
https://doi.org/10.1007/s10664-020-09880-1

A longitudinal study of static analysis warning
evolution and the effects of PMD on software quality
in Apache open source projects

Alexander Trautsch1 · Steffen Herbold1 · Jens Grabowski1

© The Author(s) 2020

Abstract
Automated static analysis tools (ASATs) have become a major part of the software develop-
ment workflow. Acting on the generated warnings, i.e., changing the code indicated in the
warning, should be part of, at latest, the code review phase. Despite this being a best practice
in software development, there is still a lack of empirical research regarding the usage of
ASATs in the wild. In this work, we want to study ASAT warning trends in software via the
example of PMD as an ASAT and its usage in open source projects. We analyzed the commit
history of 54 projects (with 112,266 commits in total), taking into account 193 PMD rules
and 61 PMD releases. We investigate trends of ASAT warnings over up to 17 years for the
selected study subjects regarding changes of warning types, short and long term impact of
ASAT use, and changes in warning severities. We found that large global changes in ASAT
warnings are mostly due to coding style changes regarding braces and naming conventions.
We also found that, surprisingly, the influence of the presence of PMD in the build process
of the project on warning removal trends for the number of warnings per lines of code is
small and not statistically significant. Regardless, if we consider defect density as a proxy
for external quality, we see a positive effect if PMD is present in the build configuration of
our study subjects.

Keywords Static code analysis · Quality evolution · Software metrics · Software quality

1 Introduction

Automated static analysis tools (ASATs) support software developers with warnings
and information regarding common coding mistakes, design anti-patterns like code
smells (Fowler 1999), or code style violations. ASATs work directly on the source code or
bytecode without executing the program. They are using abstract models of the source code,
e.g., the Abstract Syntax Tree (AST) or the control flow graph to match the provided source

Communicated by: Meiyappan Nagappan

� Alexander Trautsch
alexander.trautsch@cs.uni-goettingen.de

1 Institute of Computer Science, University of Goettingen, Göttingen, Germany

Empirical Software Engineering (2020) 25:5137–5192

Published online: 21 September 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09880-1&domain=pdf
http://orcid.org/0000-0001-5236-7953
http://orcid.org/0000-0001-9765-2803
mailto: alexander.trautsch@cs.uni-goettingen.de

code against a set of rules defined in the ASAT. If a part of the source code violates a pre-
defined rule, a warning is generated. These rules can be customized by the project using the
ASAT to fit their needs by removing rules deemed unnecessary. ASAT reports usually con-
tain a type of warning, a short description, and the file and line number of the source code
that triggered the warning. Developers can then inspect the line specified in the warning and
decide if a change is necessary.

The defects that can be found by static analysis include varying severities. Java String
comparisons with “==” instead of using the equals() method, would compare the object
reference instead of the object contents. The severity rating for this type of warning is critical
as it can lead to undesired behavior in the program. Naming convention warnings, e.g., not
using camel case for class names on the other hand have a minor severity.

ASATs are able to uncover problems with significant real world impact. The Apple Goto
Fail defect 1 for example could have been detected by static analysis utilizing the con-
trol flow graph. This importance regarding software quality is further demonstrated by the
inclusion of ASATs in software quality models, e.g., Quamoco (Wagner et al. 2012) and
ColumbusQM (Bakota et al. 2011). Zheng et al. (2006) found that the number of ASAT
warnings can be used to effectively identify problematic modules. Moreover, developers
also believe that static analysis improves quality as reported by a survey of Microsoft
employees by Devanbu et al. (2016).

ASATs can be integrated as part of general static analysis via IDE plugins where the
developer can see the warnings almost instantly. Usually IDE plugins are able to access a
central configuration for rules that generate warnings. A central rule configuration is essen-
tial for project specific rules and exclusions of rules and directories. Integrating ASATs in
the software development process as part of the buildfile of the project has the advantage
of providing a central point of configuration which can also be accessed by IDE plugins.
It also enables the developer to view generated reports prior to, or after the compilation
as part of the build process. Moreover, the inclusion into the buildfile also allows Contin-
uous Integration (CI) Systems to generate reports automatically. The reports can then be
used to plot trends for general quality management or provide assistance in code reviews.
Published industry reports share some findings regarding static analysis infrastructure and
warning removal. Google (Sadowski et al. 2018) and Facebook (Distefano et al. 2019) both
found that just presenting developers with a large list of findings rarely motivates them to
fix all reported warnings. However, reporting the warnings as early as possible, or at latest
at code review time, improves the adoption and subsequent removal of static analysis warn-
ings. One of the lessons that Facebook and Google learned, is that static analysis warnings
are not removed in bulk, but as part of a continuous process when code is added after the
static analysis is configured or old code is changed.

ASAT warnings are able to indicate software quality because of how the rules that trigger
the warnings are designed. The ASAT developers designed these rules not only to remove
obvious bugs but also to express what is important for high quality source code via the
designed rules. Therefore, a lot of the existing rules are based on best practices, common
coding mistakes and coding style recommendations. Best practices and coding styles are
also subject to evolution as the user base of a programming language evolves, new tooling
is created and also as a programming language itself gets new features. For example, the
Java code written today is different than the Java code written 10 years ago. These differ-
ences and, more importantly, the evolution of the usage of best practices are an interesting

1https://www.imperialviolet.org/2014/02/22/applebug.html, last accessed: 2018-11-19

Empirical Software Engineering (2020) 25:5137–51925138

https://www.imperialviolet.org/2014/02/22/applebug.html

research topic, e.g., language feature evolution (Malloy and Power 2019), and design pattern
evolution (Aversano et al. 2007).

The topics covered in research with regards to ASATs are concerned with configuration
changes (Beller et al. 2016), CI-pipelines (Zampetti et al. 2017), finding reported
defects (Habib and Pradel 2018; Thung et al. 2012; Vetro et al. 2011) or warning resolution
times (Marcilio et al. 2019; Digkas et al. 2018). Vassallo et al. (2019) provide a thorough
investigation of developer usage of ASATs in different developing contexts. One of the
problems identified for ASAT usage is the number of false positives (Johnson et al. 2013;
Christakis and Bird 2016; Vassallo et al. 2019) for which warning priorization (Kim and
Ernst 2007a; 2007b) was proposed, sometimes as actionable warning identification (Heckman
and Williams 2009), see also the systematic literature review by Heckman and Williams
(2011). Developers perceive ASATs as quality improving (Marcilio et al. 2019; Devanbu
et al. 2016) although the percentage of resolved ASAT warnings vary, e.g., 0.5% (Liu et al.
2018), 8.77% (Marcilio et al. 2019), 6%-9% (Kim and Ernst 2007b) and 36.3% (Digkas
et al. 2018).

What is still missing, is a longitudinal, more general overview of the evolution of ASAT
warnings over the years of development which includes complete measurement of ASAT
warnings over the complete development history. This would improve our understanding
of exactly how the warnings evolve, e.g., how ASAT tools are used and the impact on the
overall numbers of warnings over the project evolution. Moreover, a direct linking between
static analysis warnings and removal of the implicated code in the process of bug fixing may
be limiting the insights that can be gained from investigating ASAT usage. Most ASATs are
also detecting problems due to spacing, braces, readability, and best practices which are not
directly causing a defect. Therefore, the influence of ASATs on defects or software quality
as a whole may be more indirect. To the best of our knowledge, only the work by Plosch
et al. (2008) directly investigates this so far (there is also the work by Rahman et al. (2014)
however it is not directly investigating correlations). Their work shows a positive correlation
between ASAT warnings and defects, although their empirical study is limited to one project.

In this article, we investigate the usage of one ASAT in Java open source projects of the
Apache Software Foundation in the context of software evolution. We determine the trends
of removal of code with ASAT warnings over the projects lifetime. We are interested in the
evolution of ASAT warnings on a project and on a global level, i.e., ASAT warnings for all
projects combined. We examine general trends independent of developer interaction, i.e., is
the state of software generally improving with regards to ASAT warnings. We also investi-
gate which types of ASAT warnings have positive and negative trends to infer which types of
coding standards or best practices are important to developers. To this end, we are not only
interested in the absolute numbers of ASAT warnings but put them in relation to the project
size. Moreover, we investigate the impact of including an ASAT in the build process on
ASAT warning trends regarding their resolution. Additionally, we approximate the impact
of including an ASAT in the build process on external quality via defect density (Fenton
and Bieman 2014) by including defect information.

Our longitudinal, retrospective case study results in the following contributions of this work:

– An analysis of evolutionary trends of ASAT warnings in 54 open source projects from
2001-2017.

– An assessment of the effects of ASAT usage in open source projects on warning trends
and software quality via defect density.

– An extension of prior work by providing a broader, long-term, evolutionary perspective
with regards to ASAT warnings in open source projects.

Empirical Software Engineering (2020) 25:5137–5192 5139

The subjects of our case study are Java open source projects under the umbrella of the
Apache Software Foundation. We observe ASAT warning trends via PMD2 and defects via
the Issue Tracking System (ITS) of the respective projects under study. In accordance with
evidence based software engineering as introduced by Kitchenham et al. (2004) we provide
our data and analysis for researchers and practitioners regarding the evolution of warnings
and the impact of PMD on software quality.

The main findings of our study are the following.

– While the number of ASAT warnings is continuously increasing, the density of
warnings per line of code is decreasing.

– Most ASAT warning changes are related to style changes.
– The presence of PMD in the build file coincides with reduced defect density.

The remainder of this work is structured as follows. In Section 2, we discuss prior work
related to this study. After that, in Section 3, we present a short overview of static analy-
sis in software development and discuss challenges in mining software repository data. In
Section 4, we define our research questions, describe the selection criteria for our study
subjects and explain our methodology in detail. In Section 5, we present the results. In
Section 6, we discuss the results and relate them to current research. In Section 7, we eval-
uate the threats to validity to our study. Section 8 provides a short conclusion and provides
an outlook on future work based on the data and methods described this article.

2 RelatedWork

In this section, we present the related work on empirical studies of ASATs and put them into
relation to our work. Beller et al. (2016) investigated the usage of ASATs in open source
projects. They focused on the prevalence of the usage of ASATs for different programming
languages, how they are configured, and how the configuration evolves. In our work we are
also investigating the evolution of the configuration. In contrast to Beller et al., we also run
an ASAT on our study subjects for each commit. This enables us to analyze when ASAT
warnings are resolved or introduced and the kind and number of warnings. We are using
the projects buildfiles to extract whether PMD or other ASATs are used at the time of the
commit and if custom rulesets were deployed. Thus, we expand on the previous work by not
only investigating the changes in the configuration but also if the ASAT was used to remove
any warnings at all. The drawback of this detailed view on ASAT warnings is that we have
to narrow the focus on one programming language and one ASAT.

Kim and Ernst (2007b) utilized commit histories of ASAT warnings. They investigated
the possibility of leveraging the removal times to prioritize the warnings. Instead of pri-
oritizing ASAT warnings for removal, we are interested in removals on a global scale, by
taking a longer history of the projects into account to get a broader view on the evolution of
the projects under study with regard to ASAT warnings.

Liu et al. (2018) performed a large scale study using FindBugs3 via SonarQube4 where
they investigated ASAT warnings over time. They created an approach to identify fix-
patterns that are then applied to unfixed warnings. Similar to our own work, Liu et al. have
run an ASAT on the project source code retroactively. In comparison to Liu et al., we include

2https://pmd.github.io/, last accessed: 2019-04-11
3http://findbugs.sourceforge.net/, last accessed: 2019-04-10
4https://www.sonarqube.org/, last accessed: 2019-04-10

Empirical Software Engineering (2020) 25:5137–51925140

https://pmd.github.io/
http://findbugs.sourceforge.net/
https://www.sonarqube.org/

the build system and custom rules in our analysis. Thus, we can be sure that when we inves-
tigate removal of warnings that the developers could have seen the warnings. Instead of
FindBugs via SonarQube, we focus on PMD which reports a different set of warnings due
to PMDs usage of source code instead of byte code.

Digkas et al. (2018) also utilized SonarQube to detect ASAT warnings and their removal.
They focused on the technical debt metaphor (Kruchten et al. 2012) and the resolution time
that SonarQube assigns to each detected ASAT warning. The authors took snapshots of their
projects every two weeks to run the ASAT and store the warnings. In our study, we are not
concerned with technical debt. Instead, we want to give a bigger, longitudinal overview over
the evolution of the project regarding ASAT warnings. Instead of using snapshots, we ran
PMD retroactively on every commit to extract data, although due to run time constraints,
this results in a smaller number of projects in our study. Nevertheless, due to utilizing PMD
our data covers a longer period of time.

