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Abstract  

Cortical circuits perform the computations underlying rapid perceptual decisions within a few dozen 

milliseconds with each neuron emitting only a few spikes. Under these conditions, the theoretical analysis 

of neural population codes is challenging, as the most commonly used theoretical tool – Fisher 

information – can lead to erroneous conclusions about the optimality of different coding schemes. Here 

we revisit the effect of tuning function width and correlation structure on neural population codes based 

on ideal observer analysis in both a discrimination and reconstruction task. We show that the optimal 

tuning function width and the optimal correlation structure in both paradigms strongly depend on the 

available decoding time in a very similar way.  In contrast, population codes optimized for Fisher 

information do not depend on decoding time and are severely suboptimal when only few spikes are 

available. In addition, we use the neurometric functions of the ideal observer in the classification task to 

investigate the differential coding properties of these Fisher-optimal codes for fine and coarse 

discrimination. We find that the discrimination error for these codes does not decrease to zero with 

increasing population size, even in simple coarse discrimination tasks.  Our results suggest that quite 

different population codes may be optimal for rapid decoding in cortical computations than those inferred 

from the optimization of Fisher information. 
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Introduction 

Neuronal ensembles transmit information through their joint firing rate patterns (1). This raises 

challenging theoretical questions on how the encoding accuracy of such population codes is affected by 

properties of individual neurons and correlations among them. Any answer to these questions necessarily 

depends on the measure used to compare the performance of different population codes. A principled 

approach to define such a measure is to use the concept of a Bayesian ideal observer (2, 3). This concept 

requires choosing a specific task:  in a stimulus reconstruction task, we ask how well a Bayes-optimal 

decoder can estimate the true value of the presented stimulus based on the noisy neural response (Fig. 

1A). In a stimulus discrimination task, we ask how well it is able to decide which of two stimuli was 

presented based on the response pattern (Fig. 1B). 

Most theoretical studies of neural coding (4-12) have chosen the stimulus reconstruction paradigm. For 

the sake of simplicity and analytical tractability, these studies have evaluated population codes almost 

exclusively with regard to Fisher information, assuming its inverse approximates the average 

reconstruction error of an ideal observer, the minimum mean squared error. Others have chosen the 

stimulus discrimination paradigm, linking Fisher information to the discriminability between two stimuli, 

given the neural responses (4, 13-15). In addition to this large body of theoretical work, many 

experimental studies have used Fisher information to interpret their results (16-19).  

The relationship between Fisher information and the error of an ideal observer in a reconstruction task has 

mostly been justified using the Cramér-Rao bound, which states that the conditional mean squared error 

of an unbiased estimator  of a stimulus  is bounded from below by the inverse of the Fisher information 

: 

  (1) 

More precisely, this argument is based on the fact that under certain assumptions the maximum a 

posteriori estimator is asymptotically normally distributed around the true stimulus with variance equal to 

the Cramér-Rao bound (4, 20, 21).  Alternatively, using Fisher information to approximate the error of an 

ideal observer in a stimulus discrimination task has been justified by noting that the just noticeable 

distance is approximately proportional to the inverse square root of the Fisher information (4). The proof 

of this relationship similarly relies on a Gaussian approximation of the posterior distribution.  

While it is usually taken for granted that Fisher information is an accurate tool for the evaluation and 

comparison of population codes, the examples studied by Bethge et al. (20) suggest that the assumptions 
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necessary to relate Fisher information to the error in the reconstruction or the discrimination task may be 

violated in interesting population coding scenarios. In particular, this seems to be the case when the codes 

are optimized for Fisher information and the signal-to-noise ratio for individual neurons is low – that is, 

exactly in the regime in which neural circuits frequently operate:  Perceptual decisions can be made 

in less than 100 ms (22), possibly within 30-50 ms (23) and firing rates in cortex are often low (16, 24, 

25), such that neural circuits compute with a few spikes at best. In this regime, Fisher information may 

yield an incorrect assessment of optimal reconstruction and discrimination performance. Although it is 

known in principle that this failure of Fisher information results from its locality, the precise factors that 

determine when the validity of Fisher information breaks down are often complex. 

To achieve a more precise understanding of this problem we applied a new approach to the investigation 

of neural population codes by computing the full neurometric function of an ideal observer in the stimulus 

discrimination paradigm (26). A neurometric function shows how the discrimination error achieved by a 

population code depends on the difference between the two stimuli. We use it to revisit the question of 

optimal population coding with two goals: First, we show that optimal discrimination and optimal 

reconstruction lead to qualitatively similar results regarding the effect of tuning function width and of 

different noise correlation structures on coding accuracy; in contrast, Fisher information favors coding 

schemes which are severely suboptimal for both reconstruction and discrimination at low signal-to-noise 

ratio. Second, we use the diagnostic insights provided by neurometric functions in a discrimination task to 

obtain an analytical understanding of the poor performance of Fisher-optimal population codes. In 

particular, we show that the tuning functions and correlation structures favored by Fisher information 

show strikingly bad performance in simple coarse discrimination tasks.  

Results 

Studying neural population codes using neurometric functions 

We obtain neurometric functions by fixing one reference stimulus at orientation , varying the second 

stimulus and then plotting the error of the ideal observer trying to discriminate the two based on their 

neural representation as a function of their difference  (schematically illustrated in Fig. 1C). This graph 

contains information about the performance of the population code both in fine and coarse discrimination 

tasks.  

The ideal observer in such a discrimination task is the Bayes classifier (27) 

  (2) 
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where  is the population response,  the stimulus and . This equation means that 

based on the stimulus conditional response distributions the classifier chooses the class which was more 

likely to have caused the observed response pattern. As an illustration, consider a single neuron with a 

Gaussian response distribution, for which the mean of the response distribution increases from stimulus 1 

to stimulus 2 (Fig. 1D). Because of the classification rule, the response will be classified as being caused 

by stimulus 2 whenever the neuron responds with a firing rate larger than a certain threshold (dashed line) 

even if it was caused by stimulus 1. Therefore, the error of the ideal observer, the minimum 

discrimination error (MDE), corresponds to the grey area under the lower of the two probability densities. 

Its error is given by (27) 

  (3) 

In general, the classifier achieving the MDE can have a complex shape, reflecting the equal probability 

contours of the response distributions. For a population with Gaussian response distributions, the optimal 

classifier is linear if the covariance matrix is the same for both stimuli (Fig. 1E), and quadratic, if the 

covariance matrices are different (Fig. 1F). Equation (3) can be computed analytically in the linear case. 

