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Abstract
The prediction error for mixed models can have a con-
ditional or a marginal perspective depending on the
research focus. We introduce a novel conditional ver-
sion of the optimism theorem for mixed models linking
the conditional prediction error to covariance penalties
for mixed models. Different possibilities for estimating
these conditional covariance penalties are introduced.
These are bootstrap methods, cross-validation, and a
direct approach called Steinian. The behavior of the dif-
ferent estimation techniques is assessed in a simulation
study for the binomial-, the t-, and the gamma distribu-
tion and for different kinds of prediction error. Further-
more, the impact of the estimation techniques on the
prediction error is discussed based on an application to
undernutrition in Zambia.
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1 INTRODUCTION

We discuss general methods for estimating the conditional prediction error in mixed models.
Mixed models (Laird & Ware, 1982) are a common statistical tool for analyzing clustered or lon-
gitudinal data and any kind of hierarchical modeling. Modern implementations for estimation
(Bates, Mächler, Bolker, & Walker, 2015) allow for fast and reliable inference in these kind of
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models. Moreover, the mixed model framework can be employed for the estimation of a wide class
of statistical models such as smoothing splines and (generalized) additive models, see Anderssen
and Bloomfield (1974) and Wahba (1985) for an early reference. These models are very popular
and widely used (see, e.g., Fahrmeir, Kneib, Lang, & Marx, 2013; Ruppert, Wand, & Carroll, 2003;
Wood, 2017).

The framework of mixed models with normal random effects as any model with quadratic
penalties can be extended to distributions beyond the exponential family, for example, the beta
or scaled-t distribution (Shun & McCullagh, 1995). For a discussion on a general framework for
inference in such models see Wood, Pya, and Säfken (2016).

The estimation of prediction error is not only interesting when using a statistical model for
predicting future values but is also of major interest for model choice and variable selection. Efron
(2004) distinguishes between methods based on Stein (1972), cross-validation, parametric, and
nonparametric bootstrap.

For mixed models, Müller, Scealy, and Welsh (2013) give a detailed overview of existing meth-
ods for model selection. On the one hand, methods for deriving tests, especially likelihood ratio
tests, are getting some attention (see, e.g., Crainiceanu & Ruppert, 2004; Greven, Crainiceanu,
Küchenhoff, & Peters 2008; Self & Liang 1987). On the other hand, attention focuses on the Akaike
information criterion (Akaike, 1973). Vaida and Blanchard (2005) propose to use the marginal and
the conditional akaike information criterion (AIC) depending on the underlying research ques-
tion. Liang, Wu, and Zou (2008) use the aforementioned method from Stein (1972) to derive the
conditional AIC. While Greven and Kneib (2010) show that the marginal AIC is biased and give an
analytical formula on how to calculate the conditional AIC for models with Gaussian responses.
These results are not directly applicable for generalized mixed models (Saefken, Kneib, van Wav-
eren, & Greven, 2014). However Yu, Zhang, and Yau (2018) propose a conditional generalized
information criterion based on the conditional Kullback–Leibler divergence for possibly misspec-
ified data modeled by a generalized linear mixed model. In a recent contribution, Sakamoto (2019)
introduces a bias reduction for the marginal AIC.

In terms of prediction error one may also distinguish between a marginal and a conditional
perspective. This paper focuses on the conditional perspective. Conditionality here refers to the
perspective of prediction, meaning that the prediction is conditioned on the random effects, that
is, future data are assumed to share the same random effects as the observed data. Different
measures to assess prediction error, the so-called q-class of prediction errors, are presented and
their representation as conditional covariance penalties with the help of the so-called optimism
theorem (Efron, 2004) are discussed. A conditional version of the optimism theorem for mixed
models is then presented.

These conditional covariance penalties can be estimated with methods that are broadly appli-
cable such as bootstrap methods and cross-validation. For certain distributions, however, it is
possible to derive criteria that sometimes are preferable in terms of accuracy and computational
burden. This is demonstrated for the scaled t-, the Bernoulli-, and the gamma-distribution. An
analytical formula for the representation of covariance penalties is derived, plug-in estimators are
investigated, and a link to bootstrap-based methods is ascertained.

A special focus in the simulation study is on the model choice behavior of these estimation
techniques and the different error functions, especially when comparing a complex model incor-
porating random effects with simpler models, that exclude the random effects, as in the simulation
study in Section 4.

Furthermore, the use of the methods for practical statistical modeling is demonstrated in an
application on predicting stunting in Zambia.



992 SÄFKEN and KNEIB

2 CONDITIONAL PREDICTION ERROR IN MIXED
MODELS

Consider a probability mechanism for data y1,… , yn, with conditional density or probability
function

f (yi|𝜇i, 𝜙), (1)

with mean 𝜇i and scale parameter 𝜙. The mean is linked to a predictor by a component-wise
response function h(⋅), that is,

𝜇i = h
(

x′
i𝜷 + u′

i𝜸
)
,

and the scale parameter 𝜙 is constant for all yi, i = 1,… ,n. The predictor is split up into fixed
parameters 𝜷 and random parameters 𝜸 with corresponding covariate vectors xi and ui. We do
not depend on a certain distribution for the random effects 𝜸. A common choice, however, is to
assume normality

𝜸 ∼  (0,D) ,

with positive semi-definite covariance matrix D. The covariance matrix depends on a parame-
ter, 𝝉2. The parameter may be multivariate, that is, vector-valued. In the simulation study, we
focus on D = 𝜏2I. The normality assumption allows us to extend the type of model considered
in this framework from longitudinal and cluster models to penalized spline smoothing, surface
estimation, spatial models, or functional data analysis, see for instance Wood et al. (2016) for an
overview of possible models. However, other choices of the random effects distribution allow for
even further extension of the models under consideration.

2.1 q-class of error measures

The error of real valued outcomes y and given prediction 𝜇 can be measured in different ways. A
wide class of error measures, called q-class of error measures, can be constructed with the help
of a concave function q(⋅) by

Q(y, 𝜇) = q(𝜇) + q′(𝜇)
(

y − 𝜇
)
− q(y). (2)

This q-class of error measures was introduced by Efron (1986). In the following, we give some
examples for common choices of error measures.

