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SUPPLEMENTAL METHODS 

Culture and maintenance of human iPSCs. The human iPSC lines described earlier (1-3) were 

grown on Matrigel-coated plates (ES qualified, BD Biosciences, San Diego) as described 

previously (4, 5) using chemically defined E8 medium (4). Culture medium for iPSCs was changed 

daily. Cells were passaged every 4 days using Accutase (Global Cell Solutions). Healthy control 

and DCM iPSCs as published in (1, 2) were a kind gift from Joseph C. Wu (Stanford University, 

CA). Protocols for human biomaterial studies required for this study were approved by the 

Goettingen University Ethical Board.  

 

Pluripotency marker analysis. Human iPSC colonies were grown in 6-well plate format (Sigma 

Aldrich) and stained as described previously (1, 5) for Oct3/4 (Cell Signaling Technology), Tra-

1–60 (Sigma-Aldrich/Chemicon), SSEA4 (Santa Cruz Biotechnology) and Nanog (Santa Cruz 

Biotechnology). Images were acquired with a brightfield microscope (Leica). 

 

Flow cytometry. Assessment of TnT expression in human iPSC-CMs by flow cytometry was 

performed as described before (6). Briefly, iPSC-CMs were detached as described above, and 

subsequently fixed and permeabilized (5, 6). Cells were incubated with a primary anti-cardiac TnT 

antibody (Thermo Scientific) for 2 h at 4°C, and a secondary Alexa Fluor-488 antibody (Life 

Technologies) for 45 min at 4°C. Cells were washed and analyzed by fluorescent activated cell 

sorting (FACS; BD Aria II), and data were analyzed using FlowJo software. 

 

Immunofluorescence staining and confocal microscopy. Differentiated iPSC-CMs were 

passaged on matrigel-coated glass coverslips. Cells were stained as described before with mouse 
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anti-human antibodies for cardiac troponin T (Thermo Scientific and Abcam) and sarcomeric 

alpha-actinin (Sigma). DAPI was used for staining of nuclei. Coverslips were mounted on glass 

slides using Fluoromount-G. Pictures were taken with 10x, 40x (plan apochromat), and 63x (plan 

apochromat oil) objectives using an inverted confocal microscope (Carl Zeiss, LSM 710 Meta, 

Göttingen, Germany) and ZEN software (Carl Zeiss). 

 

Quantification of protein co-localization. Confocal images generated as described above were 

analyzed for protein co-localization analysis using the ImageJ function Coloc2. Background 

correction was performed using Fiji-ImageJ. For individual cells, ROIs were selected.  Coloc2 was 

used for background subtraction, and analysis for obtaining Manders´ correlation was performed 

as described before (7-9). 

 

Co-immunoprecipitation with DYK-tagged TnT and immunoblot. HEK 293T cells 

overexpressing in a pcDNA 3.1 backbone either TnT-WT-DYK, TnT-R173W-DYK or DYK tag 

alone as a negative control were lysed and input was kept for analysis. Cell lysates were bound 

with DYK-antibody-decorated magnetic beads and subsequently, immobilized TnT-DYK was 

incubated for co-immunoprecipitation (10) with cell lysate from healthy control iPSC-CMs. The 

bound fraction was analyzed by immunoblot. The following antibodies were purchased from 

Abcam: Tropomyosin (ab7785), troponin C (ab137130), troponin I (ab52862), phospholamban 

(ab2865). Myosin heavy chain antibody was purchased from DSHB.  

 

PDE activity assay. Human iPSC-CM lysates were prepared as described (5). Sarcomere-

containing fractions were obtained by pelleting pre-cleared lysates (10). The cytosolic supernatant 
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was transferred to a new tube and analyzed separately. Both cytosolic and sarcomere-containing 

fractions were subsequently analyzed using a PDE activity assay kit (Abcam, ab139460) according 

to the manufacturer´s instructions. 

 

Analysis of AMPK activity via phosphorylation of T172. Human iPSC-CM lysates were 

prepared as described (5) from healthy control (n=2 cell lines) and DCM (n=3 cell lines) groups. 