In the general case, we are still able to evaluate it efficiently even for relatively large populations with 

several hundreds of neurons using Monte-Carlo techniques (see Materials and Methods and SI Methods 

2).  As a measure of the overall performance of a population code we compute the integrated minimum 

discrimination error (IMDE), the average performance over all possible discrimination angles (see 

Materials and Methods, eq. (9)).  

In addition to the minimum discrimination error, we compute the minimum mean squared error (MMSE) 

and the Fisher information  (see Materials and Methods, eqs. (10) and (11)). The latter yields the 

minimum asymptotic error (MASE), the approximation of the MMSE obtained from averaging over the 

Cramér-Rao bound (20): 

  (4) 

In the case of asymptotic normality, the MASE yields a good approximation for the MMSE. For a 

summary of the acronyms we use to refer to the different coding measures, see table 1. 

Optimal tuning function width for individual neurons 

For all three measures (MASE, MMSE and IMDE), we investigate how the coding quality of a population 

with 100 independent neurons with bell-shaped tuning functions depends on the tuning width of 

individual neurons at different time intervals available for decoding (10, 100, 500 and 1000 ms). The 
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population activity is assumed to follow a multivariate Gaussian distribution with Poisson-like noise, 

where variances are identical to mean spike counts (see Materials and Methods). In this model, the signal-

to-noise ratio per neuron increases with the expected spike count, which depends on both the average 

firing rates as specified by the tuning functions and the observation time. Here, we only vary the 

observation time, which is linearly related to the single neuron signal-to-noise ratio (see Materials and 

Methods, eq. (8)). 

We first study the effect of tuning width on the coding accuracy in the reconstruction task. We compute 

the MASE based on Fisher information as an approximation to the MMSE.  According to this measure, 

narrow tuning functions are advantageous over broad tuning functions independent of the length of the 

time interval used for decoding (Fig. 2A and Fig. S1A and B) as has been reported before (e. g. 9-11). For 

the reason of the slight time dependence of the Fisher-optimal tuning width, see Fig. S2. In striking 

contrast, numerical evaluation of the MMSE reveals that the optimal tuning width critically depends on 

the available decoding time, confirming results of earlier studies (20, 28): for short times, broad tuning 

functions were advantageous over narrow ones (Fig. 2B and Fig. S1C and D).    

We next evaluate the effect of tuning width in the discrimination paradigm by computing the average 

error of an ideal observer, the IMDE. We find that the optimal tuning width in terms of discrimination 

error depends on decoding time as well (Fig. 2C): Wide tuning functions are preferable for short and 

narrow ones for long integration times (Fig. S1E and F). Despite the fact that the IMDE measures optimal 

discrimination and the MMSE-optimal reconstruction performance, the dependence of the IMDE on 

tuning width is very similar to that of the MMSE (compare Fig. 2B and C) with IMDE-optimal tuning 

curves being only slightly narrower than MMSE-optimal ones. For short integration times, Fisher 

information thus failed to reflect the effect of tuning width on coding performance both in the 

reconstruction and the discrimination task.  These results also hold in the case of discrete Poisson noise 

and for Fano factors different than one (Fig. S3).     

Neurometric functions allow us to analyze the difference between the results based on Fisher information 

and the ideal observer analysis (MMSE and IMDE) in more detail. To do so, we compute the neurometric 

functions for populations with Fisher-, MMSE- and IMDE-optimal tuning functions when decoding time 

is short (T = 10 ms; Fig. 2D). We find that Fisher-optimal tuning functions are advantageous in fine 

discrimination over the tuning functions optimal for the ideal observers, while their performance levels 

off for larger  at a non-zero error. The neurometric functions computed for populations with MMSE- 

and IMDE-optimal tuning width do not show this saturation behavior. 

To explain this striking discrepancy, we investigate the coding properties of a population with Fisher-

optimal tuning functions systematically. We compute the Fisher-optimal tuning width for populations of 
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different size at different integration times (see Materials and Methods) and find that the Fisher-optimal 

tuning width is inversely proportional to the population size (Fig. 3A). While Fisher information suggests 

that the error achieved by these populations should decay like 1/N as a function of the population size for 

all time windows considered (Fig. 3B), the ideal observer error (IMDE) for the same populations saturates 

with increasing population size so that adding more neurons does not improve the quality of the code 

(Fig. 3C).  

The reason for the observed saturation is that the neurometric functions of populations with different size 

asymptote at a ‘pedestal error’ P (Fig. 3D). We can provide a lower bound for this pedestal error using the 

MDE of an auxiliary population of neurons with additive instead of Poisson-like noise. In this way we 

show that the pedestal error is non-zero for finite T and bounded from below by (see SI Text for formal 

treatment) 

  (5) 

Here,  determines the baseline firing rate,  sets the gain of the tuning function and  is a constant 

independent of N.  is the cumulative normal distribution function. Thus the pedestal error does not 

decay with increasing population size but is determined by the available decoding time alone, in 

agreement with our numerical results (Fig. 3E and F). Intuitively, this is because in Fisher-optimal codes 

the tuning width is inversely proportional to N, such that only three cells are active for each stimulus, 

independent of N (Fig. 3G). For coarse discrimination, the two stimuli activate two disjoint groups of 

neurons (Fig. 3H, red and green neurons). Thus, the error in discriminating two orientations far away 

from each other (the pedestal error) is determined solely by the ability to determine which of these two 

groups of three neurons is active in the presence of background noise. Using this argument we obtain a 

linear approximation of the pedestal error, which has a similar form as eq. (5) (Fig. 3F and SI Text, eq. 2). 

In contrast, if the two orientations are very close, the sets of activated neurons overlap and classification 

is more difficult (Fig. 3H, red and blue neurons). As can be seen in Fig. 3H, the point  at which the 

neurometric function reaches its saturation level is approximately twice the difference of the preferred 

orientation of two adjacent neurons ( ), independent of the population size (Fig. S4). As the population 

size increases,  goes to zero and, consequently,  as well (Fig. 3I; see SI Text).  