Marcilio et al. (2019) take a closer look at developer usage of ASATs through Sonar-
Qube. They investigated the time to fix for different types of issues with a focus on active
developer engagement to specifically solve the reported ASAT warnings. In our study, we
are not only concerned with resolution times. Instead, we are primarily interested in general
trends regarding ASATs to infer information about the evolution of software quality in our
candidate projects.

Plosch et al. (2008) utilized data collected by (Zimmermann et al. 2007) and correlated
source code quality metrics and defects with warnings found by different static analysis
tools. They used three releases of eclipse and presented correlations for different size, com-
plexity and object oriented source code metrics. In contrast to Plösch et al. we are not
concerned only with releases, we collected static analysis warnings for every commit of our
candidate projects. In addition, we consider multiple projects instead of one. Although we
are only able to provide data for one static analysis tool, we are able to provide more detailed
defect information and on a larger scale. This should also cover effects of readability and
maintainability changes due to ASAT usage.

Querel and Rigby (2018) build additional static analysis on top of CommitGuru (Rosen
et al. 2015). Initial results show that the additional information that static analysis warnings
provide can improve statistical bug prediction models. In our study, we investigate the evo-
lution of ASAT warnings. Our own investigation into the impact of static analysis warnings
on quality complements the initial results by Querel and Rigby (2018).

Static analysis software is often used in a dedicated security context. Penta et al. (2009)
analyze security related ASAT warnings for three open source projects along their his-
tory. The authors performed an empirical study using three open source projects and three
ASATs. Aloraini et al. (2019) also analyze security related ASAT warnings. The authors
collect two snapshots, one at 2012 and one at 2017 for 116 open source projects. Both works
come to the conclusion that the warning density of the security related warnings stays con-
stant throughout their analysis time span. In contrast to our study both focused exclusively
on security related ASATs.

3 Background

In this section, we introduce important topics regarding this study. First, we give a short
description of the challenges regarding mining software repository histories and how they
apply to this study. Then, we briefly discuss static analysis tools for Java and our choice of
ASAT as well as software quality evaluation.

Empirical Software Engineering (2020) 25:5137–5192 5141

3.1 Mining Software Repository Histories

Working with old software revisions has its challenges. For projects which use the Java
programming language some of these are:

– The build system may have been switched completely, e.g., from Ant to Maven.
– The project has no pinned version for the libraries it needs to be built successfully. This

means, it may be impossible to build an older version because of incompatibilities with
required libraries or missing versions of libraries (Tufano et al. 2017).

– The main source directory may have been moved, e.g., from src/java to src/main/java
as is the case for most Java projects with a longer history.

In this study, we follow two different paths of inquiry, the first is only concerned with
general trends regarding ASAT warnings. Hence, we do not need to consider build systems
and libraries. However, even in that simplest approach we ignore test code as we only want
to inspect production code. As no direct information via the build system is available we
utilize regular expressions to exclude non-production code.

The second path of inquiry provides a more detailed view and also takes the build system
into account. This is necessary as we extract ASAT usage via the build system configuration
files. We therefore restrict the build system to Apache Maven as it is used by the majority of
our candidate projects and allows extraction of this information. Including build information
provides us with the ability to restrict the production code via the source directories speci-
fied in the configuration. The restriction to production code not only excludes test code but
also additional tooling and examples. Apache Maven allows a tree like build configuration,
i.e., a root configuration shared by the project and all its modules. As the build configura-
tion can also contain custom rules and ASAT configurations, we have to consider all parts
of the configuration tree. The root of the tree, usually parent POMs, can be included via
Maven central and the leaves, usually modules that are part of the project, can be included
via the filesystem.

In addition to the build system, we restrict ourselves to an ASAT that does not need com-
piled source code because of preliminary tests which found similar problems as Tufano et al.
(2017). Tufano et al. found that 38% of commits in their data could not be compiled any-
more. Nevertheless, even without the need to compile to bytecode, we are also experiencing
some of the problems Tufano et al. found. As we want to extract custom rule definitions for
PMD we need to consider build configuration files that may not exist anymore, e.g., miss-
ing parent POMs. To mitigate this problem, we manually rename some artifacts so that they
can be found on maven central and incorporated into our extraction process, usually this
only consists of removing -SNAPSHOT from the package name but in 3 cases we need to
change the name of the package, e.g., from commons to commons-parent.

The extraction first tries to build the effective POM via Maven, i.e., including every mod-
ule and configuration as well as explicit default values. If this fails it changes the pom.xml
by removing the -SNAPSHOT, or, if the combination from group, artifact and version is in
our rename list, it performs the artifact rename. After that the effective POM is built again.
In case that the error persists it is logged and the existing state of the custom rules is not
changed. The remaining errors consist of Maven configuration mismatches, in most cases
a module references a parent with a wrong version because the parent pom.xml has been
upgraded but the modules still reference the old version.

Empirical Software Engineering (2020) 25:5137–51925142

3.2 Static Analysis Tools for Java

Beller et al. (2016) noted, that most static analysis tools are in use for languages which are
not compiled, because the compilation process includes certain static checks. Nevertheless,
even Java and also C have some static analysis tools that can be utilized by practitioners to
warn about potential problems in the source code.

As we are focusing on Java there are a few well known, open source static analysis tools
for Java. One of the most prevalent is Checkstyle5 which works directly on the source code
and is mostly concerned with checking the code against certain predefined coding style
guidelines. Another one is FindBugs which works on compiled Java bytecode to find bugs
and common coding mistakes, e.g., a clone() method that may return null. SonarQube, a
cloud based tool, has the ability to use the already described static analysis tools and also
defines its own rules, e.g., cognitive complexity for a method is too high. It relates the ASAT
warnings to a resolution time via a formula depending on the warning and programming
language.

In this work we are focusing on PMD which works on the Java source code and finds
coding style problems, e.g., an if without braces, but also common coding mistakes, e.g.,
comparison of two String objects using “==” instead of the equals() method. PMD provides
a broad set of rules from a wide range of categories. Moreover, PMD is available since 2002
and therefore has been in use for a long time. This results in more data for our analysis and
in a mature ASAT for us to use. The detailed documentation and changelog allow us to keep
track of which ASAT warnings were available at a certain point in time.

3.3 Software Quality Evaluation

Software quality is notoriously hard to measure (Kitchenham and Pfleeger 1996). Since the
beginning of investigating software quality it seemed clear that software quality consists of
a combination of factors. The first models for software quality introduced by Boehm et al.
(1976) and McCall et al. (1977) also mirror this combination of quality factors. Multiple
quality factors are still in use throughout the subsequent ISO standards 9126 and 25010 and
later quality models, e.g., Wagner et al. (2012) and Bakota et al. (2011). Fenton and Bieman
(2014) as well as the ISO standards discern between internal and external quality. Internal
quality factors concern the source code, e.g., cyclomatic complexity (McCabe 1976) or the
process, e.g., the developers. External quality factors are on the customer facing side, e.g.,
defects, efficiency. Internal quality factors influence external quality factors, the problem is
to evaluate which internal factors influence which external factors in which way.

Let us assume that software quality is a combination of multiple factors, e.g., maintain-
ability or efficiency. If we want to automatically evaluate software quality, we need to find
the concrete measurements that capture the corresponding factor. We then also need to know
how to combine the measurements or factors together for the best approximation of soft-
ware quality. Instead of using metric measurements as approximations, we can instead use
ASATs based on their rules. Some ASATs not only include warnings about possible defects
but also directly maintainability related warnings, e.g., default should always come last in
a switch, exception handling code should not be empty or class names in Java should be
in CamelCase. The rules that trigger the ASAT warnings are based on real world experi-
ences and best practices of the developers, therefore, we expect that they are important in

5http://checkstyle.sourceforge.net/, last accessed: 2019-04-10

Empirical Software Engineering (2020) 25:5137–5192 5143

http://checkstyle.sourceforge.net/

an overall evaluation of software quality. Although this means that any ASAT considered
for general software quality evaluation should support a broad set of rules.

If we consider the ASATs introduced in the previous Section 3.2 we find that PMD and
SonarQube fit that definition best. While FindBugs and Checkstyle are both very estab-
lished software products they fit different profiles. FindBugs focuses on possible defects
and Checkstyle focuses on validating style rule conformance. While SonarQube would be
a good fit, it does not exist for as long as PMD, FindBugs and Checkstyle. This limits the
ability to observe actual usage of the ASAT in historical data. PMD on the other hand has
both a long history of use and a broad set of rules. Therefore, we assume that PMD is a good
approximation of internal software quality.

As an approximation for external software quality we utilize defect density (Fenton and
Bieman 2014), i.e., the number of defects in relation to the size of the project. With both
of these approximations, we can investigate internal and external software quality over the
history of our study subjects.

4 Case Study Design

The goal of the case study is to investigate evolution of ASAT warnings and to examine the
impact of PMD in the short and long term on ASAT warning trends as well as its impact
on external software quality via defect density. In this Section, we formulate the research
questions we aim to answer, explain the selection of subjects of the case study, and describe
the methodology for the data collection, and the analysis procedures.

4.1 Research Questions

To structure our investigations, we define the following research questions which we sep-
arate into two main questions. The first main research question is only concerned with
evolution of ASAT warnings over the full lifetime of the project: How are ASAT warnings
evolving over time? (RQ1). We divide this research question into two sub-questions:

– RQ1.1: Is the number of ASAT warnings generally declining over time?
– RQ1.2: Which warning types have declined or increased the most over time?

Investigating these questions should shed some light on the general evolution of our study
subjects regarding ASAT warnings. More specifically, we want to answer the question if
“code gets better over time” with regard to ASAT warnings and also if there are differences
between the different types of ASAT warnings. Differences between types of ASAT warn-
ings may point to changing Java programming practices or changes in perceived importance,
e.g., more camel case name violations for class names at the beginning of 2001 than at the
end of 2017. The trend of resolved warnings by type should indicate which warning types
are perceived as the most important by the developers that are active in our study subjects.
ASAT warnings is a generic term, we specifically investigate ASAT warnings generated by
PMD.

The second research question is focused on the impact of ASAT usage on the warning
trends and on external software quality: What is the impact of using PMD? (RQ2). We
divide this research question into five sub-questions:

– RQ2.1: What is the short term impact of PMD on the number of ASAT warnings?
– RQ2.2: What is the long term impact of PMD on the number of ASAT warnings?

Empirical Software Engineering (2020) 25:5137–51925144

Table 1 Project selection criteria

Criteria Criteria category

at least one year issue tracker activity (from 1.1.2018 backwards) Project maturity

at least one year development (from 1.1.2018 backwards) Project maturity

at least 1000 Commits Project maturity

no incubator Project maturity

commit activity since 1.1.2018 Up-to-dateness

issue activity since 1.1.2018 Up-to-dateness

at least 100 Files Size

uses Maven Scope

no Android Scope

– RQ2.3: Does the active usage of custom rules for PMD correlate with higher ASAT
warning removal?

– RQ2.4: Is there a difference in ASAT warning removal trends whether PMD is included
in the build process or not?

– RQ2.5: Is there a difference in defect density whether PMD is included in the build
process or not?

Our second set of research questions focuses on the ASAT usage according to the buildfile
of the study subjects. Therefore, we focus only on the project development lifetimes where
we can determine that an ASAT is used as part of the build process. Moreover, we consider
only source directories configured in the build system. This allows us to exclude examples
and tooling. We are also taking time and available rules for PMD into account, e.g., which
rules are active in the configuration file and which were available at the time of the commit.
This enables us to analyze the impact only for the rules that the developers were able to see
and therefore address consciously. Moreover, we investigate the impact of PMD on external
software quality via defect density by including information from the issue tracking system
of our study subjects.

4.2 Subject Selection

Our study subjects are part of a convenience sample of open source projects under the lead-
ership of the Apache Software Foundation6 but nevertheless we applied some restrictions on
our selection of study subjects. The base list of projects consists of every Java project of the
Apache Software Foundation. We then apply the restrictions and start mining the remaining
projects. The final list of study subjects is a sample of the projects that pass the criteria. The
complete data for all cannot be used due to the computational effort required to calculate
the ASAT warnings for all commits.

We focus on Java projects but exclude Android projects because of the different struc-
ture of the source code of the applications. We also restrict the build system to Maven as we
utilize the buildfiles to extract the source directory and ASAT configurations for RQ2. More-
over, Maven provides the tooling necessary to combine multiple buildfiles of all sources per
project.