To determine AMPK activity based on phosphorylation of Thr-172 in the AMPK catalytic subunit, 

cell lysates were incubated with A-769662 or control vehicle (DMSO) and subsequently subjected 

to immunoblot analysis. 

 

Fluorescent resonance energy transfer (FRET) measurements and analysis. All FRET-

measurements were performed with a Nikon Eclipse FN-1 microscope. An Opto-Led fluorescent 

light source (Cairn-Research) was used for excitation at 436 ± 25 nm, the excitation / emission 

dichroic was 455 nm (long pass). Emitted light was split with a Dual-View beam splitter (Optical 

Insights) and recorded with a CoolSnap HQ2 camera (Photometrix). Emission light was split with 

a 505 nm longpass dichroic and was then filtered at 480 ± 15 nm for CFP emission and 535 ± 20 

nm for YFP emission. Extracellular buffer for the measurements was a modified and CO2 

supplemented Ringer-solution with NaCl (140 mM), KCl (3 mM), MgCl2 (2 mM), CaCl2 (2 mM), 

Glucose (15 mM), HEPES (10 mM), pre-adjusted to pH 7.2 with NaOH, then supplemented with 

NaHCO3 (10 mM) and finally pH-adjusted to pH 7.2. Acquisition and analysis were performed 

using Optofluor software (Cairn Research). All ratios were calculated as emission at 535 nm / 

emission at 480 nm.  The TPNI-CUTie FRET-sensor was developed before (11). Adenoviruses 

were used to infect cells 24-48h before the measurements.  
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SUPPLEMENTAL FIGURE LEGENDS  

 

Supplementary Figure 1: Characterization of DCM and TnT-KO iPSC-CMs. (A) Sanger 

sequencing chromatogram of genomic DNA from healthy control and DCM-TnT-R173W iPSCs. 

Arrow indicates site of mutation. (B) Strategy for generation of a troponin T knock-out in iPSC 

via CRISPR/Cas9-mediated targeting of TNNT2 exon 2. Underlined corresponds to sequence of 

the sgRNA employed for targeting of exon 2 (red highlight, ATG). (C) Immunohistochemistry 

and wide-field imaging show expression of the indicated pluripotency markers. (D) Healthy 

control and DCM iPSC-CMs express standard sarcomeric marker proteins. Expression of MYL2 

(MYL) and MYH7 is reduced in TnT-KO iPSC-CMs. *P<0.05, **P<0.01, ***P<0.001 and ns, 

not significant, as calculated by Kruskal-Wallis test and Dunn's multiple comparisons test. (E) 

Representative analysis of TnT expression in human iPSC-CMs via flow cytometry. (F) 

Immunohistochemistry for sarcomeric alpha-actinin and cardiac troponin T, followed by confocal 

imaging was performed (shown in Fig 1A) and sarcomeric alpha-actinin and TnT signals were 

analyzed by Pearson´s correlation and Fast Fourier transformation, to obtain correlation 

coefficients in DCM iPSC-CMs (94 cells) than in healthy controls (n=78 cells). The difference 

between the groups is not statistically significant as calculated by Mann-Whitney test. TnT KO 

iPSC-CMs could not be reliably analyzed due to lack of signal for TnT. Data are expressed as 

mean ± sem.   

 

Supplementary Figure 2: Expression levels of TNNT2, TNNC1, TNNI3 and TPM1 are not 

significantly altered in TnT-R173W iPSC-CMs. (A-D) Expression of TNNT2 (A), TNNC1(B), 

TPM1 (C) and TNNI3 (D) was determined at the mRNA level via quantitative real-time PCR 

(qRTPCR). WT control vs DCM, not significant (ns) and ***P<0.001 towards all other groups, as 
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calculated by Kruskal-Wallis test and Dunn's multiple comparisons test.  (E-H) Expression levels 

of the troponin complex were comparable in DCM-R173W iPSC-CMs and healthy controls. 