Together, these results explain why Fisher-optimal tuning widths lead to saturation of the ideal observer 

performance in the large N limit. The IMDE is determined by the area of the initial region of the 

neurometric function  and the pedestal error P (Fig. 3J): 
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For fixed T, the pedestal error is independent of N. In contrast,  shrinks towards zero with N, because 

 goes to zero. In the large N limit, the IMDE therefore converges to the pedestal error. To complete 

the picture, we note that for fixed N, the pedestal error converges to zero in the large T limit, such that 

eventually . Here, Fisher information, which is related to  (26), and the IMDE will lead to 

similar conclusions.  

In summary, the discrepancy at low signal-to-noise ratio between the optimal tuning width predicted by 

Fisher information and that found by evaluating the performance of ideal observer models can be 

explained by the fact that Fisher-optimal population codes show surprisingly bad performance for simple 

coarse discrimination tasks. In particular, we find that Fisher information yields a valid approximation of 

the ideal observer performance only when the pedestal error P characteristic for coarse discrimination 

tasks is small compared to the area of the initial region. 

Optimal noise correlation structure 

We next investigate whether the relative advantages of different noise correlation structures are accurately 

captured by Fisher information. Noise correlations are correlations among the firing rates of pairs of 

neurons when the stimulus is constant. Many theoretical studies have investigated the effect of these 

shared trial-to-trial fluctuations on the representational accuracy of a population code using Fisher 

information (5-8). Although their magnitude in cortex is debated (16, 17, 29), an accurate assessment of 

the potential impact of different noise correlation structures on population coding is important. In our 

model, the correlation structure can be one of the following (Fig. 4A and Materials and Methods): All 

pairs can have the same correlation (‘uniform correlations’), correlations can be increasing with firing 

rates (‘stimulus-dependent correlations’), pairs with similar orientation preference can have stronger 

correlations than pairs with dissimilar preference (‘limited-range correlations’) or the latter two can be 

combined.  

We evaluate how the correlation structure affects the performance of the population code in populations 

of 100 neurons with varying noise correlation structure for a range of time intervals (T = 10 to 1000 ms) 

and intermediate correlation strength ( ). We compute the MASE (Fig. 4B) as well the ideal 

observer errors, MMSE (Fig. 4C) and IMDE (Fig. 4D). 

We find that all three measures agree that noise correlations with limited-range structure are harmful 

compared to uncorrelated noise. Similarly, uniform noise correlations lead to a better code than 

uncorrelated noise with regard to all three measures (although the advantage with regard to the ideal 

observer errors seems less pronounced). Surprisingly, however, they disagree on the effect of stimulus-

dependent correlations: Fisher information suggests that a population with such correlations show even 
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better coding accuracy than one with uniform noise correlations in line with previous results (7). In 

remarkable contrast, MMSE and IMDE suggest that stimulus-dependent correlations are only 

advantageous over uniform correlations for time intervals larger than 100-200 ms and perform worse at 

shorter ones (Fig. 4C and D). For time windows shorter than 50-100 ms they are even harmful compared 

to uncorrelated noise. In addition, Fisher information falsely indicates an increasingly superior 

performance of stimulus-dependent correlations over uniform correlations with increasing correlation 

strength for all time intervals (Fig. 4E and F). The ideal observer shows this behavior only for long time 

intervals (Fig. 4E). For short time intervals, however, this dependency is reversed: the higher the average 

correlation, the worse stimulus-dependent correlations perform (Fig. 4F). The results for short times 

obtained here for the Gaussian noise distribution also hold for a discrete binary noise distribution (tested 

for ), where each neuron either emits one spike or none (26).  

Neurometric functions again allow us to gain additional insights into this behavior (Fig. 4G and H): For 

sufficiently coarse discrimination uniform correlations always lead to a superior population code over 

stimulus-dependent correlations. In contrast, stimulus-dependent correlations are always superior for 

sufficiently fine discrimination. With decreasing decoding time, however, the critical , where the 

neurometric functions cross, shifts more and more towards zero (Fig. S5).  Therefore, uniform 

correlations lead to superior performance over stimulus-dependent correlations for almost all  when 

decoding time is short (Fig. 4H). While Fisher information predicts that relative performance of the 

correlation structures is independent of time, the IMDE reveals that stimulus-dependent correlation may 

be beneficial for long decoding intervals, but are detrimental for short ones. 

Discussion 

In the present study, we revisited optimal population coding using Bayesian ideal observer analysis in 

both the reconstruction and the discrimination paradigm. Both lead to very similar conclusions with 

regard to the optimal tuning width (Fig. 2B and C) and the optimal noise correlation structure (Fig. 4C 

and D). Importantly, the signal-to-noise ratio – which is critically limited by the available decoding time – 

plays a crucial role for the relative performance of different coding schemes: Population codes well suited 

for long intervals may be severely suboptimal for short ones. In contrast, Fisher information is largely 

ignorant of the limitations imposed by the available decoding time – codes which are favorable for long 

integration intervals seem favorable for short ones as well.  

While Fisher information yields an accurate approximation of the ideal observer performance in the limit 

of long decoding time windows this is not necessarily true in the limit of large populations. We showed 

analytically that the ideal observer error for a population with Fisher-optimal tuning functions does not 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



decay to zero in the limit of a large number of neurons but saturates at a value determined solely by the 

available decoding time (Fig. 3C). In contrast, Fisher information predicts that the error scales like the 

inverse of the population size, independent of time (Fig. 3B). Thus, the ‘folk theorem’ that Fisher 

information provides an accurate assessment of coding quality in the limit of large population size is 

correct only if the width of the tuning functions is not optimized as the population grows.  

In the discrimination task, we explained this behavior by showing that the error for coarse discriminations 

does not depend on the population size for ensembles with Fisher-optimal tuning curves. In the 

reconstruction task, large estimation errors play a similar role to the coarse discrimination error. The 

convergence of the reconstruction error to a normal distribution with variance equal to the inverse Fisher 

information relies on a linear approximation of the derivative of the log-likelihood (21). If the tuning 

function width scales with population size – as it does if the tuning functions are optimized for Fisher 

information – the quality of this linear approximation does not improve with increasing population size 

because the curvature of the tuning functions is directly coupled to the tuning width. As a consequence, 

the Cramér-Rao bound in eq. (1) is not tight even asymptotically. This leads to the observed discrepancies 

between Fisher information and the MMSE. 