2.1.1 Example I:

The squared error is given via the concave function

q(𝜇) = 𝜇(1 − 𝜇) or q(𝜇) = −𝜇2,
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resulting in the corresponding error measure, that is,

Q(y, 𝜇) = (y − 𝜇)2.

2.1.2 Example II:

For binary data, a natural and common choice is the counting error

Q(y, 𝜇) =
{

0 , if y = 0 and 𝜇 < 1
2

or y = 1 and 𝜇 > 1
2

1 , else,

which results from the triangular function on the unit interval

q(𝜇) = min(𝜇, 1 − 𝜇).

Another choice that is applicable for a large class of probability distributions is the deviance
function. For exponential family distributions with natural parameter 𝜗, mean 𝜇 = b

′
(𝜗), scale

parameter 𝜙 and with the function b(⋅), the logarithm of the conditional density of yi is given by

log (f (yi|𝜗i, 𝜙)) =
yi𝜗i − b(𝜗i)

𝜙
+ c(yi, 𝜙). (3)

2.1.3 Example III:

The deviance error for exponential family distributions is defined by

q(𝜇) = 2
𝜙
(b(𝜗) − y𝜗) ,

and thus

Q(y, 𝜇) = 2
𝜙

(
log(fy(y)) − log(f𝜇(y))

)
,

= 2
𝜙

(
y𝜗y − b(𝜗y) − y𝜗 + b(𝜗)

)
, (4)

with the log-likelihood log(f𝜇(y)), saturated model log(fy(y)), and 𝜗y the estimated natural param-
eter evaluated at y. This is proportional to twice the negative relative Kullback–Leibler distance
and therefore results in the Akaike information.

For the preceding part, the main parameter of interest that plays a major part in the derivation
of the conditional covariance penalties is

𝜃 = −
q′(𝜇)

2
. (5)

For the squared error in Example I, the main parameter of interest is 𝜃 = 𝜇 − 1
2

and for the
counting error in Example II
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𝜃 =

{
− 1

2
, if 𝜇 < 1

2
1
2
, if 𝜇 > 1

2
.

In the case of an exponential family in Example III, the derivative of q(⋅) is twice the negative
natural parameter of the exponential family, and hence the main parameter of interest is obviously
the natural parameter of the exponential family, that is, − q′(𝜇)

2
= 𝜃 = 𝜗.

For data y = (y1,… , yn) with predictions 𝝁̂ = (𝜇1,… , 𝜇n), the total error is defined as the sum
of the component errors, that is,

Q
(

y, 𝝁̂
)
=

n∑
i=1

Q(yi, 𝜇i). (6)

2.2 Conditional covariance penalties

In order to assess the true prediction error, the quantity (Equation 6) is too optimistic since the
predicted mean 𝝁̂ depends on the observed data y. The obvious interest is how well the model will
fit future data from the same underlying data generating process. Hence, the quantity of interest
is the expected prediction error w.r.t. future data z, that is, Ez

(
Q
(

z, 𝝁̂
))

. If, however, the regres-
sion model under consideration contains more than one source of randomness, such as random
effects, the type of prediction is not unique. In mixed models, future values may not share the
same random effects as the ones that were used for fitting the model. The prediction should then
be based on the marginal mean 𝝁̂m = E (y), corresponding to the mean of the marginal distribu-
tion of the data y. On the other hand, the future values at which the prediction is targeted can hold
the same random effects as the observed data. Thus, only one source of randomness is considered
for the prediction. In this case, the appropriate mean is 𝝁̂c = E (y|𝜸), which is known as the con-
ditional mean and corresponds to the mean of the conditional distribution of the data y|𝜸. For
instance, in a Gaussian model, the conditional and marginal means correspond to the predictors
with or without the predicted random effects, 𝝁̂m = X𝜷 and 𝝁̂c = X𝜷 + U 𝜸̂. For other distribu-
tions, the distinction is not as obvious. The densities of the marginal distributions are often not
analytically accessible. Thus, in a mixed model, the appropriate mean that needs to be plugged
into the error function depends on the focus of the prediction. If the prediction focus lies on the
population and future values may have any even unobserved random effects, the marginal mean
is suitable. If, on the other hand the prediction focus lies on a cluster or individual associated with
a random effect, the mean of choice should be the conditional mean. While for mixed models, the
appropriate mean depends on the prediction focus, in many applications of the mixed model in
which the mixed model framework is a vehicle for estimation, such as penalized regression, the
prediction is always assumed to share the same random effects.

In the following, we will only concentrate on the conditional prediction. Along these lines the
conditional expected prediction error w.r.t. future data z|𝜸 is

Ez|𝜸 (Q (z, 𝝁̂)) . (7)

The optimism theorem, see Efron (2004), links the observed or apparent prediction error with
the expected prediction error. The adaptation to the conditional optimism theorem for the ith
component is straightforward:
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Theorem 1. Let yi|𝜸 be defined as in Equation (1) with random effects 𝜸, 𝜃i as in Equation
(5) and let z|𝜸 follow the same distribution as yi|𝜸. With error measure (Equation 2) we
have

Eyi,𝜸

(
Ez|𝜸 (Q (z, 𝜇i

)))
= Eyi,𝜸

(
Q
(

yi, 𝜇i
))

+ 2covyi,𝜸

(
𝜃i, yi

)
. (8)

Proof. For the ith conditionally expected error component, we have

Ez|𝜸 (Q(z, 𝜇i)
)
= q(𝜇i) + q′(𝜇i)(𝜇i − 𝜇i) − Ez|𝜸 (q(z)) ,

and the observed error is

Q(yi, 𝜇i) = q(𝜇i) + q′(𝜇i)(yi − 𝜇i) − q(yi).

Thus, the difference between observed and expected error is

Ez|𝜸 (Q(z, 𝜇i)
)
− Q(yi, 𝜇i) = q′(𝜇i)(𝜇i − yi) + q(yi) − Ez|𝜸 (q(z)) .