Immunoblot analysis for protein expression of troponin T (TnT) (E), troponin C (TnC) (F), 

tropomyosin (Tm) (G), and troponin I (TnI) (H) was performed for DCM R173W iPSC-CMs 

compared to healthy control- (WT) and TnT KO iPSC-CMs. Control (WT), n=3 cell lines; DCM 

(TnT-R173W), n=3 cell lines; TnT KO, n=1 cell line. Bargraphs display averages of n=3 

experiments and shown below are representative immunoblots; ns, not significant as calculated by 

one-way ANOVA and multiple comparisons tests (Dunn and Sidak methods). Data are expressed 

as mean ± sem. 

 

Supplementary Figure 3, relating to Figure 2: Interactions within the troponin complex are 

affected by the DCM mutation TnT-R173W. (A-C) Protein-protein interactions within the 

troponin-tropomyosin complex were assessed by immunoprecipitation using a TnT-specific 

antibody. (A) Equal amounts of TnT-WT and TnT-R173W were immunoprecipitated from lysates 

of healthy control and DCM. No substantial binding is detected for TnT-KO iPSC-CMs (negative 

control). TnC (B), Tm (C) and TnI (D) binding to TnT is shown. Tm-binding to TnT-R173W is 

reduced in DCM TnT-R173W iPSC-CMs, compared to WT controls. TnT KO iPSC-CMs are 

employed as negative control. Bargraphs are shown for control (WT, n= 3 cell lines), DCM (TnT-

R173W, n=3 cell lines), and TnT KO (n=1 cell line). TnT, averages of n=8 experiments; TnC, 

averages of n=8 experiments; Tm, averages of n=7 experiments; and TnI, averages of n=2 

experiments. Representative immunoblots are shown. ns=not significant as calculated by one-way 

ANOVA and Dunn´s multiple comparison test. Data are expressed as mean ± sem. 
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Supplementary Figure 4, relating to Figure 2-3: Disturbed interactions within the troponin 

complex in presence of DCM-TnT-R173W. (A) Input for TnT-WT-DYK and TnT-R173W-

DYK (MUT) as well as DYK-negative control (NC) from HEK cell lysates prior to coupling to 

DYK-decorated beads; and input for human iPSC-CM WT cell lysate used for co-

immunoprecipitation of TnC, Tm, TnI as well as PKA. GAPDH was used as a loading control. (B) 

Phos-tag gel analysis of DCM- and healthy control iPSC-CM cell lysates is shown. TnI 

phosphorylation in DCM TnT-R173W is reduced compared to healthy control iPSC-CMs. Shown 

is 2-P-phosphorylated TnI as reported previously (50). Averages of 3 independent experiments are 

shown for control (n=3 cell lines), DCM (n=3 cell lines); ***P<0.001  (Mann-Whitney test). Data 

are shown as mean ± sem. Representative membrane scans are shown. Reduced PKA-mediated 

TnI phosphorylation was also analyzed with a TnI-Ser 23/24 specific antibody (Figure 3A). (C-D) 

FRET-based analysis of cAMP levels in TnT-KO iPSC-CMs versus WT controls. (C) 

Disorganized sarcomeric structure in TnT-KO iPSC-CMs results in corresponding mislocalization 

of the sarcomeric FRET-sensor TPNI-CUTie. Respectively, no significant difference in 

sarcomeric cAMP levels is detected in TnT-KO iPSC-CMs, compared to WT. Representative 

images are shown; scale bar, 10 μm. (D) Quantification of TPNI-CUTie FRET analysis shown in 

(C). No significant difference is detected between WT control and TnT-KO (P =0.0981). WT 

iPSC-CMs (healthy control), n=45 cells; TnT-KO iPSC-CMs, n=89 cells. ns = not significant 

(Student´s t-test). Data are shown as mean ± sem.  