Similarly, Fisher information also fails to evaluate the ideal observer performance for different noise 

correlation structures correctly when the time available for decoding is short. The reason is that the link 

between Fisher information and the optimal reconstruction or discrimination error also relies on the 

central limit theorem (4, 20, 21). Therefore, in the presence of noise correlations, the approximation of the 

ideal observer error obtained from Fisher information can converge very slowly or not at all to the true 

error for increasing population size, because the observations gathered from different neurons are no 

longer independent. In fact, our results show that for pool sizes thought to be typical in perceptual 

decision making (29) and decoding times relevant to cortical computations it is crucial not to rely on the 

asymptotic approach of Fisher information to determine the relative quality of different correlation 

structures. 

In contrast to our study, earlier studies using the discrimination framework mostly measured the minimal 

linear discrimination error (4, 13, 30-33) and computed the fine discrimination error (30-32) only. Two 

other studies used the Bhattacharya and the Chernoff distance, two closely related measures, to study the 

discrimination performance of population codes (13, 34). These provide a tighter upper bound on the 

MDE than the minimal linear discrimination error, but no study so far computed the exact MDE for the 

full range of the neurometric function. For a detailed discussion of the relationship of these studies to our 

approach see SI Discussion. Information theoretic approaches provide a third framework for evaluating 

neural population codes in addition to the reconstruction and discrimination framework studied here. For 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



example, stimulus-specific information (SSI) has been used to assess the role of the noise level for 

population coding in small populations (35) and in the asymptotic regime, SSI and Fisher information 

seem to yield qualitatively similar results (36). In contrast to neurometric function analysis, information 

theoretic approaches are not directly linked to a behavioral task.  

In conclusion, neurometric function analysis offers a tractable and intuitive framework for the analysis of 

neural population coding with an exact ideal observer model. The framework is particularly well suited 

for a comparison of the theoretical assessment of different population codes with results from 

psychophysical or neurophysiological measurements, as the two-alternative forced choice orientation 

discrimination task is much studied in many neurophysiological and psychophysical investigations in 

humans and monkeys (33, 37, 38). In contrast to Fisher information, neurometric functions are not only 

informative about fine, but also about coarse discrimination performance. For example, two codes with 

the same Fisher information may even yield different neurometric functions (Fig. S6). Our results suggest 

that the validity of the conclusions based on Fisher information depends on the coding scenario being 

investigated: If the parameter of interest induces changes that either impair or improve both fine and 

coarse discrimination performance (e.g. when studying the effect of population size for fixed, wide tuning 

functions), Fisher information is a valuable tool for assessing different coding schemes.  If, however, fine 

discrimination performance can be improved at the cost of coarse discrimination performance (as is the 

case with tuning width), optimization of Fisher information will impair the average performance of the 

population codes. In this case, quite different populations codes are optimal than those inferred from 

Fisher information.  

Materials and Methods 

Population Model 

We consider the case of orientation coding in an idealized, homogenous population of neurons with 

bell-shaped tuning functions,  

  (6) 

  is the stimulus orientation,  is the preferred orientation of neuron i and T is the observation time. The 

parameter k controls the with of the tuning curves. Large k corresponds to steep tuning curves with small 

width. The parameters  and  set the baseline rate to 5 Hz and the maximal rate to 50 Hz.  

The stimulus-conditional response distribution is modeled as a multivariate Gaussian so that 
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  (7) 

where  is a vector of average spike counts. We use a flexible model for the 

covariance matrix  allowing for different noise correlation structures (for details, see SI Methods 1 

and Fig. 4A). Noise is Poisson-like, i.e. the variance is equal to the mean firing rate. In this model, we can 

define a signal-to-noise ratio per neuron which is proportional to the observation time T. This is because 

  (8) 

 

Neurometric Function Analysis 

The minimal discrimination error  of an ideal observer classifying a stimulus s based on 

the response distribution as either  or  is achieved by the Bayes optimal classifier (eq. (2)). The 

error is given by eq. (3). We estimate it numerically using Monte-Carlo integration (see also SI Methods 

2) by  

  

where  is one of M samples, drawn from the mixture distribution . The 

necessary software is available online1. 

 is the neurometric function relative to the reference direction. The 

integrated minimum discrimination error (IMDE) provides a single number quantifying the average 

quality of a code independent of : 

  (9) 

It is equal to the area under the neurometric function. A modified version of the IMDE could have 

variable weights for the error at different  to represent the relative importance of different 

discriminations; this would not change the conclusions of Fig. 3. We average the neurometric function 

  and the integrated MDE over  to make them independent of the choice of reference 

direction.  

Minimum mean squared error and Fisher information 

                                                      
1 http://www.kyb.tuebingen.mpg.de/bethge/reproducibility/BerensEtAl2011/index.php 
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The MMSE is the error of an ideal observer in the reconstruction task and minimizes  

 . (10) 

We compute it numerically using Monte-Carlo integration (see SI Methods 3). The necessary software is 

available online1. We also compute the Fisher information, which in the Gaussian case takes the form 

  (11) 

where the dependence on  is omitted for clarity.  are the derivatives of  and  with respect to . 

The first term in eq. (11) is called  and the second . Fisher information can be used to bound the 

conditional error variance of an unbiased estimator according to the Cramér-Rao bound (eq. (1)). Similar 

to ,  depends on the choice of . By averaging over , we obtain a lower bound on the minimum 

reconstruction error for an unbiased estimator, the mean asymptotic squared error (MASE; eq. (4)). For 

long decoding time windows ( ), the MMSE estimator becomes unbiased and normally distributed 

with variance equal to , such that the MMSE and the MASE coincide (20, 21). Fisher-optimal codes 

were computed by numerically minimizing the MASE for the tuning width parameter for each N and T.  
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Figure Legends 

Figure 1  

A. Schematic representation of the stimulus reconstruction framework. The orientation of a visual 

stimulus is represented in the noisy firing rates of a population of neurons. The error of estimating this 

stimulus orientation optimally from the firing rates serves as a measure of coding accuracy.  

B. Schematic representation of the stimulus discrimination framework. The error of an optimal classifier 

deciding whether a noisy rate profile was elicited by stimulus 1 or 2 is taken as a measure of coding 

accuracy. 

C. Illustration of a neurometric function. The minimum discrimination error (MDE) is plotted as a 

function of the difference between a fixed reference orientation (top right) and a second varied stimulus 

orientation (x-axis). 

D. The minimal discrimination error for two Gaussian firing rate distributions with different mean rate 

corresponds to the grey area. The classifier always selects the stimulus which was more likely to have 

caused the observed firing rate. 