Taking expectations w.r.t. the joint distribution of yi, 𝜸 gives

Eyi,𝜸{Ez|𝜸 (Q(z, 𝜇i)
)
− Q(yi, 𝜇i)} = 2 Eyi,𝜸𝜃i(yi − 𝜇i) = 2 covyi,𝜸(𝜃i, yi). ▪

Hence, the total conditional prediction error is

Ey,𝜸
(
Ez|𝜸 (Q (z, 𝝁̂))) = Ey,𝜸

(
Q
(

y, 𝝁̂
))

+ 2
n∑

i=1
covyi,𝜸

(
𝜃i, yi

)
. (9)

Notice that the conditional covariance penalty in the total conditional prediction error is
additionally conditional on the observed responses excluding the ith datum. Thus, if

y−i = (y1,… , yi−1, yi+1,… , yn)

indicates the data vector in which the ith component is excluded, the prediction error of the ith
component is also conditioned on y−i. Hence, the data conditioned version or “fixed data” version
of Equation (8) is

Eyi,𝜸|y−i

(
Ez|𝜸 (Q (z, 𝜇i

)))
= Eyi,𝜸|y−i

(
Q
(

yi, 𝜇i
))

+ 2covyi,𝜸|y−i

(
𝜃i, yi

)
. (10)

3 ESTIMATING CONDITIONAL COVARIANCE PENALTIES

The covariance penalties are in general not observable and therefore need to be estimated.
There are several possible approaches that will be discussed here. Very general methods that
can be applied to any distributional and parametric setting are the bootstrap and cross-validation
that are presented in Sections 3.2 and 3.3. The latter can even be applied to nonparamet-
ric settings. Nevertheless, for certain distributions it is possible to derive estimators that are
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preferable. These can be seen as generalizations of the Steinian-type estimators as presented
in Efron (2004). Those presented in this section are not unbiased but are reasonable approx-
imations, as shown in the subsequent simulation study. Such estimators are proposed for
the gamma-, the Bernoulli-, and the scaled t-distribution. With the help of Theorem 2, it
is furthermore possible to gain insight into the circumstances under which these estima-
tors are available. Furthermore, there is an interesting connection between the Steinian-type
estimators that are presented here and the conditional “fixed data” bootstrap, thereby the
Steinian-type estimators appear to be large sample approximations of the conditional bootstrap
estimators.

3.1 Steinian-type estimators

There are attempts to generalize such kind of Steinian formulas to further distributions for mixed
models, see Saefken et al. (2014), although there is up to date no generalization that leads to unbi-
ased estimates of the conditional covariance penalties for all distributions. One such generalized
Steinian formula for a large class of distributions is given in Shen and Huang (2006):

Theorem 2. Let y be a continuous random variable with probability density function (Equation 1)
and 𝜃 = 𝜃(y) a differentiable function such that E

(
𝜃(y)(y − 𝜇)

)
< ∞ with 𝜇 = E(y), then

cov(𝜃(y), y) = E

(
𝜃′(y)V(y, 𝜇)

)
, (11)

with V(y, 𝜇) = 1
f (y)

∫ y
−∞(𝜇 − t)f (t)dt.

The function V(y, 𝜇) = 1
f (y)

∫ y
−∞(𝜇 − t)f (t)dt is not self-explanatory, but its expectation is the

variance, that is, E (V(y, 𝜇)) = Var(y).
A similar identity also holds for discrete random variables with probability function p(⋅) with

support  and V(y, 𝜇) = 1
p(y)
∑

t∈ ,t≤y(𝜇 − t)p(t). The derivative 𝜃′(y) is replaced by Δ𝜃(y) = 𝜃(y+) −

𝜃(y), where y+ is the smallest number that is larger then y.
In the following, the “variance” function V(y, 𝜇) is explicitly stated for a number of distribu-

tions in order to give an intuition on its appearance.

3.1.1 Example I:

For the Gaussian distribution with mean 𝜇 and variance 𝜎2

V(y, 𝜇) = 𝜎2.

3.1.2 Example II:

For the Poisson distribution

V(y, 𝜇) = y.
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3.1.3 Example III:

For the gamma distribution with parameters 𝜇 and 𝜈

V(y, 𝜇) = 𝜇

𝜈
y.

The formula (11), and the same holds for its discrete analogue, does not automatically leads
to an observable quantity because in general we cannot plug in an estimate of V(y, 𝜇), since

E

(
𝜃′(y)V(y, 𝜇)

) ≠ E

(
𝜃′(y)

)
E (V(y, 𝜇)) = E

(
𝜃′(y)

)
Var(y).

We therefore need to distinguish between two cases: either the “variance” function is independent
of y, that is, V(y, 𝜇) = V(𝜇) or the “variance” function somehow depends on y. The first case is
unproblematic since we have E

(
𝜃′(y)V(y, 𝜇)

)
= E

(
𝜃′(y)

)
Var(y) and we can plug in an estimate

of Var(y) as is done in the bias correction for the normal distribution, see Efron (2004). However,
we can make some progress in the second case for the gamma distribution or more generally for
all distributions, for which

V(y, 𝜇) = y ⋅Ψ(𝜇), (12)

with Ψ(𝜇) only depending on 𝜇 not on y.

Theorem 3. Let y and 𝜃 = 𝜃(y) be defined as in Equation (2) and 𝜃(y) additionally be s-times con-
tinuously differentiable with s ∈ N and 𝜃(s+1)(y) = 0. If Equation (12) is fulfilled the conditional
covariance penalty is

cov(𝜃, y) = Var(y)
s∑

i=1
E(𝜃(i)) ⋅Ψ(𝜇)i−1. (13)

Proof. The theorem basically only needs the covariance formula, that is, for an arbitrary function
h(y), for which the expectation E (h(y)) exists, it holds

E (h(y)y) = E (h(y))E (y) + cov(h(y), y),

in combination with Theorem 11. Thus, the covariance can be rewritten:

cov(𝜃(y), y) = E

(
𝜃′(y)V(y, 𝜇)

)
= E

(
𝜃′(y) ⋅ y

)
Ψ (𝜇)

=

⎡⎢⎢⎢⎢⎢⎣
E

(
𝜃′(y)

)
E (y) + cov(𝜃′(y), y)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=E

(
𝜃′′(y)V(y,𝜇)

)