6https://www.apache.org, last accessed: 2019-11-10

Empirical Software Engineering (2020) 25:5137–5192 5145

https://www.apache.org

We only include active, recent projects that are not currently in incubator status within
the Apache Software Foundation, i.e., fully integrated into the Apache Software Foundation.
All projects are actively using an issue tracking system as part of their development process.
Our study subjects consist of libraries and applications with a variety of domains, e.g., math
libraries, pdf processing, http processing, machine learning, a web application framework,
and a wiki system. Moreover, our study subjects contain a diverse set of project sizes. The
size ranges from small projects such as commons-rdf to lager projects such as Jena and
Archiva.

The rest of our selection criteria are focused around project size, infrastructure, project
maturity, and up-to-dateness of the project. All applied criteria are given in Table 1.

4.3 Methodology RQ1

In this section, we explain our approach to extract the required data and to calculate the
required metrics to answer our research questions. An overview of the approach for data
extraction is given in Fig. 1.

4.3.1 Select Commit Path

To select the commits we are interested in, we build a Directed Acyclic Graph (DAG) from
all commits in the repository and their parent-child relationships. After the graph construc-
tion, we extract a single path of commits for the project. This is depicted in the first part
of Fig. 1. Commits are denoted as circles with a number referring to their order of intro-
duction into the codebase. We extract a single path from the latest master branch commit to
the oldest reachable orphan commit. We need to select a path this way because we can not
just select the master branch as the information on which branch a commit is created is not
stored in Git (Bird et al. 2009). Moreover, we select a single path because if work is done
in parallel on two or more branches of the project and we order the commits by date we get
jumps in the data as we would have a sequence of commits that represent different states of
the codebase at the same time.

The latest master branch commit is extracted via the “origin/head” reference of Git which
points to the default branch of the repository. The default branch is usually named master,
although in some Apache projects the default branch is called trunk as the projects were
converted or are mirrored from Subversion. Orphan commits do not have parents. This is
usually the initial commit of the repository. It can also happen that a repository has multiple
orphan commits, which also can be merged back into the current development branch. By
choosing the oldest orphan commit, we extract the first initial commit. Then, we use the

Fig. 1 Methodology RQ1

Empirical Software Engineering (2020) 25:5137–51925146

Table 2 Regular expressions for excluding non-production code

graph representation to find the shortest path between these two commits via Dijkstra’s
shortest path first algorithm (Dijkstra 1959). The end result of this step is the shortest path
between the oldest orphan commit and the newest commit on the default branch of the
project.

4.3.2 Metric Extraction

The second step in Fig. 1 depicts the extraction of ASAT warnings and Software metrics.
For both we are using OpenStaticAnalzer7 as part of a plugin8 for the SmartSHARK infras-
tructure (Trautsch et al. 2017). SmartSHARK in conjunction with a HPC-Cluster provided
us with the means to extract this information for each file in each commit of our candidate
projects. OpenStaticAnaylzer is an open sourced version of the commercial tool SourceMe-
ter (FrontEndART 2019) which has been used in multiple studies, e.g., Faragó et al. (2015),
Szóke et al. (2014), and Ferenc et al. (2014) and, more recently (Ferenc et al. 2020). It
works by constructing an Abstract Semantic Graph (ASG) from the source code which is
then used to calculate static source code metrics. As it is included in SmartSHARK we per-
form a validation step after each mining step which verifies if the metrics are collected for
each source code file. In addition to the size, complexity and coupling metrics OpenStatic-
Analyzer also provides us with ASAT warnings by PMD. OpenStaticAnalyzer applies 193
rules from which the warnings are generated including line number, type and severity rat-
ing. The source code metrics are provided at package, file, class, method and attribute level.
The resulting data from the mining step includes ASAT warnings from PMD and source
code metrics for each file in each commit of our candidate projects. As we primarily want
to investigate program code we exclude non-production code by path. We use the regular
expression shown in Table 2 to filter non-production code. The regular expressions were
created based on manual inspection of the directory structure of the projects we use in our
study.

7https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer/, last accessed: 2019-11-10
8https://www.github.com/smartshark/mecoshark/, last accessed: 2019-11-10

Empirical Software Engineering (2020) 25:5137–5192 5147

https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer/
https://www.github.com/smartshark/mecoshark/

Furthermore, we only compare full years of continuous development in our analysis,
thus we remove incomplete years: we remove the first year and everything after 31.12.2017
because we started collecting the data in 2018. This ensures that we only have trends over
the complete development history of the project but also for each single year of development
which provides a more detailed view in addition to a full view of the projects lifetime.

4.3.3 Calculate Warning Density

The absolute number of ASAT warnings is correlated with the amount of source code in the
project. Increasing the code size seems to increase the number of warnings. Even in projects
using PMD, this is expected as we also study warnings which the developers could not have
seen before. Either because the ASAT did not support them at the time of the commit or the
rules that trigger the warnings are not active. Most of the biggest additions and removals of
ASAT warnings are due to the addition and removal of files in the repository. The measure
for size of the source code we are using is Logical Lines of Code (LLoC) in steps of one
thousand (kLLoC). By using LLoC instead of just Lines of Code (LOC) we discard blank
lines and comments. LLoC provides a more realistic estimation of the project size.

Table 3 shows the correlation between the sum of ASAT warnings and the sum of kLLoC
per commit in all commits available in our data. We are using two non-parametric correla-
tion metrics, Kendall’s τ (Kendall 1955), which uses concordance of pairs, i.e., if xi > xj

and yi > yj and Spearman’s ρ (Spearman 1904) which uses a rank transformation to
measure the monotonicity between two sets of values instead of concordance of pairs of
observations.

We can see in Table 3 that there is a positive correlation between kLLoC and the number
of ASAT warnings, i.e., as kLLoC increases so does the number of ASAT warnings. As we
want to analyze ASAT warning trends with minimum interference of functionality being
added or deleted we decided to use warning density instead of the absolute number of ASAT
warnings. Warning density is the ratio of the ASAT warnings and product size.

Warning density = Number of ASAT warnings

Product size
(1)

As product size we chose kLLoC, the warning density is calculated per commit. The advan-
tage of this measurement is that we still see when code with less warnings is added or
removed. This also accounts for the effect of developers only scrutinizing new code being
added as the new code would then contain less warnings than the existing and show up in
our data as a declining trend of ASAT warnings.

Nevertheless, we keep the sum of all warnings for completeness which means we have
two aggregations of warning data for our next step:

S (sum): The sum of all ASAT warnings per commit which are also available on basis of
warning type and severity rating.

R (warning density): The ratio meaning the warning density per commit which is also
available on a basis of warning type and severity rating.

Table 3 Correlation between the
number of ASAT warnings and
kLLoC

Method Value P-value

Kendall’s τ 0.57509 0.0

Spearman’s ρ 0.71654 0.0

Empirical Software Engineering (2020) 25:5137–51925148

4.3.4 Fit Linear Regression

Fitting a regression line results in a trend line that we can use to determine if ASAT warn-
ings are generally increasing or decreasing in a more appropriate way as just using a delta
between the last and first data points. This method, while still being simple and compre-
hensible, utilizes all available information, e.g., if the project contained high numbers of
warnings for most of its lifetime and only at the end of the extracted data resolved most of
them. We fit multiple linear regression lines to our data:

– all years per project, for a long-term trend,
– per year per project, for a short-term trend.

Moreover, we additionally fit regression lines for each group of filtered ASAT warnings
we introduce in Section 4.4.2 for our second main research question. The linear regression
lines provide broad overall trends and specific trends for the ASAT warnings to answer our
research questions.

After the fitting of the regression lines, we utilize the coefficient of the linear regressions
as the slope. As we have only one variable, this is the same as calculating the slope for each
line by applying the point slope formula (2) where y are the values of the fitted regression
line and x is the day of the commit.

slope = yn − y1

xm − x1
(2)

The slope provides us with a single number representing the trend which we use for
further analyses. Moreover, this enables the merging of results for projects with different
lifetimes in order to create a global overview of a trend.

In order to restrict the calculated trends to meaningful values we use an F-Score which
is calculated via a correlation between our regression line and the measured value. First, we
calculate the correlation:

corr = (Xi − X) · (yj − y)

σ (X) · σ(y)
(3)

Where Xi is the i-th day of our commits, yj is the j -th value of the regression line
and X, y is the mean of the number of days of commits and mean of the regression values
respectively. σ(X), σ (y) denotes the standard deviation of X and y. The correlation is then
converted to an F-Score and a p-value.

F = corr2

(1 − corr2) · (|y| − 2)
(4)

The p-value conversion is achieved via the survival function of the F-distribution.
To restrict noise introduced by bad regression fits for trends, we include only slope values

in our analysis where the F-Score is above 1 and the p-value for the F-Score is lower than
0.05. As the F-Score describes a relationship between the regression values and the time,
we chose this performance metric instead of others related to linear regression such as R2.

4.4 Methodology RQ2

To answer our second research question, we need to include knowledge about the inclusion
of ASATs in the build process of the projects. As previously mentioned, we focus on Maven
as the build system. To extract the additional information, we extend our approach shown
in Fig. 1 with the additional steps depicted in Fig. 2. In a nutshell, we filter out commits

Empirical Software Engineering (2020) 25:5137–5192 5149

where Maven was not used, create new sets of rules depending on custom rules included
in the available Maven build configuration, and include defect density as external software
quality measure.

4.4.1 Parse buildfiles

We traverse the path of commits previously selected to determine where Maven was intro-
duced to the project and all commits where its configuration file was changed. Maven
projects can contain multiple buildfiles, modules and configuration residing in parent build-
files. In order to account for these features, we utilize a Maven feature that combines all
this information including fetching the parent buildfiles from the Maven repository. For
each commit where one or multiple Maven files were changed in the target repository,
we execute Maven to automatically resolve potential project modules defined in the main
Maven configuration file, potential parent configurations, and set all settings explicitly tak-
ing default values and overrides into account. We also extract source and test directories
from the configuration which allows us to restrict our analysis to program source code and
to exclude tests that reside in non-standard directories. This information is further refined to
extract which ASATs are currently active, i.e., we detect if PMD, Checkstyle, and FindBugs
are configured. If PMD is configured, we extract the configuration including all additional
custom configuration files.

Custom configurations for PMD can consist of multiple files with rules and categories of
rules. We parse every custom ruleset file and extract rule categories and single rules. Single
rules are used as is, whereas the rule categories are expanded to the single rules they contain
according to the current PMD documentation on all rulesets9. This ensures that we have an
accurate representation of the warnings that were actively presented to the developers.

4.4.2 Filter Commits andWarnings

We remove all commits where no Maven buildfile was present. This is true for commits
where the build system is not Maven but, e.g., Ant or Gradle. To make our comparisons
viable, we restrict our data to Maven and remove commits until a Maven buildfile is intro-
duced. The project selection performed in the first step ensures that we only have projects
where the Maven buildfile was present in the latest commit of our data. Thus, we do not
have to remove commits due to the project switching its buildsystem from Maven to Gradle.
After that, we create subsets of warnings in our data by filtering certain warnings.

t (time-corrected) The first subset consists of time corrected warnings. This includes only
warnings that were available at the time of the commit where we collected the warning.
To be able to utilize this information, we included a mapping for each detected rule to the
PMD version that introduced the warning together with the release date of that version.
Then we filter out the rules that could not have been reported because at the time of the
commit the rule was not available in PMD yet. This is only possible because of the very
thorough documentation of rules from PMD and the detailed changelog that stretches
back to the first version. We include this subset because of the length of the project
histories considered. As some of our data goes back to 200710, we need to take the ASAT
warnings into account that were possible to gain from PMD at that point in time.

9https://pmd.github.io/latest/pmd rules java.html#additional-rulesets
10Earliest date for which a Maven buildfile exists in our data.