 

Supplementary Figure 5: Total cytosolic PDE activity is elevated in DCM TnT-R173W iPSC-

CMs. (A) Adenylyl cyclase protein expression levels are not significantly changed in DCM iPSC-

CMs and healthy controls as well as TnT-KO iPSC-CMs. Bargraphs indicate averages of n=2 
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experiments for n=2 cell lines (WT, DCM) and n=1 cell line (TnT-KO), representative 

immunoblots are shown below. Differences are not statistically significant (one-way ANOVA and 

Dunn´s multiple comparison test). (B-C) Measurements of cytosolic PDE activity in DCM iPSC-

CMs compared to healthy controls as well as TnT-KO iPSC-CMs, using a PDE activity assay kit 

(Abcam). (B) Measurement of PDE activity via 5´AMP release, using a standard curve for 

absorbance at 620 nm. (C) Differences in total cytosolic PDE activity were not significantly altered 

between DCM- and TnT-KO iPSC-CMs, compared to healthy controls. Averages of n=2 

experiments for n=2 cell lines (WT, DCM) and n=1 cell line (TnT-KO) are shown. Differences 

are not statistically significant, as calculated by Kruskal-Wallis test and Dunn's multiple 

comparisons test. Data are shown as mean ± sem.  

 

Supplementary Figure 6, relating to Figure 4: Interaction of TnT with cytoskeleton filament 

proteins. Input for TnT IP from healthy control (WT), DCM (TnT-R173W) and TnT-KO iPSC-

CMs is shown. Input was collected from cell lysates prior to coupling to TnT antibody-decorated 

beads (A) mouse TnT, relating to Figure 4C-E and (B) Immunoblot analysis for filamin-C 

expression in DCM-TnT-R173W iPSC-CMs and WT controls using input fractions from 

immunoprecipitation of TnT with filamin-C shown in Fig 4C-E. A representative membrane scan 

is shown. (C) Quantification of (B), n=3 experiments. P= not significant (one-way ANOVA and 

Dunn's multiple comparisons test). Data are shown as mean ± sem. 

 

Supplementary Figure 7, relating to Fig. 5: Interaction of TnT with cytoskeleton filament 

proteins.  (A) Input for relevant proteins in TnT IP with MYH7 is shown for healthy control (WT), 

DCM (TnT-R173W) and TnT-KO iPSC-CM cell lysates. Input was collected from cell lysates 



 
 

9 
 

prior to coupling to TnT antibody-decorated beads (mouse TnT). GAPDH was used as a loading 

control.  (B) Western blot indicates total protein expression levels of AMPK to be comparable in 

DCM and healthy control iPSC-CMs. Quantification of 2 experiments is shown. Control, n=2 cell 

lines; DCM, n=3 cell lines. P = not significant (Mann-Whitney test); data are shown as mean ± 

sem. 

 

Supplementary Figure 8, relating to Fig. 6: AMPK inhibition in WT iPSC-CMs results in 

impaired contractility as observed in DCM iPSC-CMs. Motion-traction analysis of WT iPSC-

CMs treated for 24h with an AMPK inhibitor, BML-275. (A) Time-to-peak; (B) Contraction 

amplitude; (C) Contraction duration. Quantification is shown for n=2 cell lines; **P<0.01 and 

***P<0.001 as calculated by Student´s t-test. Data are shown as mean ± sem.  

 

Supplementary Table 1, relating to Fig. 1: Numerical values represented in the error bars in Fig. 

1I (standard error of mean) showing force-of-contraction measurements in EHMs from WT control 

and DCM TnT-R173W iPSC-CMs. n=8 EHMs per group. *P < 0.05 and ns, not significant as 

calculated by two-way ANOVA and Tukey’s post-hoc test. 
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Supplementary Table 1

Ca2+[mmol/l] Control (WT) EHMs DCM (TnT-R173W) EHMs
Mean SEM N Mean SEM N

0.2 0.079 0.014 8 0.025 0.003 8
0.4 0.194 0.036 8 0.066 0.006 8
0.8 0.458 0.077 8 0.181 0.023 8
1.2 0.660 0.096 8 0.267 0.029 8
1.6 0.817 0.081 8 0.327 0.023 8
2 0.933 0.096 8 0.365 0.021 8

2.4 0.984 0.096 8 0.389 0.019 8
2.8 1.020 0.100 8 0.404 0.019 8
3.2 1.052 0.102 8 0.405 0.019 8
4 1.102 0.102 8 0.407 0.021 8
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