⎤⎥⎥⎥⎥⎥⎦
Ψ (𝜇)

= E

(
𝜃′(y)

)
E (y) Ψ (𝜇)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=Var(y)

+ E

⎛⎜⎜⎜⎝𝜃
′′(y)V(y, 𝜇)

⏟⏟⏟
=yΨ(𝜇)

⎞⎟⎟⎟⎠Ψ (𝜇)
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= E

(
𝜃′(y)

)
Var(y) + E

(
𝜃′′(y)y

)
Ψ(𝜇)2

= E

(
𝜃′(y)

)
Var(y) + E

(
𝜃′′(y)

)
E (y) Ψ(𝜇)2 + cov(𝜃′′(y), y)Ψ(𝜇)2

= Var(y)E
(
𝜃′(y)

)
+ Var(y)E

(
𝜃′′(y)

)
Ψ (𝜇) + cov(𝜃′′(y), y)Ψ(𝜇)2

= …

= Var(y)
s∑

i=1
E

(
𝜃(i)(y)

)
Ψ(𝜇)i−1.

▪

With Theorem 3, we have the following remarks:

(i) The condition 𝜃(s+1)(y) = 0 is a strong condition that in many cases may not be fulfilled.
However, if the function 𝜃(y) is approximated by a Taylor expansion of order s around the
mean 𝜇, then the condition is fulfilled. Hence, with the Taylor approximation

𝜃(y) ≈ 𝜃(y) =
s∑

i=0

𝜃(i)(𝜇)
i!

(y − 𝜇)i,

the covariance penalty can be approximated by

cov(𝜃(y), y) ≈ cov(𝜃(y), y) = Var(y)
s∑

i=1
E
(
𝜃(i)(y)

)
Ψ(𝜇)i−1.

(ii) For the mean 𝜇 in 𝜃(y), a plug-in estimator can be used. Either the estimated mean 𝜇 or
the estimator of the saturated model, that is, the observed values y, are applicable. Thus,
using a first order Taylor expansion and the observed values as estimators of the mean and
substituting an estimator for the variance, formula (13) can be estimated by:

cov(𝜃(y), y) ≈ V̂ar(y)E
(
𝜃′(y)

)
. (14)

(iii) Note that the subsequent result in Equation (13) can be generalized by allowing for linear
translations of the random variable to be separated from the “variance” function. Under the
same conditions that need to hold for the formula (13) and, additionally, with a, d ∈ R and
V(y, 𝜇) = (a + dy)⋅Ψ(𝜇), the covariance penalty is

cov(𝜃, y) = Var(y)
s∑

i=1
E(𝜃(i)) ⋅ di−1Ψ(𝜇)i−1. (15)

(iv) Other distribution-specific methods to derive observable (conditional) covariance penal-
ties are available for certain distributions. For instance for Bernoulli models no unbiased
estimator of the conditional covariance penalty is available. Nevertheless, the covariance
can be written as

covyi,𝜸|y−i(𝜃i, yi) = 𝜇i(1 − 𝜇i)
(
𝜃i(1) − 𝜃i(0)

)
. (16)
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since

covyi,𝜸|y−i(𝜃i, yi) = Eyi,𝜸|y−i

[
𝜃i(yi) (yi − 𝜇i)

]
= 𝜇i𝜃i(1) (1 − 𝜇i) + (1 − 𝜇i)𝜃i(0) (0 − 𝜇i)

= 𝜇i(1 − 𝜇i)
(
𝜃i(1) − 𝜃i(0)

)
.

Notice that 𝜃i is defined as in Equation (5). For the deviance error q for instance this is 𝜃i =
log
(

𝜇i
1−𝜇i

)
. Thus, substituting an estimator for the variance 𝜇i(1 − 𝜇i) leads to the estimate

n∑
i=1

ĉovyi,𝜸|y−i(𝜃i, yi) =
n∑

i=1
𝜇i(1 − 𝜇i)

(
𝜃i(1) − 𝜃i(0)

)
. (17)

In Section 3.2, we will show the close connection between this estimator and the bootstrap
estimator.

3.2 Conditional parametric bootstrap

A direct way of estimating the conditional covariance penalty is the parametric bootstrap with
conditional random effects. This means that every bootstrap sample is taken from the conditional
distribution with conditional mean 𝝁̂c. For bootstrap simulations z of size B from the originally
fitted model 𝜽̂|𝜸 = 𝜽̂c, the covariance penalty is calculated by

n∑
i=1

ĉovi =
n∑

i=1

1
B − 1

B∑
j=1

𝜃ij(zij)
(

zij − zi⋅
)
, (18)

with the mean over all bootstrap samples zi⋅ = 1
B

∑B
j=1 zij for each data point i. The conditional

parametric bootstrap assumes that the underlying model is true and is thus a model-based
approach. On the other hand, as presented here, the method is global as it changes all cases in
each simulation step in contrast to the plug-in estimates that only vary the ith data point when
estimating ĉovi.

With the conditional parametric bootstrap, the simulation error of the conditional covariance
penalty estimation can be assessed by

sd

( n∑
i=1

ĉovi

)
=

(∑B
j=1 (cj − c)2

B(B − 1)

) 1
2

,

with

cj =
n∑

i=1
𝜃ij(zij)

(
zij − zi⋅

)
and c = 1

B

B∑
j=1

cj.

Since in every bootstrap sample all data points are resampled the bootstrap in (Equation 18) needs
B model refits.
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Another possibility for a bootstrap estimate would be a so-called “fixed data” bootstrap, in
which for each bootstrap sample of each individual observation the other n − 1 data points are
fixed and only the ith datum is resampled. This corresponds to the estimate in Equation (10).
However, this approach is computationally burdensome since for each observed response a whole
set of bootstrap samples and model fits must be computed and thus the total error estimation
requires n ⋅ B model fits. Nonetheless, there is an approximation of the bootstrap estimate that
makes it less computationally expensive. Therefore, consider the bootstrap estimator for the ith
covariance penalty with all cases but the ith fixed. Instead of evaluating the main parameter of
interest, we use a Taylor approximation around the estimated mean 𝜇i yielding

𝜃i(z) ≈ 𝜃i(𝜇i) +
𝜕𝜃i

𝜕z

|||||𝜇i

(
z − 𝜇i

)
.