Empirical Software Engineering (2020) 25:5137–51925150

https://pmd.github.io/latest/pmd_rules_java.html#additional-rulesets

Fig. 2 Methodology extension for RQ2

d (default): The second subset represents the default configuration of the maven-pmd-
plugin. The default rules are taken from the most recent configuration11 and filtered to
include only detectable rules. This results in a set of 45 rules.

e (effective): For the third subset we want to include as much detail as possible. To achieve
this, we calculate the currently active ASAT rules for each commit. These effective
active rules take all custom rules and rule excludes into account. If no custom rules are
defined we are using the default rules according to the documentation of the maven-pmd-
plugin11, same as for the subset d. This subset contains all information that a developer
on the project under investigation can acquire by utilizing the buildfile.

o (without overlapping): The final subset removes rules overlapping with other ASATs
used in the projects. This is achieved by filtering rules which overlap with rules supported
by current versions of Checkstyle and FindBugs. This subset enables us to increase the
precision of our impact measurement for the effects of using PMD on ASAT warning
trends. This avoids skewed results for study subjects which are in the non PMD group
but utilize FindBugs or Checkstyle which contain rules that are also present in PMD. A
complete list of overlapping rules can be found in the Appendix.

All of these subsets of warnings can be combined to provide us with a set of rules for the
analyses, e.g., the warning density of the default rules with time-correction or the warning
density of the effective rules with time-correction without overlapping rules.

4.4.3 Calculate Defect Density

This step utilizes the SmartSHARK infrastructure which we already used for the metrics
collection to incorporate information from the ITS into our data. The extracted information
is condensed to a metric per development year, the “de facto standard measure of software
quality” (Fenton and Bieman 2014), defect density, which is a ratio of the number of known
defects and the size of the product.

Defect density = Number of known defects

Product size
(5)

In this study we use the mean kLLoC per year as the product size and the number of
created bug reports per year as the number of known defects. This provides us with a metric
per year which we can then utilize to measure the impact of PMD usage on external software
quality (Fenton and Bieman 2014). As we have projects in our dataset which switched ITS

11https://maven.apache.org/plugins/maven-pmd-plugin/examples/usingRuleSets.html,lastaccessed:
2019-03-18

Empirical Software Engineering (2020) 25:5137–5192 5151

https://maven.apache.org/plugins/maven-pmd-plugin/examples/usingRuleSets.html, last accessed: 2019-03-18
https://maven.apache.org/plugins/maven-pmd-plugin/examples/usingRuleSets.html, last accessed: 2019-03-18

and as we need full development years we discard the first year for which we have defects
in our data.

4.5 Analysis Procedure

In our case study, we investigate different questions which require a different analysis pro-
cedures. For RQ1.1, we aggregate the plain sum of ASAT warnings per commit over the
projects development and the warning density as defined in Section 4.3.3. Then, we fit
regression lines and calculate the F-Score as well as the slope of the regression to get the
general trend.

In the case of RQ1.2 we do the same, but for completeness we additionally calculate the
delta of the last and the first commit of the data as well as the number of remaining warnings
per kLLoC. In order to aggregate data of all projects we calculate the mean and median of
the data.

The short and long term impact of PMD on the number of ASAT warnings in RQ2.1 and
RQ2.2 is measured via the number of projects for RQ2.1 and the median of slopes of the trend
line for all years following PMD introduction per project for RQ2.2. The slopes are calculated
via the warning density but without overlapping rules from FindBugs and Checkstyle.

For RQ2.3, we sum the number of rule changes per year for projects using PMD and
correlate them via Kendall’s τ and Spearman’s ρ to the warning density trends of the rules
used (R+e+t).

To answer the research questions RQ2.4 and RQ2.5, we measure the difference between
two samples. We first investigate the distribution of our data via the Shapiro-Wilk test (Wilk
and Shapiro 1965) for normality and Levene’s test (Levene 1960) for variance homogeneity.
As these tests revealed that the data is non-normal with a homogeneous variance, we decided
to use the Mann-Whitney-U test (Mann and Whitney 1947). Although the Mann-Whitney-
U test is a ranked test we still talk about differences in median for the sake of simplicity. In
both research questions, we measure the difference between the years of PMD usage and the
years where PMD was not used. Partial use in a year is excluded from the analysis. We chose
a significance level of α = 0.05, after Bonferroni (Abdi 2007) correction for 24 statistical
tests, we reject the H0 hypothesis at p < 0.002. The difference in median between both
samples is not significant every time for p < 0.002. Therefore, only for the last comparison
of RQ2.4 and for RQ2.5 we also calculate effect size and confidence interval.

To calculate the effect size of the Mann-Whitney-U test, we utilize the fact that for sam-
ple sizes > 8 the U test statistic is approximately normally distributed (Mann and Whitney
1947). We first perform a z-standardization (Kreyszig 2000). We are assuming that our sam-
ple’s mean and standard deviation are a good approximation of the populations mean and
standard deviation. After we calculate z we can calculate the effect size r . A value of r < 0.3
is considered a small effect, 0.3 ≤ r ≤ 0.5 is a medium effect and 0.5 < r is a strong
effect (Cohen 1988). For the confidence interval we follow (Campbell and Gardner 1988)
who use the K-th smallest to the K-th largest difference between two samples as the inter-
val. The confidence interval then consists of the K-th difference and the max(n, m) −K-th
difference between both samples.

4.6 Replication Kit

All extracted data can be found online (Trautsch et al. 2020). The code for creation of the
tables and figures used in this paper as well as a dynamic view of warning density, LLoC
and warning sum for each project is included.

Empirical Software Engineering (2020) 25:5137–51925152

5 Case Study Results

In this section we present the results of our study. This section is split into two parts, one
for each of our main research questions.

5.1 RQ1: How are ASAT warnings evolving over time?

Our first research question considers ASAT warning evolution over the complete lifetime
of each project. We do not consider PMD usage in the build process, custom rulesets or the
availability of warnings in PMD at the time of the commit in this section. We use all PMD
rules that are available. Table 4 shows the trend of ASAT warnings for every project and year
as well as the approximate change per year over all years. Furthermore, the table includes
the trend over the complete lifetime of the project with two base values: the sum of ASAT
warnings S and the warning density R. The trends for single years are calculated based on
warning density. The arrows indicate the trend of the ASAT warnings. A downwards arrow
indicate a positive trend, i.e., the warning density declines, an upwards arrow negative trend,
i.e., the warning density increases. If our criteria for the regression fits are not met, i.e., the
F-Score is below 1 and the corresponding p-value is above 0.05 a straight rightway arrow is
used. Hence, the straight rightway arrow indicates that there was no significant change.

5.1.1 RQ1.1 : Is the number of ASAT warnings generally declining over time?

Table 4 shows, that if we consider the complete lifetime of the project warning density (R)
increases in only 8 of 54 projects. The majority of our study subjects improve with regard
to warning density. If we only consider the sum (S) the picture is not as clear, here we have
more negative trends, i.e., the number of ASAT warnings increase. This is expected as the
number of ASAT warnings usually increases with addition of new code and both are posi-
tively correlated as mentioned previously. This shows that if we consider warning density to
be a code quality measure, that the code quality steadily increases in most projects. We also
include the value of the slope of the trend for warning density (R p.a.) in the table, which
indicates a change of warning density in years over the complete lifetime and on average
over all projects. We exclude projects where the slope does not met our criteria for F-Score.
The value in column R p.a. quantifies the average change in warning density per year, e.g.,
commons-math removes on average 5 ASAT warnings per 1000 Logical Lines of Code per
year. When we consider the mean of all projects we see that on overage 3.5 ASAT warnings
per 1000 LLoC are removed per year.

5.1.2 RQ1.2 : Which warning types have declined or increased the most over time?

To answer the next research question, we consider how groups of rules have changed in their
evolution over the projects lifetime. In this case, we not only report the slope of the trend
but also report the delta of the first warning density measurement per project and the last

Empirical Software Engineering (2020) 25:5137–5192 5153

Ta
bl
e
4

T
re

nd
s

fo
r

th
e

nu
m

be
r

of
A

SA
T

w
ar

ni
ng

s
ov

er
tim

e
in

cl
ud

in
g

su
m

(S
),

w
ar

ni
ng

de
ns

ity
(R

)
an

d
w

ar
ni

ng
de

ns
ity

ch
an

ge
pe

r
ye

ar
(R

p.
a.

)

Pr
oj

ec
t

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

S
R

R
p.

a.

ar
ch

iv
a

↘
↗

↘
↘

↗
↗

↘
↗

↘
↘

↗
↗

↗
↗

2.
06

38

ca
lc

ite
↗

↗
↗

→
↘

↗
↗

1.
42

94

ca
ye

nn
e

↗
↘

↘
↘

↗
↗

→
→

↗
↗

↗
→

-

co
m

m
on

s-
bc

el
↘

↘
↘

↘
↘

→
↘

↗
↘

↘
↗

→
↘

→
↘

↘
↘

↘
-5

.6
76

1

co
m

m
on

s-
be

an
ut

ils
↘

↗
↘

↘
↘

↘
→

↗
↗

→
→

↘
↘

→
↘

↗
↗

↘
-2

.4
99

1

co
m

m
on

s-
co

de
c

↗
↘

→
↘

→
↘

→
↗

↗
↘

↘
↘

↘
↘

↗
↘

-1
.1

34
7

co
m

m
on

s-
co

lle
ct

io
ns

→
→

↘
→

↘
→

↗
↘

↘
↘

↘
↘

→
↗

↘
↘

↘
↘

-2
.2

38
8

co
m

m
on

s-
co

m
pr

es
s

↘
→

↗
→

↗
↘

→
↘

↘
↗

→
→

↘
↘

↗
↘

-0
.8

23
1

co
m

m
on

s-
co

nf
ig

ur
at

io
n

↗
↗

↘
↗

↘
↘

↘
↘

↘
↘

↘
↘

↗
↗

↗
↘

-1
.9

51
9

co
m

m
on

s-
db

cp
↘

↘
↘

↗
↘

↘
↘

↘
↘

↘
→

↗
↘

→
→

↘
↗

↘
-5

.9
61

9

co
m

m
on

s-
di

ge
st

er
↘

↘
↗

↘
↘

↘
→

→
↘

↘
↘

↘
→

→
→

→
→

↘
-7

.9
79

2

co
m

m
on

s-
im

ag
in

g
↘

→
↘

↘
↘

↘
→

↗
↗

→
↘

↘
-1

5.
77

47

co
m

m
on

s-
io

↘
↗

↘
↗

↗
→

→
↘

↘
↗

↘
↘

↘
↗

↘
↗

↘
-0

.6
86

7

co
m

m
on

s-
jc

s
↘

↗
↘

↘
↗

↘
↘

↘
↘

→
↘

↘
→

→
↗

↘
-3

.0
90

7

co
m

m
on

s-
je

xl
↘

↘
↗

↘
→

↘
↘

↗
↘

↗
→

→
↘

→
↘

↘
↘

-9
.5

67
5

co
m

m
on

s-
la

ng
↘

↘
↘

↘
↘

↗
↗

↘
↘

↘
↘

↘
↗

↘
↘

↗
↘

-1
.8

34
3

co
m

m
on

s-
m

at
h

↘
↘

↗
↘

↘
↘

↘
↘

↘
↘

↘
↘

→
↗

↗
↘

-5
.4

13
1

co
m

m
on

s-
ne

t
↘

↗
↘

↘
→

↘
↘

↘
↘

↘
↘

↘
↘

↘
↘

↘
↘

-4
.6

74
7

co
m

m
on

s-
rd

f
↘

↗
↗

↗
↗

9.
01

16

co
m

m
on

s-
sc

xm
l

↗
↗

↘
↘

→
↘

→
↘

↘
↘

→
↗

↗
↘

-1
.9

49
4

co
m

m
on

s-
va

lid
at

or
↘

↗
↘

↘
↘

→
→

→
↗

↘
↘

↘
↗

↘
↗

↗
↘

-3
.7

80
2

co
m

m
on

s-
vf

s
↘

↗
↗

↗
↘

↗
↘

↘
↗

→
↗

↘
↘

↘
↗

↗
↘

-0
.5

57
0

ea
gl

e
↘

↘
↗

↘
-2

2.
72

29

fa
lc

on
↗

↘
↘

↘
↗

↗
↗

↘
-8

.9
55

0

Empirical Software Engineering (2020) 25:5137–51925154

Ta
bl
e
4

(c
on

tin
ue

d)

Pr
oj

ec
t

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

S
R

R
p.

a.

fl
um

e
↗

→
↘

↘
↘

↗
↗

↘
-0

.1
37

1

gi
ra

ph
↘

↘
↗

↘
↘

↘
↘

↗
↘

-7
.8

04
8

go
ra

↘
↗

↗
↘

↘
↘

↘
↗

↗
2.