E. The optimal discrimination function in the case of two neurons, whose firing rates are described by a 

bivariate Gaussian distribution, is a straight line if the stimulus change causes only a change in the mean 

but not in the covariance matrix. 

F. If the stimulus change causes an additional change in the covariance matrix, the optimal discrimination 

function is quadratic. 

Figure 2 – Optimal tuning function width 

A. Mean asymptotic error (MASE) of a population of 100 independent neurons as a function of tuning 

width for four different integration times (T=10, 100, 500, 1000 ms; light grey to black). The MASE is 

the average inverse Fisher information. Dots mark the optimum. 

B. As in A, but MMSE of the same population.  For short integration times, broad tuning functions are 

optimal in terms of MMSE, in striking contrast to the predictions based on Fisher information. 

C. As in A, but IMDE of the same population. The quality assessment based on the IMDE agrees 

remarkably well with that based on the MMSE, although the former corresponds to the minimal error in a 

discrimination task and the latter in a reconstruction task. 

D. Neurometric function of a population with Fisher-optimal (dashed), MMSE-optimal (dotted) and 

IMDE-optimal tuning width (solid) for a short time interval (10 ms).  
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Figure 3 – Performance of Fisher­optimal codes 

A. Optimal tuning width as a function of population size for T=1000 ms.  

B. MASE of a neural population with independent noise and Fisher-optimal width as a function of 

population size for ten different integration times T (ten values logarithmically spaced between 10 and 

1000; light to dark grey). The width of the tuning functions is optimized for each N separately and chosen 

such that it minimizes the MASE at this population size. 

C. IMDE for the same Fisher-optimal populations as in B. 

D. Family of neurometric functions for Fisher-optimal population codes at T=10 ms for N=10 to N=190 

(right to left).  is the point of saturation, P the pedestal error, also marked by the grey dashed line. 

E. The pedestal error P is independent of the population size N (T like above, T=1000 ms is not shown for 

clarity).  

F. The pedestal error P depends on the integration time (black; independent of N) and analytical 

approximation for P (grey).  

G. For each population size, approximately three neurons are activated by each stimulus (red), 

independent of the population size.  

H. For coarse discrimination (red vs. green), the two stimuli activate disjoint sets of neurons determining 

the pedestal error (red vs. green; error bars show 2 SD). For fine discrimination, the activated populations 

overlap determining the initial region (red vs. blue).  

I. Dependence of the point of saturation   on the population size N (T like above). 

J. Two parts of the neurometric function of Fisher-optimal population codes: the pedestal error P (light 

grey) and the initial region (dark grey). Together they determine the IMDE. The neurometric function is 

shown in units of difference in preferred orientation and is therefore independent of N. The pedestal error 

is reached at  (see Fig. S4). As , x-axis is rescaled and the area of the initial region 

AIR goes to zero (see SI Text). Thus the IMDE converges to .  

Figure 4 – Effect of noise correlations 

A. Correlation matrices (Pearson correlation coefficient) of the four correlation structures studied 

(N=100). Grey level indicates the level of correlation with dark values corresponding to high correlations. 

Neurons have been arranged according to their preferred orientation, so correlations between cells with 

similar tuning properties are close to the main diagonal. Diagonal entries have been removed for 

visualization purposes.  
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B. MASE for a population of  N=100 neurons as a function of integration time for the four different noise 

correlation structures. MASE is shown relative to the independent population in logarithmic units. Colors 

as shown in A.  

C. MMSE of the same population for the same correlation structures.  

D. IMDE of the same populations for the same correlation structures agrees with MMSE.  

E. and F. MASE (dashed) and IMDE (solid) for a population of 100 neurons with stimulus-dependent 

(red) or uniform correlations (blue) at 500 ms (E) and 10 ms (F) observation time as a function of average 

correlation strength. Data is shown relative to the independent population in logarithmic units 

G. and H. Neurometric functions for the four correlation structures at 500 ms (G) and at 10 ms (H) 

integration time. The square marks , from which on stimulus-dependent correlations perform worse 

than uniform correlations. In H. the crossing point lies effectively at . Data is also shown relative 

to the independent population, smoothed and in logarithmic units on the y-axis in the insets.  

 

Table 1 (1 column) 

Acronym Definition 

MDE Minimum discrimination error, eq. (3); 
ideal observer error in a discrimination 
task  

IMDE Integrated minimum discrimination error, 
eq. (9); average MDE over all  

MMSE Minimum mean squared error, eq. (10); 
ideal observer error in a reconstruction 
task 

MASE Mean asymptotic squared error, eq. (4); 
approximation to the MMSE obtained by 
averaging over the inverse of Fisher 
information 
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SI Methods 1: Details on the correlation matrix 

Following Josic et al. (1), we model the stimulus-dependent covariance matrix as  

 . 

Here, we set  as the variance of cell i, i.e. we assume a Fano factor of 1.  is 

the correlation coefficient between cells i and j. We allow for both, stimulus and spatial influences on , 

by setting  

  

The function  models the influence of the stimulus-dependent component on the correlation 

structure, while the function  models the spatial component and is independent of . We use 

 with  and , where  controls 

the length of the spatial decay and C the average correlation. The four possible correlation shapes arising 

from this parameterization are illustrated in Fig. 4A.  To obtain a desired mean level of correlations  in a 

population, we use the method described in Appendix E of Josic et al. (1).  

SI Methods 2: Numerical computation of the MDE/IMDE 

We approximate the integral of eq. (3) numerically via Monte-Carlo techniques (2, 3) by  

  

where  are M samples, drawn from the mixture distribution . The 

factor  corrects for the fact that by sampling from  we weigh each sample pattern with its 

probability. We used   and evaluated  for 500 equally spaced points between 0 deg 

and 180 deg.  

The IMDE and average neurometric functions  were obtained by evaluating them at 20 

different  uniformly spaced between  and , where  is the difference between two preferred 

orientations. This is sufficient since all codes considered here are shift symmetric with period  

and because tuning curves are symmetric about the preferred orientation, only half a period needs to be 
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3 
 

considered. We verified that 20 different reference directions were sufficient by repeating our simulations 

for >40 reference directions. 