Accordingly, the bootstrap estimator of the ith conditional covariance penalty can be approxi-
mated by

ĉovi =
1

B − 1

B∑
j=1

𝜃i(zij)
(

zij − zi⋅
)

≈ 1
B − 1

B∑
j=1

(
𝜃i(𝜇i) +

𝜕𝜃i

𝜕z

|||||𝜇i

(
zij − 𝜇i

)) (
zij − zi⋅

)
≈ 𝜕𝜃i

𝜕z

|||||𝜇i

1
B − 1

B∑
j=1

(
zij − 𝜇i

) (
zij − zi⋅

)
≈ 𝜕𝜃i

𝜕z

|||||𝜇i

V̂ar(yi), (19)

with the last approximation holding if the number of bootstrap samples tends to infinity, B →
∞. A similar link between the bootstrap and the plug-in estimator for Bernoulli conditional
covariance penalties is derived in Section 4.2.

3.3 Conditional cross-validation

The probably most popular method for prediction error estimation is cross-validation. Compared
to conditional parametric bootstrap and the plug-in estimates, the conditional cross-validation
has the advantage that it is not model-dependent. On the other hand, just like the plug-in
estimates, the conditional cross-validation is a local method in the sense that, for estimation
of the covariance penalty, it only changes the ith data point. Let 𝜇−i be the estimated mean
with the ith observation deleted, that is, the estimator based on the reduced data set y−i =
(y1,… , yi−1, yi+1,… , yn). Then the cross-validation estimate of the conditional expected prediction
error (Equation 7) is Q(yi, 𝜇−i). Facilitating the connection of the apparent error, Q(yi, 𝜇i), with
the expected conditional prediction error stated in the optimism theorem 1 results in

Q(yi, 𝜇−i) − Q(yi, 𝜇i) = 2ĉovi.
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Thus, the conditional covariance penalty can by derived by

n∑
i=1

ĉovi =
1
2

n∑
i=1

[
Q(yi, 𝜇−i) − Q(yi, 𝜇i)

]
. (20)

For instance, in case of the deviance error and data from an exponential family distribution,
the cross-validation estimator of the conditional covariance penalty is

n∑
i=1

ĉovi =
n∑

i=1
b(𝜗−i) − b(𝜗i) + yi(𝜗i − 𝜗−i), (21)

where 𝜗i is the estimated natural parameter of the exponential family, and 𝜗−i is the estimated
natural parameter with the ith case deleted.

The parametric bootstrap is related to the cross-validation by a Rao–Blackwell type of rela-
tionship, see Efron (2004). That implies that the conditional bootstrap (and the proposed Steinian
estimators) is more accurate than cross-validation, assuming that the applied model is near
enough to the truth. The simulation study, though, does not reflect this behavior in the case of
mixed models.

4 SIMULATIONS

In order to assess the behavior of the different proposed estimation techniques and error classes,
various simulation scenarios are presented. A particular focus will lie on the model choice behav-
ior of the estimators if the variance parameter of the random effects lies on the boundary of the
parameter space.

For the Bernoulli distribution, the deviance error is employed. Thus, when comparing two dis-
tinct models, this corresponds to a conditional AIC in an exponential family setting. The deviance
error is additionally used to choose between models following a gamma distribution. In this set-
ting, the connection of the Steinian to the covariance penalty for Gaussian distributions becomes
apparent. Moreover, it emphasizes the close relationship between the Steinian and the generalized
degrees of freedom defined in Ye (1998). Furthermore, the expected squared error of a random
intercept model with conditionally scaled t distribution is investigated (again with an emphasis
on the null model rejection rate).

4.1 Gamma distribution

The conditional density of the data generating process for gamma distributed responses is
given by

f (yij|𝜇ij, 𝜈) =
1

Γ(𝜈)

(
𝜈
𝜇ij

)𝜈

y𝜈−1 exp
(
−
𝜈y
𝜇ij

)
, (22)

for i = 1,… ,n and j = 1,… ,m, with 𝜇ij = exp
(
𝛽0 + 𝛾j

)
and 𝜸 ∼  (0, 𝜏2Im

)
. The number of

individuals is set to n = 12, and the number of observations is m = 6 per individual. An example
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with more random effects is considered in the application in Section 5. The variance parameter
of the random intercept 𝜏2 varies between 0 and 1.6. For each setting, 1,000 data sets of model
(Equation 22) are generated. The scale parameter 𝜙 = 1

𝜈
= 1 is constant for all observations and

is estimated within each model fit as 𝜙.
The error for the gamma distributed observations is assessed with the deviance error as in for-

mula (4) with the natural parameter 𝜃ij = 𝜗ij = − 1
𝜇ij

. Based on formula (19), with V̂ar(yij) = V̂ij =

𝜙𝜇2
ij = 𝜙

𝜕𝜇ij

𝜕𝜃ij
, we approximate the conditional covariance penalty for gamma distributed responses

of the ith data point by

ĉovij ≈ V̂ij
𝜕𝜃ij

𝜕yij
= 𝜙

𝜕𝜇ij

𝜕𝜃ij

𝜕𝜃ij

𝜕yij
= 𝜙

𝜕𝜇ij

𝜕yij
. (23)

This equation highlights that the Steinian-type estimator and the generalized degrees of free-
dom proposed in Ye (1998) coincide. Moreover, the close relationship to the findings of Liang
et al. (2008) becomes apparent. Next to this estimate, the conditional covariance penalties are esti-
mated by conditional parametric bootstrap and conditional cross-validation, see Equations (18)
and (20). The estimation of the random effects variance parameter is done by REML estimation
based on the R-package mgcv version 1.8-2, see Wood et al. (2016). The bootstrap needs 500
model fits and takes about 13 s on a 2.9-GHz personal computer, while the cross-validation only
needs n ⋅ m = 72 model fits and about 2 s. The derivatives in Equation (23) are calculated on the
basis of the algorithm in Gilbert and Varadhan (2012). This takes about 17 s.