27
56

he
lix

↘
↗

↘
↘

↘
↘

↗
↗

0.
57

69

ht
tp

co
m

po
ne

nt
s-

cl
ie

nt
↗

↘
↗

↗
↗

↘
↘

↘
↘

↗
→

↗
↗

↘
-2

.0
25

3

ht
tp

co
m

po
ne

nt
s-

co
re

↘
↘

↘
↘

↗
↗

↘
↘

↗
↘

↘
↘

↗
↘

-1
.1

50
8

je
na

↘
↘

↗
↗

↗
↗

↘
-5

.4
30

1

js
pw

ik
i

↗
↘

↘
↗

↘
↘

↘
↘

↗
↗

↘
↘

↗
→

↘
↘

↗
↘

-3
.9

08
0

kn
ox

↘
↘

↗
↘

↘
↗

↘
-2

.9
51

9

ky
lin

↗
↗

↘
↗

↘
-0

.2
88

0

le
ns

→
↘

↗
↘

↗
↘

-8
.4

28
0

m
ah

ou
t

↗
↘

↘
↘

↗
↗

↗
↗

↗
→

↘
-4

.0
99

3

m
an

if
ol

dc
f

↘
→

↗
↘

↗
↘

↗
↘

-0
.9

39
9

m
in

a-
ss

hd
↘

↗
↘

↘
↘

↘
↘

↘
↘

↗
↘

-8
.2

67
7

ni
fi

↘
↗

↗
↗

↗
1.

89
12

op
en

nl
p

↘
↘

↗
↘

↘
↘

↘
↗

↗
0.

18
31

pa
rq

ue
t-

m
r

↘
↘

↘
↘

↗
↗

↘
-5

.3
44

1

pd
fb

ox
↘

↗
↗

↘
↘

↘
↘

↗
↘

↗
↘

-3
.1

46
9

ph
oe

ni
x

↗
↗

↘
↗

↗
1.

06
03

ra
ng

er
↘

↗
↘

↗
↘

-3
.1

56
2

ro
lle

r
↗

→
↘

↘
↘

↗
↘

↘
↘

-1
.9

93
9

sa
nt

ua
ri

o-
ja

va
↘

↗
↘

→
↘

↘
↘

↘
↘

↘
↘

↘
→

↘
↘

↘
↘

↘
-6

.9
03

9

st
or

m
↘

↘
↘

↗
↘

↘
↗

↘
-4

.1
54

7

Empirical Software Engineering (2020) 25:5137–5192 5155

Ta
bl
e
4

(c
on

tin
ue

d)

Pr
oj

ec
t

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

S
R

R
p.

a.

st
re

am
s

↘
↘

↗
↘

↗
↗

↘
-1

2.
38

19

st
ru

ts
↘

↘
↗

↘
↘

↘
↘

↘
↘

↘
↘

↗
↗

1.
26

10

sy
st

em
m

l
↘

↘
↘

↗
↗

↗
↘

-4
.4

46
5

te
z

↘
→

↗
→

↗
↘

-0
.3

92
6

tik
a

↘
↘

↗
↗

↗
↘

↘
↘

↘
↘

↗
↗

2.
55

88

w
ss

4j
↘

→
↘

↘
↘

↘
↘

↗
↘

↘
→

↘
↘

↘
↘

-8
.9

37
8

ze
pp

el
in

↗
↗

↘
↘

↗
↘

-4
.4

35
8

m
ea

n
↗

↘
↘

↗
↗

↘
↘

↘
↘

↘
↘

↘
↘

↘
↘

↘
↘

-
-

-3
.5

03
5

Empirical Software Engineering (2020) 25:5137–51925156

measurement. This provides us with a delta of the absolute number of ASAT warnings per
kLLoC per warning group and severity. Due to different project lifetimes we measure these
numbers per project and then average the values to end up with a number that encompasses
all of our data.

Table 5 contains all rule groups and severities in our data provided by PMD. It contains
the slope of the trend, the average change of warning density per project over the complete
lifetime of the project and the remaining warnings per kLLoC. We can see that, e.g., on
average a project removed 7 naming rule warnings per kLLoC over its complete lifetime
and still has 7.5 warnings per kLLoC left. When considering the trend, we can see that each
project, on average, removes 0.42 naming rule warnings per kLLoC per year. Moreover, we
see that each project on average resolves 34.03 warnings per kLLoC regardless of its type
or severity over its complete lifetime and still has 58.06 warnings per kLLoC left.

These changes in the number of occurrences of rules by type can hint at potential changes
in coding standards in the the years between the beginning of 2002 and end of 2017. Most
prominently brace, design and naming rules, which consist of best practices regarding code
blocks and naming conventions, e.g., an if should be followed by braces even if it is followed
only by a single instruction and class names should be in camel case. Design rules contain
best practices regarding overall code structure, e.g., avoiding deeply nested if statements
and simplify boolean returns. We can see that the trend for specialized rules like Java and

Table 5 Mean warning density change per year (MR p.a.), median (MEDR p.a.) and delta for ASAT groups
and severities

ASAT group / severity M R p.a. MEDR p.a. Delta Remaining

minor -2.5897 -1.7125 25.74 42.95

major -0.8852 -0.6832 7.228 12.2

critical -0.1456 -0.1244 1.061 2.909

brace rules -0.7105 -0.1426 6.265 4.793

design rules -0.5788 -0.5187 5.507 16.36

java logging rules -0.4755 -0.0902 3.094 1.968

jakarta commons logging rules -0.4643 -0.0595 1.72 3.053

naming rules -0.4221 -0.2667 7.041 7.526

type resolution rules -0.3442 -0.1602 2.631 3.02

controversial rules -0.2548 -0.1134 1.414 6.651

optimization rules -0.2485 -0.1107 2.961 3.178

basic rules -0.1301 -0.0613 1.63 1.677

unnecessary and unused code rules -0.0705 -0.0355 0.7491 0.6812

string and stringbuffer rules -0.0632 -0.0198 0.2866 3.263

strict exception rules -0.0562 -0.0125 0.2469 3.626

security code guideline rules -0.0401 0.0028 0.02258 0.7211

junit rules -0.0144 -0.0034 0.01282 0.004718

javabean rules -0.0079 -0.0030 0.3478 0.1154

finalizer rules -0.0006 -0.0003 -0.001112 0.01842

j2ee rules -0.0003 -0.0003 0.08508 0.1346

clone implementation rules 0.0002 -0.0028 0.06261 0.08835

import statement rules 0.1722 -0.0046 -0.04623 1.182

Empirical Software Engineering (2020) 25:5137–5192 5157

jakarta logging rules is steeper than naming rules, although when we consider the delta it is
clear that naming rules are removed far more by number. Moreover, when we consider the
median (MEDR p.a.) instead of the mean trend (MR p.a.) we can see that brace, design, and
naming rules also have high median trends. A complete list of the rules and their groups as
well as their severities is given in the Appendix.

The two groups of warnings that are increasing by delta, although only slightly, are
finalizer and import statement rules. By mean trend only import statement and clone imple-
mentation rule violations are increasing slightly. Finalizer rules are concerned with the
correct implementation of finalize() which is called by the garbage collector of Java. Import
statement rules contain rules regarding duplicate imports, unused imports and unnecessary
imports, e.g., java.lang or imports of classes from the same package. Clone implementation
rules are focused on checking implementations of clone() methods.

Regarding the severity of the warnings we see that minor severity warnings are resolved
the most, major severity warnings second most and critical warnings last. When we calcu-
late the percentages of reduction in warning density by severity we see that minor and major
are reduced by about 37% each while critical by about 27%. This may indicate that devel-
opers do not necessarily try to remove all critical warnings. However, this could also be an
indication of critical severity warnings being more prone to false positives.

The types of warning that declined the most may hint at developer preference or possibly
easy resolution of reported warnings. The declining of naming, brace and design rules may
also be a consequence of changing coding standards or, more generally, a maturation of
Java software coding style. The results may also hint at some rules which are ignored by
developers. The density of import statement rules is increasing. This may indicate that this
type of rule is more often ignored by developers.

5.2 RQ2: What is the impact of using PMD?

This part of the study discards every commit up until the point in time Maven was intro-
duced as a build system. Although we shorten the project history that is available for
analysis, keeping only commits with a Maven buildfile allows us to be certain that we detect
the ASAT inclusion via the Maven configuration. Moreover, this allows us to read custom
ruleset definitions and source directories. Utilizing the source directories from the Maven
configuration narrows the scope for the files to code only files. We effectively discard tests
and tooling which are not part of the build process. Our aim is to be as detailed as possible
and counting only the rules that were available at the point in time of the commit. We also
include only files that were part of the analysis if the projects developers had run the ASAT
via the buildfile.

5.2.1 RQ2.1 : What is the short term impact of PMD on the number of ASAT warnings?

Table 6 shows the trends of ASAT warnings for full years of development. The color indi-
cates if PMD was used for all commits that year: green indicates PMD was used for the
complete year, red indicates no use of PMD for the complete year, black indicates partial
usage due to introduction or removal of PMD from the buildfile during that year. In seven

Empirical Software Engineering (2020) 25:5137–51925158

of the 54 projects listed in Table 6, PMD was removed at least once. We inspected every
case to investigate the reasons for the removal.

Table 6 Trends for warning density without overlapping rules (R+o), green indicates use of PMD in buildfile,
red indicates absence of PMD, black indicates partial use of PMD over the year

Project 06 07 08 09 10 11 12 13 14 15 16 17

archiva

calcite

cayenne

commons-bcel

commons-beanutils

commons-codec

commons-collections

commons-compress

commons-configuration

commons-dbcp

commons-digester

commons-imaging

commons-io

commons-jcs

commons-jexl

commons-lang

commons-math

commons-net

commons-rdf

commons-scxml

commons-validator

commons-vfs

eagle

falcon

flume

giraph

gora

helix

httpcomponents-client

httpcomponents-core

jena

jspwiki

Empirical Software Engineering (2020) 25:5137–5192 5159

Table 6 (continued)

Project 06 07 08 09 10 11 12 13 14 15 16 17

knox

kylin

lens

mahout

manifoldcf

mina-sshd

nifi

opennlp

parquet-mr

pdfbox

phoenix

ranger

roller

santuario-java

storm

streams

struts

systemml

tez

tika

wss4j

zeppelin

Archiva removed PMD in 2012 when they moved reporting to a parent pom which did
not include PMD anymore12. Neither the commit message, nor the project documentation
mention whether this removal is accidental or not.

Commons-bcel briefly introduced and then removed PMD in 2008. The removal does not
mention PMD or reports of the build system. This brief introduction happened at the same
time as the move from Ant to Maven as a build system. This indicates that the developers
were testing features of Maven. In 2014 the project included PMD again in its buildfile. The
trend of warnings is declining nonetheless.

Commons-compress removed and re-introduced PMD in short order while configuring the
build system in multiple commits. PMD is mentioned explicitly in the commit it was re-added.

Commons-dbcp removed PMD in 2014 but that year still shows a declining trend. The
commit message states that the removal was due to switching to FindBugs. Although the
year is not part of this study, PMD was re-added to the build system in 2018.

Commons-math changed the ASAT configuration in 2009 - 2011 so that there were at
least some commits without an active PMD configuration. Therefore, these are colored
black in Table 6. Those years also had a declining trend. The commit message indicate that
in 2009 the reporting section of which PMD is part of was dropped due to a release and later
added again. In 2010 PMD was dropped due to compatibility problems and enabled again
in 2011.

12https://repo1.maven.org/maven2/org/apache/archiva/archiva-parent/9/archiva-parent-9.pom

Empirical Software Engineering (2020) 25:5137–51925160

https://repo1.maven.org/maven2/org/apache/archiva/archiva-parent/9/archiva-parent-9.pom

Commons-validator had some commits in 2008 with PMD enabled. The removal was a
conscious decision as it is mentioned in the commit message although the reason is missing.
PMD was added again in 2014.

Tika removed PMD in 2009 and never re-introduced it. The commit message mentions
removing obsolete reporting from the parent pom. This indicates that the developers did not
act on reported PMD warnings, either because they ignored them completely or because
they found that there were too many false positives.

We are only considering projects where we can determine the time when PMD was
introduced. If it was either introduced together with Maven as a build tool or was intro-
duced before Maven we do not consider it here. We consider projects which introduced
PMD and at least used it for a full year afterwards, i.e., a black arrow followed by a green
arrow in Table 6. The short term impact as estimated by the trend of warning density for
15 projects where PMD was used at least once is declining in 9 projects while 6 projects
have an increase in warning trend. While we expected to see a drop in ASAT warnings
after introduction of PMD, this is only the case in 9 of the 15 projects we consider here.
An explanation for this result could be that the developers introduce the ASAT but do not
immediately scrutinize enough code to make a difference in the short term.