SI Methods 3: Numerical estimation of the MMSE 

The minimum mean squared error is achieved by the estimator which minimizes eq. (10). Based upon a 

response  generated from the stimulus-conditional distribution for stimulus , it is given by  

  

where 

  

is the posterior over stimuli given the response and  is the distance 

measured along the circle (4). The prior is uniform such that . We evaluate the above equations 

for L discrete, regularly spaced  and replace the integrals by sums. We obtain: 

  

 Simplifying we obtain 

  

which is solved by using again L discrete, uniformly spaced  as candidates. This discretization limits the 

accuracy with which the MMSE can be estimated. This is a problem in particular for very good 

estimators, for which L must be very large. Here, we chose L=500 and verified that the MMSE curves at 

the highest SNR did not change when L was substantially increased. Using this equation we can compute 

the MMSE as  

  

Similar procedures have been used in (5, 6). In some scenarios, approximation procedures like those 

presented in (6) can be helpful.  
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SI Text 

In this section, we formally show (i) that a non-zero pedestal error exists in the large N limit, (ii) that the 

saturation point  for Fisher-optimal codes goes to zero as the population size N increases for fixed T 

and (iii) derive a linear approximation to the pedestal error of Fisher-optimal codes. In particular, we use 

this approximation to show that the pedestal error depends on the available decoding time alone.  

Preliminary remarks 

We first note that in Fisher-optimal codes the tuning width is inversely proportional to N (Fig. 3A), such 

that 

  

for some constant c. Only a few cells are active for any given stimulus and this number does not depend 

on the population size N (Fig. 3G). The tuning curve spacing can be expressed in terms of the population 

size as 

 . 

Therefore, we can write w in terms of   as 

 , 

which holds for any N. Also,  . We further note that the following relationship holds: 

 . 

If the exponent k is sufficiently large, . Thus, the tuning function in our model can be 

replaced by 

 , 

which is of Gaussian form. This implies that we can rewrite the tuning functions as follows: 

  

In this equation, i is the neuron index and the constants in w are absorbed into the function h. Note that 

the tuning functions g and h are fixed templates for which only the domain changes with N (see Fig. 3G 

and H). While  is defined on , h is defined on , for even N. It follows that the 
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5 
 

Fisher-optimal tuning functions drawn in units of   (instead of ) are constant for different N (see Fig. 

3G and H); the activity of a neuron only depends on , that is how many units of  its preferred 

orientation is away from the stimulus, independent of N.  

Existence of the pedestal error 

We first show that there is a lower bound on the minimum discrimination error between any pair of 

stimuli, which is non-zero in the large N limit. To this end, we define an auxiliary population of neurons 

with additive Gaussian noise with variance , the parameter that determines the baseline firing rate of 

our tuning curves. The firing patterns of this population are distributed as: 

 , 

where  is the identity matrix of dimension N. The minimum discrimination error of this population 

provides a lower bound on that of the populations with Poisson-like noise used in the main text, i.e. 

  

Here, the subscripts p and q indicate that the MDE is calculated with respect to the pattern distribution p 

and q, respectively. We can express the right hand side of this equation as 

 , 

where   . Equality holds since in the case of additive noise the linear discrimination 

error is equal to the MDE (see SI Discussion). We now provide an upper bound for d’: 

  

Here we use  as defined above and the neuron index i ranges from   to  . We can now use 

the upper bound on  and use a Gaussian tuning function  instead. Now 

without loss of generality we assume  and substitute ,  and  from above. We obtain 
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6 
 

where the i indicates the neuron index, not the complex number. Inserting into the above equation yields 

  

To arrive at the last inequality note that  

  

is the area under the density function of a Gaussian with standard deviation .We can approximate the 

integral by the lower Riemann sum, i.e. by rectangles  with height  for positive i and 

 with height  for negative i, respectively.  Thus, we have  

 . 

Substituting  and including , we obtain the above inequality.  

Thus d’ is bounded from above independent of N. Therefore,  

  (1) 

independent of N and in particular also in the limit . This shows that there is a non-vanishing 

pedestal error P for all N and for finite T. 

Convergence of saturation point   to zero    

Next we show that the saturation point   converges to zero for . We define  as  

 . 
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7 
 

We approximate the MDE of the whole population with N neurons by considering only two subsets of 

  neurons each that are most strongly activated by one of the two stimuli: 

  

Here  is chosen such that  

 . 

Here,  is the MDE achieved by the subpopulation with neurons in the set , for which holds 

 . 

Because the tuning curves are identical in units of  for different N,  does not change with N and 

therefore  is also a constant in units of : 

  

 Finally, we define  as  

  

and note that  and therefore  as . Consequently, the area of the initial region 

will shrink to zero, too, as 

 . 

In particular, the neurometric functions for different N at fixed T are identical, when written as a function 

of  (Fig. S4). Although they show a different pedestal error for different T, they reach their pedestal 

error at constant  for all N and T considered (~2 ).    

Approximation of the pedestal error P 

Finally, we derive an analytically tractable approximation of the pedestal error. Looking only at two times 

 neurons in a Fisher-optimal model population, we can approximate the pedestal error with 

arbitrary precision. We find for our model that  such that only six cells suffice to achieve the same 

error as the entire population. We adopt the following notation:  is the activity by the maximally excited 

neuron and  and  are the activities of the two neurons to the left and to the right. For the time being, 

we omit the dependence on  and assume we place the stimulus at the peak of neuron 0. This results in 

the two average response vectors to the two stimuli  and  
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and the respective stimulus conditional covariance matrices  and  . To 

derive our linear approximation of the pedestal error, we calculate  taking advantage 

of the small subpopulation that needs to be considered, where . We obtain: 

  

  

This yields: 

  

The error of the optimal linear classifier (7) in this situation is  

  

where  is the cumulative distribution function. This equation provides a good approximation of the 

pedestal error of the neurometric function of Fisher-optimal population codes (Fig. 3F). We can see the 

dependence on time by rewriting the above expression: 

  

where  depends only on the tuning curves of the individual neurons. In 

particular,  are constant with growing N (as shown above), because we can rewrite the tuning function 

as a function of . The above expression depends on the choice of the reference direction , so we 

average again over  and obtain 
 

 

  (2) 

where the subscript  indicates the dependence of  on  inherited from the tuning functions.  

SI Discussion 
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Most other studies which investigated population codes in the discrimination framework measured the 

minimal linear discrimination error, such as (8-11)  as well as part 1 of (7). Few others such as (12) and 

part 2 of (7) also consider non-linear approximations of the minimal discrimination error. However, none 

of these studies computed the minimal discrimination error. 