A null model rejection rate plot similar to those considered in Greven and Kneib (2010)
is displayed in Figure 1. This plot shows the frequency of favoring the more complex model
(Equation 22), incorporating random effects over the simpler models with only an intercept. For
each data set a simple model excluding random effects and a complex model including a ran-
dom intercept is fitted. For both models, the total expected prediction error is estimated. The
model with the smaller prediction error is selected and the model with the higher prediction
error is rejected. The proportion of times the complex model is chosen is plotted in Figure 1. The
cross-validation estimate here behaves similar to the marginal AIC in Greven and Kneib (2010).
For a random effects variance of 0.5, the cross-validation only chooses to include random effects
in roughly 60% cases, whereas the Steinian estimator does so in more than 75% of the cases. The
bootstrap shows a good behavior although it incorporates random effects in a quarter of the cases
although there are none in the underlying data-generating mechanism.

The estimated conditional covariance penalties are listed in Table 1. The table shows that
all three methods give similar estimates for the conditional covariance penalties. The value of
the Steinian estimator (Section 3.1) for random effects variance 𝜏2 = 0.4 is salient. This is due to
the fact that the estimates have not appropriately been corrected for numerical anomalies that
arise from the use of numerical derivation. An extended table with the standard deviations and
corresponding boxplots can be found in the Supporting Information.

4.2 Bernoulli distribution

For the Bernoulli distribution, the true data generating process is given by a logistic random
intercept model, with the conditional probability function
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f (yij|𝜇ij) = (1 − 𝜇ij)1−yij𝜇
yij

ij for i = 1,… ,n and j = 1,… ,m, (24)

with log
(

𝜇ij

1−𝜇ij

)
= 𝛽0 + 𝛾j and 𝜸 ∼  (0, 𝜏2Im

)
. The number of individuals is set to n = 13, and

the number of observations is m = 7 per individual. The variance parameter of the random inter-
cept 𝜏2 varies between 0 and 2.4. For each setting, 1,000 data sets of model (Equation 24) are
generated, and the covariance penalties of the model are estimated by the different estimation
techniques proposed in the preceding sections. The bootstrap estimate is based on 800 bootstrap
samples.

The models are fitted with the REML method implemented in the R-package lme4, see Bates
et al. (2015). The conditional bootstrap and the Steinian are estimated with the R-package cAIC4,
see Säfken, Rügamer, Kneib, and Greven (2018). The bootstrap here needs 800 model fits and
takes about 34 s on a 2.9-GHz personal computer, while the cross-validation which takes about
5 s and the Steinian, which takes about 3 s, only need n ⋅ m model fits. The fits needed for the
Steinian are faster than for cross-validation, since the data set remains unchanged except for
one response value in each computation. Thus, from the computational perspective the Steinian
performs best.

Figure 1 displays the frequencies of how often the complex model (Equation 24) is favored
against a simple model with only an intercept. This means we choose the model that minimizes
the expected conditional prediction error Ez|𝜸 (Q (z, 𝝁̂)). The error function Q is the deviance
error as in formula (4) with the logit parameter 𝜃ij = 𝜗ij = log

(
𝜇ij

1−𝜇ij

)
. It is, however, not clear

how the covariance penalties of the simple model can be estimated. In order to stay consistent
with the estimation of the conditional covariance penalties of the complex models, the covariance
penalties of the simple models are estimated with bootstrap, cross-validation, and the Steinian
applied to the generalized linear model. The bootstrap and the Steinian in one quarter of the cases
choose the complex model although the true underlying model does not incorporate random
effects. Notice that the behavior of choosing too many parameters is rather common for AIC-like
criteria. For instance, the significance level of the AIC in standard settings is approximately 0.157,
see Greven and Kneib (2010). The bootstrap chooses the true complex model slightly more often
than the Steinian for increasing random effects variance. Cross-validation, on the other hand,
performs worse as the chance of selecting the false complex model is almost 0.5 and increases
very slowly with the increasing random effects variance.
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F I G U R E 1 Frequency of choosing the complex model against a simple model only including an intercept
for conditionally gamma, Bernoulli, and scaled t distributed responses. The conditional covariance penalties are
estimated by bootstrap (Equation 18), cross-validation (Equation 20), and the Steinian estimator (Section 3.1)
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T A B L E 1 Mean and standard error of the conditional covariance penalty samples
estimated by bootstrap (covb), cross-validation (covcv), and the Steinian estimates (covs)
for gamma, Bernoulli, and scaled t distribution

Gamma Bernoulli Scaled t
𝜏2 covb covcv covs covb covcv covs covb covcv covs

0.0 3.54 3.26 2.95 2.94 2.69 2.55 3.98 3.53 3.58

0.1 3.66 3.66 3.29 2.95 2.67 2.54 4.17 4.25 4.32

0.2 3.92 4.57 4.10 3.00 3.03 2.86 4.58 5.72 5.67

0.4 5.88 7.90 11.93 3.16 3.60 3.39 7.48 10.67 10.34

0.6 8.32 10.74 8.87 3.64 4.80 4.50 11.57 14.44 13.82

0.8 10.53 12.87 10.15 4.40 6.20 5.82 14.35 16.43 15.67

For the 1,000 estimated conditional covariance penalties the empirical means of the condi-
tional covariance samples are listed in Table 1. The boxplots and the standard errors for different
sizes of the random effects variance parameters can be found in the Supporting Information. The
performance of cross-validation, bootstrap, and the Steinian highly depend on the random effects
variance parameter. This makes a comparison difficult. The variability of the Steinian with the
true mean plugged in is larger than the variability when the estimated mean is used.

Notice that the bootstrap estimate here is unconditional in the sense that all cases of the
data set are varied in each set of covariance penalty estimates. The bootstrap that is condi-
tioned on y−i, that is, in which for the estimation of the ith covariance penalty only the ith case
is resampled for Bernoulli responses is approximately equal to the Steinian (Equation 17), see
Säfken et al. (2018).

