions of each sphere was computed. The procedure for determin-
ing the angular distribution of neighboring cells in the GL is described in SI
Appendix, SI Methods.
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