Linear approaches 

The studies by Johnson (8), Snippe & Koenderink (9, 10) and Averbeck & Lee (7) used the 

discriminability index d’ from signal detection theory: 

  

Here,  is the difference in average firing rate profiles across the population and  

is the noise covariance matrix. The first two studies (8, 9) evaluated this equation for constant  and in 

the limit . Since  is an approximation of the derivative of the population firing rate 

profile for small   

  

so that the two studies effectively study the linear part of the Gaussian Fisher Information. Similar 

approaches have also been used by (9, 13, 14). 

Averbeck & Lee (7) used d’ also for finite  with . They then proceeded to 

compute the minimum linear discrimination error  

  

where  is the standard normal cumulative distribution function. It might not be immediately obvious 

why this computation really yields the minimal linear discrimination error. To see why this is the case, 

observe that for two normal distributions with means  and covariance matrices  and equal 

prior probabilities, Fisher’s Linear Discriminant is the optimal linear classifier (15). Its weight vector is 

given by 

  

where . The discriminability index d’ along w with 
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is 

  

which is the same as the above expression. For one-dimensional data, the error can be computed from d’ 

with the formula used above (see also (7)).   

While the LDE is equal to the MDE for additive Gaussian noise models, i.e. when  with 

, it does not capture the coding properties of a population code in the general case with 

stimulus-dependent covariance matrices, e.g. for a Poisson-like Gaussian noise model, or for stimulus-

dependent correlations structures.  

Non-linear approaches 

As a second measure of coding quality, Averbeck & Lee (7) consider the Bhattacharyya distance ( ). It 

is defined as  

  

which is, in the general case, as difficult to compute as the MDE. For the Gaussian case it simplifies to  

  

  (1.4.3) 

Previously, Kang et al. (12) had used the Chernoff distance ( ) as a measure of coding accuracy, which 

is defined as  

  (1.4.4) 

with . Interestingly,  is a special case of  obtained by setting . To compute the 

Chernoff-distance, Kang et al. exploit the fact that they assume a Gaussian noise model and a population 

with independent neurons and show that for this case, the optimal  equals , so that they effectively use 

 instead of  in their study.  
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In the Gaussian case, a simpler formula can be provided for computing  (16): 

  

The interest in  and  originates in the fact that both provide an upper bound on the MDE, the 

Chernoff bound (17, 16): 

  (1.4.5) 

The identical bound for  is in general less tight than equation (1.4.5), as  with equality if and 

only if the optimal  in equation (1.4.4). If both class-conditional distributions are Gaussians with 

, the true optimum can be shown to lie at  (16). For arbitrary population codes and 

noise distributions, the question whether the Chernoff bound is tight is not straightforward to answer. 

Kang et al. state that its tightness depends on the population size, the integration time and the shape of the 

tuning curves (12). In summary,  and  provide useful upper bounds on the MDE but cannot be used 

to measure the MDE directly. 

SI Figures 

Figure S1 

Tuning curves with width optimized for various criteria (black). For better visualization of the population 

structure, two additional tuning curves are shown in light grey. 

A. and B. MASE-optimal tuning curve for 10 and 1000 ms, respectively.  

C. and D. MMSE-optimal tuning curve for 10 and 1000 ms, respectively.  

E. and F. IMDE-optimal tuning curve for 10 and 1000 ms, respectively.  

Figure S2 

Fig. 2 shows that the optimal tuning width with regard to the MASE is almost independent of time, but 

varies slightly. The reason for this is that the two parts of Fisher Information,  and , have 

different time dependencies. For an independent population, we have 
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Thus   is proportional to time and its optimum is fixed for varying T.  is constant and does not 

depend on time. Therefore, the relative importance of the two terms changes with time: While for small T 

 and  are roughly on the same order of magnitude,  dominates for large T.  

When we plot the two extreme cases,  and  , corresponding to  and , 

respectively, we find that they lead to slightly different optimal tuning widths. The graph shows  

(solid) and   (dashed). 

Note that this behavior is only present for the Poisson-like Gaussian but not for the discrete Poisson noise 

model. The Fisher Information of an independent Poisson distribution is  

  

which is equal to the first term of Fisher Information in the Gaussian case, . For the Poisson noise 

model, Fisher Information and therefore the MASE lead to a constant optimum completely independent 

of time (see Fig. S3).  

Figure S3 

A-B. Replication of the results shown in Fig. 2 with Poisson noise (discrete spike counts). We set 

  

As in Fig. 2, we compute the MASE (A) and the IMDE (B) as a function of the tuning width for short and 

long time intervals (T=10, 100, 500, 1000 ms; light grey to black). The results are very similar to the 

Gaussian case: Fisher Information leads to narrow tuning curve independent of time and the 

discrimination error to broad tuning functions for short time intervals, and narrow ones for long time 

intervals. 

C-E. IMDE for a population of 100 independent neuron with Poisson-like noise and variable Fano factor 

(Fano factor 0.25, 1, 4) as a function of tuning width at two different integration times (T=10 and 500 ms; 

light grey and dark grey, respectively). We used  samples for the numerical evaluation. 

F-H. Same as in C-E but MASE of the same population. 

Figure S4 

Neurometric functions with rescaled x-axis of populations (N=10,…,190) with Fisher-optimal tuning 

functions for different integration times (T=10 ms to 600 ms; light grey to dark grey) as a function of 
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. The rescaled neurometric functions for populations of different size and identical integration 

time are identical. Note the log-scale on the y-axis. All neurometric functions level off at  , 

independent of the population size. 

Figure S5 

Dependence of the critical , from which on populations with uniform correlations outperform 

populations with stimulus-dependent correlations, on the available decoding time T. The value of  

was extracted from the smoothed, relative versions of the neurometric functions. 

Figure S6 

Neurometric functions of two neural populations with independent noise and Fisher-optimal tuning 

functions (Population 1: N=70, T=47ms; Population 2: N=50, T=130ms). The Fisher information of both 

populations is almost equal (1000 vs. 1016) but the pedestal errors are quite different. Note that in this 

case Fisher information and neurometric functions were calculated for a stimulus located at the peak of 

one of the tuning functions and not averaged over stimuli. 

 

 

SI References 

1. Josić K, Shea-Brown E, Doiron B, de la Rocha J (2009) Stimulus-Dependent Correlations and 
Population Codes. Neural Computation 21:2774-2804. 