4.3 Scaled t distribution

As stated, the proposed framework does not only work for exponential family distributions and
the deviance error. Therefore, the behavior of the squared error functions and the different cor-
responding conditional covariance estimators are considered in this setting with conditionally
scaled t distributed responses. Hence, the data are generated by the mechanism

f (yij|𝜇ij, 𝜈, 𝜎) =
Γ
(

𝜈+1
2

)
Γ
(

𝜈

2

)√
𝜋𝜈𝜎

(
1 + 1

𝜈

(yij − 𝜇ij

𝜎

)2)− 𝜈+1
2

, (25)

for i = 1,… ,n and j = 1,… ,m, with 𝜇ij = exp
(
𝛽0 + 𝛾j

)
and 𝜸 ∼  (0, 𝜏2Im

)
. The number of

individuals is set to n = 17, and the number of observations is m = 7 respectively. The variance
parameter of the random intercept 𝜏2 varies between 0 and 1.6. For each setting 1,000 data sets of
model (Equation 25) are generated. For ease of computation, we expect the remaining parameters
to be fixed and known, that is, 𝜈 = 7 and 𝜎 = 1.

The total expected prediction error is assessed by the squared error function in Example I.
Since for the squared error the parameter of main interest is 𝜇, the total expected prediction error
that we want to minimize is
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Ez|u
n∑

i=1

m∑
j=1

(
zij − 𝜇ij

)2 =
n∑

i=1

m∑
j=1

(
yij − 𝜇ij

)2 + 2
n∑

i=1

m∑
j=1

cov
(
𝜇ij, yij

)
. (26)

Thus, based on formula (19), we approximate the conditional covariance penalty for scaled t
distributed responses of the ijth data point by writing the parameter of main interest as a function
of the data 𝜇ij(y) and then taking the derivative with respect to the data y at the point of the current
estimate 𝜇ij = 𝜇ij(yij), that is,

ĉovij ≈ V̂ar(yij)
𝜕𝜇ij(y)
𝜕y

|||||y=𝜇ij

. (27)

Next to this approximate estimate, the conditional covariance penalties are estimated by con-
ditional parametric bootstrap and conditional cross-validation, see Equations (18) and (20). The
bootstrap estimate is based on 800 bootstrap samples.

The models are fitted with the R-package mgcv version 1.8-2, see Wood et al. (2016).
This package uses a REML criterion to find the optimal random effects variance parame-
ter 𝜏2. The bootstrap here needs 800 model fits and takes about 32 s on a 2.9-GHz personal
computer, while the cross-validation and the Steinian only need n ⋅ m = 119 model fits. How-
ever, the cross-validation only takes 4 s while the Steinian also takes 32 s. The derivatives in
Equation (27) are numerically approximated based on the algorithm in Gilbert and Varadhan
(2012).

The estimated conditional covariance penalties are listed in Table 1. An extended table with
further random effects variances and the corresponding standard deviations can be found in the
Supporting Information. The means of all three estimation techniques are similar for all random
effects variances. In many cases, the Steinian lies between the cross-validation and the bootstrap
estimate. In combination with the results on the selection frequency (see Figure 1), this gives
evidence for the superior behavior of the Steinian. Although the covariance penalty for 𝜏2 = 0 is
smaller for the Steinian than for the bootstrap, the Steinian selects the null model more often than
the bootstrap. So the Steinian seems to penalize in the “right” situations.

The convergence to a selection rate (of the more complex model) of one with rising
signal-to-noise ratio 𝜏2 is fast, as can be seen in Figure 1. The distribution under consideration
is close to the Gaussian for which the convergence rate is also high. However, the squared error
function is also a possible influencing factor. Moreover, the Steinian has lower variance than the
cross-validation and bootstrap in all settings. The reduced variability can also be observed in the
boxplots in the Supporting Information.

Summing up there is no superior estimation method in terms of the model choice behavior.
In fact, the behavior depends on the distribution and the type of prediction error that is applied.

5 APPLICATION ON PREDICTING STUNTING OF
CHILDREN IN ZAMBIA

In this case study, we focus on finding the model that is most suitable for predicting childhood
malnutrition. We base our analyses on a dataset from the 1992 Zambia Demographic and Health
Survey. The dataset was analyzed by Fahrmeir et al. (2013) and is publicly available in the Support-
ing Information of the book. The data consists of 4,421 observations from 54 districts in Zambia.
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For measuring childhood malnutrition, we use stunting, that is, insufficient height for age. Thus,
our variable of interest is the child height (in cm) standardized with respect to all children of the
same age. The standardization uses the median instead of the mean. Several covariates are avail-
able. Next to the residential district these are the gender (binary variable), the education level
of the mother (three possible outcomes), the employment situation of the mother (binary vari-
able), and some continuous covariates, that is, the duration of breastfeeding (in months), the age,
height, and body mass index of the mother and the age of the child.

Other authors used a normal distribution for the response variable, see for example Greven
and Kneib (2010) or Kandala, Lang, Klasen, and Fahrmeir (2001). Instead, this analysis uses a
scaled t model as in Equation (25) in order to account for heavy tails in the response variable.

5.1 Conditional prediction of stunting with a linear mixed model

As we want to distinguish between conditional and marginal prediction in mixed models, the first
model is a random intercept model that contains a district-specific random intercept and all the
binary and categorical variables. Hence, the predictor is given by

log (𝜇i) = xt
i𝜷 + 𝛾di , i = 1…n, (28)

all the binary and categorical variables are subsumed in the covariate vector xi and 𝛾di is the
random intercept from district d, where the ith child lives, and accounts for the spatial hetero-
geneity. The random intercepts are independent and identically normal distributed with mean
0 and unknown variance 𝜏2. We suppose that the standardized child height yi follows a scaled t
distribution as in Equation (25) with the remaining parameters 𝜈 and 𝜎 being estimated along-
side the random intercept variance, that is estimated with restricted maximum likelihood, see
Wood et al. (2016).

The predicted district-specific random intercepts 𝛾d from the estimated model are plotted in
Figure 2. Notice that for three districts there are no observations. The map shows that stunting is
worse in southern Zambia.