5.2.2 RQ2.2 : What is the long term impact of PMD on the number of ASAT warnings?

Table 7 shows the number of ASAT warnings over the projects lifetime from the point in
time where Maven was used as a build system, i.e. the point in time where we are sure that
we can capture the effective rules of the ASAT. S is the plain sum of the number of warnings,
R is the warning density. R+t is the warning density with time-correction where we only
count the warnings that PMD supported at the time of the commit. R+d+t is the warning
density with only the rules counted that the Maven PMD plugin has enabled by default with
time-correction. R+e+t is the warning density with only the rules counted that are definitely
enabled via the parsed Maven configuration file, i.e., the most exact and only available in
projects where we have the PMD plugin enabled in the Maven configuration file. Figure 3
visualizes this information using the project Commons-lang as an example. The red line
represents the number of rules considered, the blue line is the number of ASAT warnings
which is a sum (S) in the first subplot and warning density (R) in all following subplots.
The orange line is the regression line. The number of rules is constant if no time-correction
is applied. Figure 3 also shows that for the effective ruleset, we only count from the point
of inclusion of the ASAT. Otherwise we would skew the data in this case. We should also
mention that jumps in effective rules can be due to inclusion of new rules by the developers
or by inclusion of new rules for PMD due to group expansion, i.e., the project configures all
rules for category A, PMD adds new rules for category A at that point in time which results
in rising number of rules considered.

A first interesting result is that if we look at the warning density, there is a downward or
neutral trend for all but 13 projects. This means independent of the presence of PMD in the
buildfile the overall quality of the code per kLLoC with regards to ASAT warnings improves
in most projects. This could be for example through changes in coding style coinciding
with some ASAT rules, e.g., no if statement without curly braces. The number of projects

Empirical Software Engineering (2020) 25:5137–5192 5161

Table 7 Trends for the number of ASAT warnings (S), warning density (R), time-corrected (R+t), default
rules (R+d+t) and effective rules (R+e+t) over all years after Maven introduction

Project S R R+t R+d+t R+e+t

archiva ↗ ↗ ↗ ↗ ↘
calcite ↗ ↗ ↗ ↗ →
cayenne ↗ ↗ ↗ ↗ ↗
commons-bcel ↗ ↘ ↗ ↗ ↘
commons-beanutils ↗ ↘ ↗ ↗ →
commons-codec ↗ ↗ ↗ ↘ ↘
commons-collections ↗ ↘ ↗ ↘ ↘
commons-compress ↗ ↗ ↗ ↘ ↘
commons-configuration ↗ ↘ ↘ ↘ →
commons-dbcp ↗ ↘ ↗ → →
commons-digester ↗ ↘ ↗ ↘ ↘
commons-imaging ↘ ↘ ↘ → ↗
commons-io ↗ ↘ ↗ ↗ →
commons-jcs ↗ ↘ ↗ ↘ ↘
commons-jexl ↗ ↘ ↗ ↘ ↘
commons-lang ↗ ↘ ↗ ↘ ↘
commons-math ↗ ↘ ↗ ↘ ↗
commons-net ↗ ↘ ↗ ↗ →
commons-rdf ↗ ↗ ↗ ↗ ↗
commons-scxml ↗ ↘ ↗ ↗ →
commons-validator ↗ ↘ ↗ ↘ ↗
commons-vfs ↗ → ↗ ↘ ↘
eagle ↗ ↘ ↘ ↗ →
falcon ↗ ↘ ↘ ↗ →
flume ↗ ↘ ↗ → →
giraph ↗ ↘ → ↗ →
gora ↗ ↗ ↗ ↘ →
helix ↗ ↗ ↗ → →
httpcomponents-client ↗ ↘ ↗ ↘ →
httpcomponents-core ↗ ↗ ↗ ↗ →
jena ↗ ↘ ↘ ↘ ↘
jspwiki ↗ ↘ ↗ ↘ →
knox ↗ ↘ ↘ ↗ →
kylin ↗ ↘ ↘ ↗ →
lens ↗ ↘ ↘ ↗ →
mahout ↗ ↘ ↗ ↘ ↘
manifoldcf ↗ ↘ ↗ ↗ →
mina-sshd ↗ ↘ ↘ ↗ →

Empirical Software Engineering (2020) 25:5137–51925162

Table 7 (continued)

Project S R R+t R+d+t R+e+t

pdfbox ↗ ↘ ↘ ↘ →
phoenix ↗ ↗ ↗ ↗ →
ranger ↗ ↘ ↘ ↘ ↗
roller ↗ ↘ ↗ ↘ →
santuario-java ↗ ↘ ↘ ↘ ↘
storm ↗ ↗ ↗ ↗ ↗
streams ↗ ↘ ↘ ↗ →
struts ↗ ↘ ↗ ↗ →
systemml ↗ ↘ ↘ ↗ →
tez ↗ ↘ ↗ ↗ →
tika ↗ ↗ ↗ ↗ ↘
wss4j ↗ ↘ ↗ ↘ ↘
zeppelin ↗ ↘ ↘ ↗ →

is higher than in the previous Section 5.1 where we considered the complete lifetime of the
project. In Section 5.1, we observed a rising trend of warning density in only 10 projects.

If we only consider the effective rules (R+e+t) the picture is not that clear, which means
even though the developers have the ability to look at the reports containing these warnings
the overall quality per LLoC does not always improve. This could be due to perceived or
real false positives of the reporting ASAT which are ignored by the developers.

To answer RQ2.2 we refer to Table 6 again and note the green trends following the
introduction of PMD in black. If we add up the slopes of the subsequent years after the
introduction of the ASAT, we can estimate the long term impact. We notice that we have
more positive years than negative years in our data following the introduction of an ASAT.
Positive years are identified by a decreasing warning density whereas negative years are
identified by a increasing warning density. On a more quantitative note we can sum the
slopes of years following the introduction of the ASAT which we report in Table 8. We
are not listing mina-sshd even though it uses PMD because it was only introduced in 2017
which is the last year of our data, therefore it is excluded from the long term impact analysis.

Table 8 shows the median change in warning density per year, e.g., commons-lang
decreases the number of warnings per kLLoC by 1.7 per year, which is almost the same
than its overall decrease over all years (1.8) which can be seen in Table 4. We can also see

Fig. 3 Example of ASAT warning trends (Commons-lang)

Empirical Software Engineering (2020) 25:5137–5192 5163

that the average change per project is 2.3 which is less than the mean over all projects over
all years reported in Table 4 which was 3.5. Nevertheless the projects predominantly show
a negative median which indicates a positive trend in the number of ASAT warnings, i.e.,
warnings decrease. Only 5 projects, comons-rdf, commons-beanutils, commons-validator,
cayenne and commons-imaging have a positive median, i.e., a majority of negative trends
of warning density after PMD was introduced. The long term impact as estimated by the
trend of warning density is positive in 19 of 24 projects. On average each project removed
2.3 warnings per kLLoC each year after PMD was introduced in the buildfile. Thus we can
further conclude that the long term impact of PMD on warning density is better by trend
alone than the observed short term impact. Although, its impact is weaker than the overall
trend of warning density which encompasses the years where PMD was not present in the
buildfile. This may be an effect of changing of coding style as the rules that changed the
most are related to naming and style (see Section 5.1.2).

Table 8 Warning density without
overlapping rules median change
per year (MEDR+o p.a.) after
PMD introduction

Project MEDR+o p.a.

archiva -2.2656

cayenne 0.75534

commons-bcel -15.828

commons-beanutils 0.61942

commons-codec -0.38184

commons-collections -0.65821

commons-compress -1.5768

commons-dbcp -1.7514

commons-digester -0.18101

commons-imaging 0.62411

commons-jcs -2.3598

commons-jexl -1.4328

commons-lang -1.7042

commons-math -0.96496

commons-rdf 2.8955

commons-validator 1.4614

commons-vfs -0.19471

jena -0.9757

mahout -0.51027

range -5.524

santuario-java -1.5697

stor -6.735

tika -14.176

wss4j -2.5572

Mean -2.2913

Empirical Software Engineering (2020) 25:5137–51925164

5.2.3 RQ2.3 : Does the active usage of custom rules for PMD correlate with higher
ASAT warning removal?

We first extract all changes to the buildfile and specifically to the custom rules as shown
in Table 9. It shows the number of rules changed over the project lifetime and the number
of commits where the build file or a configuration file was changed. To give a perspective
regarding the number of commits we additionally included the mean and median for rule
and build changes.

The sum of rule changes is the sum of all deltas of rule changes, this includes additions
and removals of rules. As we also count the default rules when the ASAT is introduced there
is a minimum of 45 rules that are changed if PMD is introduced and there are no custom
rules right from the start. If custom rules are added or removed later this number increases.

The true relation to the trends can be seen in Table 10, it shows the correlation between
the number of rule changes to the general trend of ASAT warnings of the project over each
year where the ASAT was used. The results for this research question could be seen as
inevitable because we do not have a lot of rule changes. Nevertheless, we find that 12 of 25
projects have at least performed some changes to their PMD rulesets.

While this may sound discouraging to developers, we note that the while the correlation
is negligible it retains a negative sign for both correlation measures. This means that while
rule changes increase the warning density decreases. However, other factors are probably
also important for developers which profit from a well maintained rule set, e.g., acceptance
of the ASAT by other developers.

RQ2.3 Summary: The impact of rule changes, i.e., an active, evolving ASAT
configuration on the ASAT warning trends is negligible. Nevertheless, 12 of 25
projects changed their rules at least once.

5.2.4 RQ2.4 : Is there a difference in ASAT warning removal trends whether PMD is
included in the build process or not?

We first have to split our data into two groups, one group contains all years from all projects
where PMD was used as indicated by its inclusion in the buildfile, and the other contains
all the other years. We then investigate our two samples for differences. We want to know
if the two groups have different warning trends and if this difference is statistically signif-
icant. We now describe the groups of warnings considered here. The R+t contains the time
corrected warning density which contains all possible warnings that were available to the
developers at the time of the commit, i.e., a warning added in 2017 would not be included in
the warning density of a commit in 2016. R+d+t contains only the warning density of only
the default rules that are enabled by PMD, they are also time corrected. R+e+t contains the
time corrected effective rules, this contains the default rules except in cases where develop-
ers added custom rule sets. If custom rule sets are found, they are used exclusively. R+e+t+o
contain the time corrected effective rules without overlapping rules. We subtract PMD
warnings which are also reported by other ASATs if the project uses them, we consider
FindBugs and Checkstyle. This removes possible influence in the no PMD group.

The Tables 11, 12, 13, 14 show a difference in the trends of the ASAT warnings between
non PMD usage and PMD usage but it is not statistically significant. Table 15 completes
the reporting for the Mann-Whitney-U test, it includes sample sizes and the median of the
samples. The sample sizes are changing because we remove incomplete years of ASAT
usage, overlapping rules and we also remove insignificant trends as described in Section 4.3.