 
2. Berens P, Gerwinn S, Ecker AS, Bethge M (2009) in Advances in Neural Information Processing 

Systems 22: Proceedings of the 2009 Conference  (MIT Press, Cambridge, MA), pp 90-98. 
 
3. Hershey J, Olsen P (2007) in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE 

International Conference on, pp IV-317-IV-320. 
 
4. Berens P (2009) CircStat: a MATLAB toolbox for circular statistics. Journal of Statistical Software 

31. 
 
5. Bethge M, Rotermund D, Pawelzik K (2002) Optimal Short-Term Population Coding: When Fisher 

Information Fails. Neural Computation 14:2317-2351. 
 
6. Yaeli S, Meir R (2010) Error-based analysis of optimal tuning functions explains phenomena 

observed in sensory neurons. Frontiers in Computational Neuroscience 4:130. 
 
7. Averbeck BB, Lee D (2006) Effects of Noise Correlations on Information Encoding and Decoding. J 

Neurophysiol 95:3633-3644. 
 
8. Johnson KO (1980) Sensory discrimination: decision process. J. Neurophysiol 43:1771-1792. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



14 
 

 
9. Snippe H, Koenderink J (1992) Information in channel-coded systems: correlated receivers. 

Biological Cybernetics 67:183-190. 
 
10. Snippe HP, Koenderink JJ (1992) Discrimination thresholds for channel-coded systems. Biol. 

Cybern. 66:543-551. 
 
11. Pouget A, Thorpe SJ (1991) Connectionist models of orientation identification. Connection Science 

3:127–142. 
 
12. Kang K, Shapley RM, Sompolinsky H (2004) Information Tuning of Populations of Neurons in 

Primary Visual Cortex. J. Neurosci. 24:3726-3735. 
 
13. Seriès P, Stocker AA, Simoncelli EP (2009) Is the Homunculus “Aware” of Sensory Adaptation? 

Neural Computation 21:3271-3304. 
 
14. Mato G, Sompolinsky H (1996) Neural Network Models of Perceptual Learning of Angle 

Discrimination. Neural Computation 8:270-299. 
 
15. Duda RO, Hart PE, Stork DG (2000) Pattern Classification (Wiley & Sons). 2nd Ed. 
 
16. Fukunaga K (1990) Introduction to statistical pattern recognition (Academic Pr). 
 
17. Cover TM, Thomas JA (2006) Elements of Information Theory (Wiley-Interscience). 
 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



Orientation (deg)
20 0 20

0

1

Re
l. 

A
ct

iv
at

io
n 

(a
. u

.)

Orientation (deg)
20 0 20

0

1

Re
l. 

A
ct

iv
at

io
n 

(a
. u

.)

Orientation (deg)
20 0 20

0

1
Re

l. 
A

ct
iv

at
io

n 
(a

. u
.)

10
 m

s
10

0
0

 m
s

Orientation (deg)
20 0 20

0

1

Re
l. 

A
ct

iv
at

io
n 

(a
. u

.)

IMDE optimalMASE optimal
A

B

C

D
Orientation (deg)

20 0 20

0

1

Re
l. 

A
ct

iv
at

io
n 

(a
. u

.)

MMSE optimal

Orientation (deg)
20 0 20

0

1
Re

l. 
A

ct
iv

at
io

n 
(a

. u
.)

E

F

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



2 10

10
−4

Tuning width (deg)

M
A

S
E

meanJ 10 ms
meanJ 100 ms
meanJ 500 ms
meanJ 1000 ms
covJ

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



2 10 50

10
−2

10
−1

10
0

Tuning width (deg)

IM
D

E

2 10 50

10
−4

10
−2

Tuning width (deg)

M
A

S
E

A B

Fano factor 0.25

T = 10 ms

T = 500 ms

10
−4

10
−2

M
A

S
E

10
−4

10
−2

M
A

S
E

10
−4

10
−2

M
A

S
E

10
−2

10
−1

10
0

IM
D

E

10
−2

10
−1

10
0

IM
D

E

10
−2

10
−1

10
0

IM
D

E

2 10 50

Tuning width (deg)

2 10 50

Tuning width (deg)

2 10 50

Tuning width (deg)

2 10 50

Tuning width (deg)

2 10 50

Tuning width (deg)

2 10 50

Tuning width (deg)

C D E

F G H

T = 100 ms

T = 1000 ms

Fano factor 0.25

Fano factor 1

Fano factor 1

Fano factor 4

Fano factor 4

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



0 1 2 3 4

10−1

∆  θ  /  ∆  φ

M
D

E

10 ms
600 ms

10−3

10−5

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



0

5

10

15

T

∆ 
θ

10 100 1000

c

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11



N=50, 130ms, J=1016

0 5 10
0

0.1

0.2

0.3

0.4

0.5

∆ θ

M
D

E

N=70, 47ms, J=1000

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
51

3.
1 

: P
os

te
d 

7 
Ja

n 
20

11


	BerensEtAl2010_MainText
	Optimal Population Coding, Revisited 
	Abstract 
	Introduction
	Results
	Studying neural population codes using neurometric functions
	Optimal tuning function width for individual neurons
	Optimal noise correlation structure

	Discussion
	Materials and Methods
	Population Model
	Neurometric Function Analysis
	Minimum mean squared error and Fisher information
	Acknowledgments
	Author contributions

	References
	Figure Legends
	Figure 1 
	Figure 2 – Optimal tuning function width
	Figure 3 – Performance of Fisher-optimal codes
	Figure 4 – Effect of noise correlations
	Table 1 (1 column)



	BerensEtAl_1
	BerensEtAl_2
	BerensEtAl_3
	BerensEtAl_4
	BerensEtAl2010_Supplement
	Optimal Population Coding, Revisited – Supporting Information
	SI Methods 1: Details on the correlation matrix
	SI Methods 2: Numerical computation of the MDE/IMDE
	SI Methods 3: Numerical estimation of the MMSE
	SI Text
	Preliminary remarks
	Existence of the pedestal error
	Convergence of saturation point    to zero
	Approximation of the pedestal error P
	SI Discussion
	Linear approaches
	Non-linear approaches

	SI Figures
	Figure S1
	Figure S2
	Figure S3
	Figure S4
	Figure S5
	Figure S6

	SI References



	BerensEtAl_S1
	BerensEtAl_S2
	BerensEtAl_S3
	BerensEtAl_S4
	BerensEtAl_S5
	BerensEtAl_S6