Our aim is to estimate the prediction error of the random intercept model. Thus, for a new data
point with covariate vector x we want to know the expected squared difference of the standardized
child height z and our estimator 𝜇, that is, (z − 𝜇)2. For the new data point, one might either
know the district the child is from or one may not. If the district is known one can condition on
the random effects for the prediction. The expected conditional squared prediction error is then
given by Ez|𝛾 (z − 𝜇)2. If otherwise the district is unknown the random intercepts 𝛾d need to be
integrated out. This corresponds to the marginal prediction error. We focus on the conditional
perspective and hence think of the district as known. Thus, the expected squared prediction error
can be assessed by the sum of the apparent error and twice the covariance penalty similar to
formula (26). As in Section 4.3, we estimate the conditional covariance penalty by conditional
parametric bootstrap, conditional cross-validation and the Steinian as defined in Equation (27).
The bootstrap is based on 5,000 bootstrap samples.

The apparent error of the fitted model (Equation 28) is 4,148.81. The covariance penalty
estimated with cross validation is 4.22 and hence the conditional prediction error using the con-
ditional optimism Theorem 9 is 4,157.26. If the covariance penalty is estimated by bootstrap
it is 6.26, and the expected conditional prediction error is 4,161.32. The Steinian estimate for
the covariance penalty as in Equation (27) is 7.11 and the corresponding prediction error is
4,163.03. Thus, the estimated covariance penalty depends on the estimation technique and when
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F I G U R E 2 A map of Zambia showing the
predicted district-specific random intercepts 𝛾d

[Colour figure can be viewed at
wileyonlinelibrary.com]

−0.7254 0.36670

comparing these results to the simulation study there is no clear tendency of any estimation
technique to give higher or lower estimates than any other.

5.2 Conditional prediction of stunting with an additive mixed model

In a more sophisticated approach, we include the continuous covariates, that is, the duration of
breastfeeding in months (feed), the age of the child (cage), height and body mass index of the
mother (hei and bmi), and the age of the mother (mage) in our model. Hence, for the full model,
the mean of the scaled t distribution is modeled as

log (𝜇i) = xt
i𝜷 + f1(feedi) + f2(cagei) + f3(heii) + f4(bmii) + f5(magei) + 𝛾di . (29)

The nonlinear functions f1(⋅),… , f5(⋅) are modeled by thin-plate regression splines, and there
is a penalty term associated with each function controlling for the smoothness of the function.
The penalty term is an approximation of

∫ f ′′j (x)2dx, j = 1,… , 5,

as proposed in Wood (2017). xi and 𝛾di are again the categorical covariate vector and the district
specific random effect. Notice that the additive mixed model can be reformulated in terms of a
mixed model. For these kinds of models a conditional approach is especially sensible since the
covariate information of a new realization can be thought of as sharing the same random effects,
see Greven and Kneib (2010). For the full model (Equation 29), the fitted smoothing splines and
a QQ-plot of the random effects are shown in Figure 3. The effects of the age and the body mass
index of the mother are already estimated to be almost linear in the full model.

We use the total conditional prediction error to decide if the effects are modeled by linear or
nonlinear functions. Overall, there are 32 possible combinations of linear and nonlinear func-
tions if we include all continuous covariates and let all the models contain the district specific
random effects.

Table 2 contains the estimated total conditional prediction error with the covariance penal-
ties estimated by cross-validation, bootstrap, or the Steinian for a group of submodels. The table
containing all submodels is available in the Supporting Information. All estimation techniques

http://wileyonlinelibrary.com
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F I G U R E 3 The fitted smoothing splines and spatial random effects of the full model (Equation 29) on
stunting in Zambia. (a) is the effect of the duration of breastfeeding (in months), (b) is the effect of the child age,
(c) is the effect of the age of the mother, (d) is the effect of the height of the mother, (e) is the effect of the body
mass index of the mother, and (f) is the normal QQ-plot of the predicted spatial random effects of the districts

T A B L E 2 Estimated conditional prediction error for model (Equation 29) and some
submodels. The first five columns indicate if the covariates are modeled by linear (–) or
nonlinear (∼) functions. The covariance penalties are estimated by cross-validation (cv),
bootstrap (bs) and Steinian.The blue covariance penalties give the lowest total prediction error

Feed Cage Mage hei bmi cv bs Steinian
∼ ∼ ∼ ∼ ∼ 3,821 3,845 3,904

∼ ∼ ∼ ∼ – 3,819 3,844 3,898

∼ ∼ ∼ – – 3,818 3,843 3,895

∼ ∼ – ∼ – 3,819 3,842 3,898

∼ ∼ – – ∼ 3,820 3,844 3,900

∼ ∼ – – – 3,818 3,842 3,895

– – – – – 3,849 3,871 3,921

choose two possible models with lowest total conditional prediction error. All of them agree on
the model with the effect of the age, the height, and the body mass index as linear. However
cross-validation and Steinian additionally prefer the effect of the age of the mother to be nonlinear
while bootstrap additionally chooses the effect of the height of the mother to be nonlinear.

6 DISCUSSION

The conditional prediction error is relevant not only for mixed models but beyond that also for
regression models using the mixed model formulation as estimation vehicle (Wood et al., 2016).
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The methods for estimating the conditional prediction error presented here can easily be applied
to other distributional settings and are therefore broadly applicable. On the downside the estima-
tion procedures come along with a computational burden. This is especially the case when using
cross-validation and bootstrap. But also for the Steinian if numerical approximations are used to
calculate the inherent derivatives. The most plausible way for reducing the computational burden
is to approximate the derivatives as in Equation (19) directly in the fitting procedure. However,
the resulting estimation techniques would be very specific in terms of response distribution and
fitting procedure.

While our approach focuses on the conditional perspective on mixed models, in certain cases,
it makes sense to consider a marginal prediction error in mixed models. This, for example, can
be the case if in future observations the grouping structure underlying the random effects is
unknown. Deriving marginal covariance penalties can be considerably more difficult taking into
account the complex structure of the marginal distribution. Nevertheless, this is an interesting
question for further research.

Other future adjacent fields of research are, for example, extending the results of Efron (2004)
on the Rao–Blackwell type of relation between Steinian methods and cross-validation to condi-
tional covariance penalties. Moreover, the grouping structure of the mixed models could be taken
into account when using cross-validation. A somewhat more fundamental question is how to
extend these results to non-mean regression models such as distributional regression, see Kneib
(2013) for an overview.
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