Empirical Software Engineering (2020) 25:5137–5192 5165

Table 9 Rule and build changes
for each project Rule changes Build changes

Project Sum Mean Median Sum Mean Median

archiva 45 0.01 0.00 145 0.02 0.00

calcite 0 0.00 0.00 90 0.05 0.00

cayenne 130 0.03 0.00 80 0.02 0.00

commons-bcel 87 0.06 0.00 21 0.02 0.00

commons-beanutils 45 0.04 0.00 28 0.03 0.00

commons-codec 94 0.05 0.00 35 0.02 0.00

commons-collections 45 0.01 0.00 25 0.01 0.00

commons-compress 133 0.05 0.00 65 0.03 0.00

commons-configuration 0 0.00 0.00 50 0.02 0.00

commons-dbcp 45 0.03 0.00 42 0.02 0.00

commons-digester 45 0.04 0.00 52 0.04 0.00

commons-imaging 100 0.10 0.00 37 0.04 0.00

commons-io 0 0.00 0.00 53 0.03 0.00

commons-jcs 45 0.03 0.00 65 0.05 0.00

commons-jexl 44 0.03 0.00 96 0.07 0.00

commons-lang 45 0.01 0.00 73 0.02 0.00

commons-math 62 0.01 0.00 52 0.01 0.00

commons-net 0 0.00 0.00 15 0.01 0.00

commons-rdf 45 0.17 0.00 22 0.08 0.00

commons-scxml 0 0.00 0.00 31 0.04 0.00

commons-validator 45 0.03 0.00 25 0.02 0.00

commons-vfs 45 0.02 0.00 61 0.03 0.00

eagle 0 0.00 0.00 48 0.06 0.00

falcon 0 0.00 0.00 57 0.03 0.00

flume 0 0.00 0.00 40 0.03 0.00

giraph 0 0.00 0.00 27 0.03 0.00

gora 0 0.00 0.00 42 0.09 0.00

helix 0 0.00 0.00 164 0.09 0.00

httpcomponents-client 0 0.00 0.00 78 0.03 0.00

httpcomponents-core 0 0.00 0.00 90 0.03 0.00

jena 45 0.02 0.00 111 0.04 0.00

jspwiki 0 0.00 0.00 38 0.00 0.00

knox 0 0.00 0.00 96 0.07 0.00

kylin 0 0.00 0.00 57 0.02 0.00

lens 0 0.00 0.00 49 0.06 0.00

mahout 127 0.04 0.00 261 0.08 0.00

manifoldcf 0 0.00 0.00 64 0.03 0.00

mina-sshd 78 0.04 0.00 123 0.07 0.00

nifi 0 0.00 0.00 133 0.05 0.00

opennlp 0 0.00 0.00 124 0.07 0.00

parquet-mr 0 0.00 0.00 60 0.10 0.00

pdfbox 0 0.00 0.00 61 0.01 0.00

phoenix 0 0.00 0.00 49 0.02 0.00

Empirical Software Engineering (2020) 25:5137–51925166

Table 9 (continued)
Rule changes Build changes

Project Sum Mean Median Sum Mean Median

ranger 43 0.02 0.00 70 0.03 0.00

roller 0 0.00 0.00 10 0.00 0.00

santuario-java 193 0.07 0.00 79 0.03 0.00

storm 45 0.19 0.00 17 0.07 0.00

streams 0 0.00 0.00 76 0.20 0.00

struts 0 0.00 0.00 155 0.04 0.00

systemml 0 0.00 0.00 68 0.01 0.00

tez 0 0.00 0.00 43 0.02 0.00

tika 45 0.02 0.00 98 0.03 0.00

wss4j 50 0.02 0.00 96 0.04 0.00

zeppelin 0 0.00 0.00 77 0.03 0.00

The reason we found no significant difference could be that the changes resulting from
ASAT usage in the buildfile are too small when considering the general number of changes
developers apply due to normal code maintenance work. To remove potential influences
from overlapping rules of PMD with FindBugs and Checkstyle, we removed them prior to
the test in Table 14. This did not change the results significantly. Overall, we can see that
the results are not significant, even as we get more detailed, i.e., from just all rules to only
the effective rules with removed overlapping rules from other ASATs.

RQ2.4 Summary: The presence of PMD in the build process has no significant
effect on the warning removal trends of warning density.

These results are surprising but looking at our data we can see that there is an effect of
PMD usage, just not in a general code quality sense by utilizing the warning density. If we
look at the raw sum of ASAT warnings which we have seen to increase in almost all projects,
we can detect an effect. In Fig. 4, we can see that for most projects the slope of the trend of
warning density per year is near 0 whereas for the non PMD using years it is higher.

A possible explanation for this data is, that projects which utilize PMD scrutinize most
of the new code, which results in a rising trend of ASAT warnings but only slightly due to
some left over warnings or ignored false positive warnings. In contrast, for projects which
do not utilize PMD the trend of the sum of ASAT warnings is rising more steeply.

As shown in Table 16 in case we utilize the sum of all ASAT warnings, the difference is
significant, albeit small.

Table 10 Correlation between
number of rule changes and
warning density

Method Value P-value

Kendall’s τ -0.17089 0.037058

Spearman’s ρ -0.20872 0.042373

Empirical Software Engineering (2020) 25:5137–5192 5167

Table 11 Warning density, time
corrected rules (R+t) significance
test prerequisites and results

Test Sample Test Statistic P-value

Shapiro-Wilk No PMD 0.43633 1.1615e-20

Shapiro-Wilk PMD 0.17532 6.5589e-31

Levene Both 0.52831 0.46778

Mann-Whitney-U Both 1.6344e+04 0.61671

Table 12 Warning density, only
default time corrected rules
(R+d+t) significance test
prerequisites and results

Test Sample Test Statistic P-value

Shapiro-Wilk No PMD 0.13952 9.8708e-25

Shapiro-Wilk PMD 0.12195 1.2032e-31

Levene Both 0.34585 0.55683

Mann-Whitney-U Both 1.4763e+04 0.099212

Table 13 Warning density,
effective time corrected rules
(R+e+t) significance test
prerequisites and results

Test Sample Test Statistic P-value

Shapiro-Wilk No PMD 0.19915 5.1652e-24

Shapiro-Wilk PMD 0.12195 1.2032e-31

Levene Both 0.0050551 0.94336

Mann-Whitney-U Both 1.5212e+04 0.20141

Table 14 Warning density,
effective time corrected rules
without overlap (R+e+t+o)
significance test prerequisites
and results

Test Sample Test Statistic P-value

Shapiro-Wilk No PMD 0.13609 5.0062e-24

Shapiro-Wilk PMD 0.64262 2.8805e-20

Levene Both 0.4575 0.49928

Mann-Whitney-U Both 1.2067e+04 0.22387

Table 15 Mann-Whitney-U
reporting Rules Samples Size Median

Sum (S) No PMD 241 0.13086

PMD 136 0.02793

R+t No PMD 236 -0.00093

PMD 136 -0.00050

R+d+t No PMD 236 -0.00003

PMD 136 -0.00009

R+e+t No PMD 236 -0.00003

PMD 136 -0.00002

R+e+t+o No PMD 200 -0.00004

PMD 127 -0.00002

Empirical Software Engineering (2020) 25:5137–51925168

Fig. 4 Slope of the sum (S) of all ASAT warnings for PMD and non PMD years over all projects

5.2.5 RQ2.5 : Is there a difference in defect density whether PMD is included
in the build process or not?

We extract issues for all projects from the ITS created in a certain year and then calculate
the defect density as described in Section 4.4.3. We then build two groups again for years
of development where PMD was used and compare it to the second group of years of devel-
opment where PMD was not used. Instead of the slope of the ASAT warning trends, we
now compare the defect densities of the two groups. We only include years in which PMD
was included in the buildfile for every commit or for none to mitigate problems of partial
use. The defect density contains only issues marked as a bug by the developers, so we dis-
card improvements, documentation changes. Moreover, the issue type used is the one at the
end of the data collection. If an issue was misclassified and the classification was changed
at some point, the changed classification is the one we use. This also removes duplicate
bug reports from the data, if the developers marked the duplicate bug report as duplicate or
invalid as is customary in that case.

Figure 5 shows the defect densities of the two groups, we can see that PMD using years
have a slight advantage of less defect density. Table 17 contains the significance test for
whether there is a difference between the two groups and its prerequisites. We can see that
years in which PMD is present in the buildfile show a statistically significant difference of
defect densities. To complete the reporting of the Mann-Whitney-U test in Table 17, the
sample sizes are 132 and 249 for years where PMD was used and years where PMD was
not used. The respective median values are 0.89500 and 1.67743. Resulting in a difference
in median of 0.78243 between both samples. The 95% confidence interval of the difference
in median is (0.36038, 0.86744).

Table 16 Sum (S) of all ASAT
warnings significance test
prerequisites and results

Test Sample Test Statistic P-value

Shapiro-Wilk No PMD 0.3517 5.7853e-22

Shapiro-Wilk PMD 0.5162 2.9655e-25

Levene Both 0.97435 0.32423

Mann-Whitney-U Both 1.2919e+04 0.00032041

Effect size Both 0.17583 -

Empirical Software Engineering (2020) 25:5137–5192 5169

Fig. 5 Defect density for PMD and non PMD years over all projects

RQ2.5 Summary: Years in which PMD is present in the build process have a lower
defect density (about 0.78 less defects per 1000 LLoC in median). The difference
is statistically significant, albeit the effect size is small.

This result is very coarse grained. We consider defect density per year which can only
hint at a correlation instead of a direct causal relation. However, the ASAT we consider in
this study contains a broad set of rules some of which also pertain to more generic main-
tainability and readability best practices. This may have a more indirect or long term effect
on the quality, which is why we decided to include RQ2.5 in this way. However, to further
validate this result and include confounding factors we build a regularized linear regression
model which includes these factors to see if PMD usage still is of importance. To this end
we enhanced the available data with additional features per project per year. We include the
number of commits, the number of distinct developers, the year, the number of commits in
which PMD was used / not used and the project name as a number. As a popularity proxy
we include the Github information from that project, namely stars and forks. We train the
linear regression model with this data and give the resulting coefficients in Table 18.

We can see that the regularization of the model removes the project number, and the year
as well as the number of commits where PMD was used (although, we note the negative
sign). The number of forks, commits, authors, and stars are more important and not removed
by the regularization. The most important feature is the number of commits in which PMD
was not used which indicates that it is an important factor when determining defect density.
We also note that except for the number of commits in which PMD was used we retain
positive signs on the coefficients of the model. The interpretation is that these factors have

Table 17 Defect densities of PMD and non PMD years significance test

Test Sample Test Statistic P-value

Shapiro-Wilk No PMD 0.56878 1.9853e-24

Shapiro-Wilk PMD 0.6299 9.5835e-17

Levene Both 7.6372 0.0059968

Mann-Whitney-U Both 1.1054e+04 7.2559e-08

Effect size Both 0.26943 -

Empirical Software Engineering (2020) 25:5137–51925170

a detrimental effect on defect density, i.e., as #stars or #commits without PMD increases, so
does defect density.

6 Discussion

The sum of ASAT warnings is increasing in most of our projects. As the number of ASAT
warnings is correlated with the logical lines of code as shown in Table 3 this is not surpris-
ing. The rising size of the projects is in line with the rules of software evolution (Lehman
1996) which claim that E-Type software13 continues to increase in size. There is no the-
ory for explaining the continued growth of ASAT warnings but it could be interpreted as
an indication that some warnings are ignored by developers because they may be deemed
unnecessary or false positives (warnings in code without problems). An increasing number
of ASAT warnings is also supported by the raw data provided by (Marcilio et al. 2019) in
their replication kit. Although Marcilio et al. investigate real usage of Sonarcube by devel-
opers and primarily the resolution times of ASAT warnings, they provide the dates where
ASAT warnings are opened and closed. After transforming their data to show the sum of
open ASAT warnings for given days it shows rising sums of ASAT warnings for almost
all of the projects. Furthermore, current research found that only a small fraction of ASAT
warnings are fixed by developers (Liu et al. 2018; Marcilio et al. 2019; Kim and Ernst
2007b).

Table 5 provide us with additional interesting insights. First of all, code quality, if mea-
sured by warning density, is increasing. Second, the different types of ASAT warnings
evolve differently. The order of the ASAT removal trends provided in Table 5 shows which
types of ASAT warnings developers removed most in our candidate projects from 2001-
2017. This provides us with a hint of what issues developers deemed most important in that
timeframe. As this first part of our study is independent of ASAT usage, we can not quan-
tify the influence of PMD or other ASATs, i.e., Checkstyle or FindBugs. Nevertheless, the
results show that a certain importance is assigned to code readability and maintainability by
the developers. This result is in line with research by (Beller et al. 2016) who found that the
majority of actively enabled and disabled rules are maintainability-related. Beller et al. stud-
ied configuration changes. Our work expands on the work of Beller et al. and confirms that
not only were the rules more often changed for maintainability related warnings, they were
also globally resolved the most. This finding is also supported by (Zampetti et al. 2017)
who analyzed CI build logs for ASAT warnings. They found that most builds break because
of coding standard violations. However, checking adherence to coding standards via CI
quality gates is an industry practice, which is probably a contributing factor. The most fre-
quently fixed warnings found by (Marcilio et al. 2019) also contain rules regarding naming
conventions and coding style. The only groups of ASAT warnings for which we found more
introductions than removals in our trend analysis were import and clone rules. If we measure
by warning density delta between the first and last commit of our analysis period, the only
increasing rules are import and finalizer rules. However, as the number of rules here is small
and the delta of the change is also small we can not draw any conclusions from this result.

As previously explained we think of code containing less ASAT warnings per line as
higher quality code. In this case study we found that the warning density is decreasing, i.e.,

13Program that performs real world activity, needs to continuously adapt to new requirements and circum-
stances.

Empirical Software Engineering (2020) 25:5137–5192 5171

Table 18 Linear regression
coefficients of the defect density
model

Name Coefficient

Project number 0.000000

Year -0.000000

#commits with PMD -0.000000

#forks 0.049105

#commits 0.064325

#authors 0.097168

#stars 0.106038

#commits without PMD 0.217620

the overall quality is increasing. This is a positive result for the studied open source projects
and may also be a positive result for software development in general.

However, we could not measure a significant difference between the trend of warning den-
sity in years of development between PMD usage and no PMD usage. Although, if we do not
consider warning density but the raw sum of warnings there is indeed a measurable, significant
difference. This could be a result of a flattening trend of ASAT warning removal after some
time which means the LLoC then becomes the dominating factor of the warning density
equation. This can be seen as evidence of industry best practices like utilizing static analysis
tools only on new code as reported by Google (Sadowski et al. 2018) and Facebook (Dis-
tefano et al. 2019). Further evidence of this best practice is shown in the results of short
and long term impact of PMD. We found that shortly after the introduction of PMD only 9
of 15 projects show decreasing warning density whereas 19 of 24 projects show decreasing
warning density in the years following PMD introduction. To the best of our knowledge this
would be the first publication to empirically find this effect in open source projects.

As a result of its behavior with regards to the project source code over longer time frames,
warning density should be handled with care by researchers including effort aware models
using ASAT warnings. A more targeted warning density as used by Panichella et al. (2015)
on the other hand is less problematic. Panichella et al. used warning density targeted on
code reviews not on the whole project, therefore avoiding the problem of increasing LLoC
on warning density. Nevertheless, if we want to rank projects by the number of warnings
per kLLoC the warning density approach is still viable.

In our ruleset analysis, we found that the number of rule changes does not correlate with
the trend of ASAT warnings. Additionally, we found that only a limited number of rule
changes in the study subjects are performed. This is also supported by Beller et al. (2016)
who found that most configuration files never change. We are now able to expand on the
work of Beller et al. and show that there is no direct correlation between ruleset changes
and the observable trend of ASAT warnings.

For practitioners, the most interesting result of this study is that defect density, which we
use as a proxy for external software quality, is lower when PMD is included in the build-
file. This is also in line with related research from Plosch et al. (2008) who found a positive
correlation between defects and the number of ASAT warnings by PMD. Although in our
case we are not talking about correlations but differences in reported defects. The reported
difference in defect density may not necessarily be a result of using PMD and removing
its reported warnings but could also be an effect of the developers keeping the codebase
healthy, which results in the usage of static analysis tools and subsequently to lower defect
densities. Nevertheless, this may serve as a further indication that ASAT warnings and static
analysis has a positive impact on software quality evolution. Initial results by Querel and

Empirical Software Engineering (2020) 25:5137–51925172

Rigby (2018) show that including static analysis warnings can improve bug prediction mod-
els. This is an indication that our results for RQ2.5 may also hold in a more direct way, i.e.,
improving direct bug prediction instead of defect density prediction.

Our investigation of PMD removal in our study subjects revealed multiple cases where
PMD was removed but the removal not explicitly mentioned, e.g., build system reconfig-
urations, switching parent POMs. Moreover, some study subjects do not change the PMD
default rules. It seems that although some developers advocate static analysis tools like PMD
there is no strategy encompassing documentation, continuous integration or integration of
project specific rules for local IDEs. Thus, we recommend adopting a strategy concern-
ing static analysis tools which includes documenting the tools and reasons for inclusion,
which rules are enabled for all tools and how the code is checked in different contexts, e.g.,
continuous integration, code review or local development.

Our study revealed a general decrease in warning density. This may be a result of our cho-
sen ASAT as it supports a wide range of rules. Other researchers that focused on security
related ASATs come to a different conclusion regarding warning density. Penta et al. (2009)
found that warning density stays roughly constant in their study. More recently, Aloraini
et al. (2019 also found similar constant warning density for security related ASATs. This
may indicate that security warnings are harder to find for developers or require specialized
knowledge that fewer developers have. In our study, we found that a lot of brace and naming
rule related warnings were addressed in our study subjects. This effect may also have been
due to changing or adopting coding standards for Java and may contribute to our finding of
declining warning density. However, they were not the only contributing rules to the decline.
Our data shows almost every type of rule contributes to the trend of declining warning density.

7 Threats to Validity

In this section, we discuss the threats to validity we identified for our work. To structure this
section we discuss four basic types of validity separately, as suggested by Wohlin et al. (2000).

7.1 Construct Validity

Construct validity is concerned with the relation between theory and observation. In our
retrospective case study the main source for this threat is due to the observations, i.e.,
measurements over the course of the change history of our study subjects. Static analysis
warning evolution in test code may be different than in production code, to mitigate this
source of noise in our measurements we excluded all non-production code for the measure-
ments. To validate our exclusion filter we randomly sampled 1% of the commits of each
study subject and the first author manually inspected the changed files for misclassified pro-
duction files. Out of 3322 production files 3 were misclassified. Out of 1614 non-production
files none were misclassified.

While some of our data is newer we decided on a common cut off date to simplify the
data. To evaluate the impact this has on our results we performed the analysis with some
additional data we have available, i.e. projects for which we have data from 2019. As we
only use full years of development we would have to cut off 2019 and would be left with
one additional year for some projects. We ran the analysis pipeline again and instead of a
hard cut off date we just remove the last year. This leaves us with an additional year for
14 projects. The differences are small, the correlation between LLoC and warning density
increases by 0.015. The mean change per year changes by 0.03, the mean change per year

Empirical Software Engineering (2020) 25:5137–5192 5173

after PMD introduction changes by 0.2, we add an additional project here, mina-sshd, which
introduced PMD in 2018. The basic trends and statements are the same with the additional
year. That being said, we have not included the additional year in our final analysis. We
believe that a fixed cutoff date that is the same for all projects is more appropriate. Otherwise,
the description of the analysis would get more complex unnecessarily for almost no benefit.

Changes in projects with release branches, e.g., commons-math, may be applied to
the release branch as well as the master branch. We mitigate this threat of duplicate
measurements by only utilizing a single path through the commit graph. Considering RQ2,
the time corrected rules rely on the release date extracted from the PMD changelog. This
would in effect mean that as soon as a new PMD version is released the study subjects would
be able to see the new rules. This may not always be a realistic scenario due to delayed
updates of, e.g., maven-pmd-plugin. However the data that is available to us does not allow
to mitigate this. The extraction of the effective rules was not possible for every commit due
to problems with the Maven buildfile, e.g., XML errors or unavailable parent POMs. The
buildfile parsing failed for 1361 commits, out of these, 39 errors are due to XML and maven
parse errors, 26 errors were due to missing pom.xml files (can happen when the repository
is moved but the new folder is not added), 74 due to missing child pom.xml (this happens
when the project consists of multiple pom.xml for different modules and the parent refer-
ences a non existing child) and 1012 errors due to missing parent pom.xml. The last is due to
either missing parent pom.xml in the Maven repository or due to a module within the same
project not finding its local parent pom.xml. This happens often when a change increases
the version of the local parent pom.xml but does not change the referenced parent version
in the other modules.

As there is no way to mitigate this automatically, the rules are assumed to be unchanged
for these commits and are changed when the buildfile can be parsed again if there was a
change. To mitigate effects of overlapping static analysis tools, we checked the rules we
utilize against the current rulesets of Checkstyle and FindBugs to mark overlapping rules
so that we can remove them from the analysis in years and projects where these ASATs are
used. The design of our case study and the chosen statistical tests may influence the results.
We include an extensive description of the analysis method and how we preprocess our
data prior to the description of the statistical tests we use, and the reasons we chose them.
The statistical tests we utilize in this work depend on their implementation. To mitigate this
threat we only rely on well-known and used Python packages scikit-learn (Pedregosa et al.
2011), scipy (Jones et al. 2001) and NetworkX (Hagberg et al. 2008).

7.2 Internal Validity

Internal validity is threatened by external influences that we did not, or are not able to
consider when trying to infer cause-effect relationships. An external factor we are not able
to consider is the usage of tools that are not bound to the Version Control System (VCS),
e.g., IDE plugins and cloud services without configurations in the VCS. This has no impact
on questions regarding general trends as in RQ1 because for this kind of question only
the “end result”, the code that is available in the VCS, is important. However, for RQ2
this may interfere with our ability to infer a causal relationship between PMD usage and
defect density or warning density. As the external use of tooling without traces in the VCS
is not something that we can include in our available data, we restrict our questions and
conclusions to PMD usage via buildfiles and not general usage as in IDE plugins or related
tooling. We are not able to mitigate this effect with our available data and, therefore, note
this here as a limitation to our internal validity.

Empirical Software Engineering (2020) 25:5137–51925174

7.3 External Validity

External validity is concerned with the generalizability of the conclusions we draw in this
study. As we cannot include every Java project, we depend on our sampling of the existing
Java projects. We restricted ourselves to a convenience sample of Java projects managed by
the Apache Software Foundation. Nevertheless, our study subjects consist of a diverse set
of projects used in different domains to reduce this threat due to the chosen projects.

Furthermore we observe only one ASAT, namely PMD. This restriction is necessary
because we cannot rely on all commits in projects being able to compile (Tufano et al. 2017).
Other ASATs, e.g., FindBugs need bytecode files which can be problematic if the project
is not being able to compile due to missing dependencies. Although this is a limitation of
our study, PMD includes a wide range of rules. They range from coding style rules to very
specific rules concerned with BigInteger usage in Java.

7.4 Conclusion Validity

Threats to conclusion validity include everything which hinders our ability to draw the
correct conclusion about relations between our observed measurements. For the complete
first research question, we are just counting our collected data. Thus, there should be no
threat to conclusion validity. We partially plotted and manually verified data to validate that
our extraction works as expected. In RQ2.4 we are comparing the differences in ranks of
two samples, i.e., non-PMD and PMD warning trends via a hypothesis test. The employed
hypothesis test, as all hypothesis tests, cannot directly tell us if our assumption is true. We
are employing the test under the assumption that there should be a difference and find only
a small one. This does not necessarily mean that the difference is really small. The cause for
the difference could also be an effect we do not know about. We tried to mitigate this threat
by removing overlapping rules of other ASATs which did not yield significant different
results. For RQ2.5, we created two groups for PMD and non PMD using development years,
we show that defect density is slightly smaller in years where PMD was used. Although this
is what the data shows it could also be a secondary effect not visible to us, e.g., the projects
using PMD have a smaller defect density overall due to being more stable feature wise. For
both comparisons of samples we checked the prerequisites for the used statistical test. To
correct for the number of statistical tests we employed Bonferroni correction (Abdi 2007).

8 Conclusion and Future work

In this work we investigated PMD usage in open source projects in the context of software
evolution. We extracted detailed software repository data over multiple years containing
static analysis warnings reported, and extracted additional source code metrics. In order to
determine if our study subjects remove static analysis warnings, we calculated trends of
warning density (the number of ASAT warnings per kLLoC) by fitting a linear regression
onto cleaned and preprocessed data. To the best of our knowledge, this is the first longi-
tudinal, commit level study of the evolution of ASAT warnings. Our work complements
existing work, which investigated ASAT warnings per warning, by providing a broader,
global overview of resolution trends and effects.

To answer our first main research question regarding the evolution of ASAT warnings
over time we performed a retrospective case study on a convenience sample of 54 open
source projects. We first investigated the evolution of ASAT warnings without taking ASAT

Empirical Software Engineering (2020) 25:5137–5192 5175

inclusion in buildfiles into account. We found that the general quality of code with regards
to ASAT warnings is improving, i.e., warning density is declining. We also found indica-
tions of changing coding conventions in our data as the most decreasing types of ASAT
warnings were consisting of naming and brace rules. Moreover, we found that on average
every project removes 3.5 ASAT warnings per thousand LLoC per year.

To answer our second main research question regarding the impact of using PMD on the
trend of ASAT warnings we leveraged our evolution data to provide answers to the short
and long term effects. We found that the short term effects were diverse while the long term
effects were positive in the majority of our study subjects. After that, we split the data into
years of development where PMD was included in the build process and years where it was
not included. This was done multiple times with different sets of rules. We compared both
populations and performed a statistical test on both samples. The test yielded a surprisingly
small difference, i.e., there is no statistical significant difference of using PMD via the build
process with regards to the warning density.

We then performed the comparison not on the warning density but on the overall sum of
ASAT warnings per commit which is mostly increasing due to its correlation with to the size
of the projects and possibly false positive warnings. We found that the difference between
years where PMD was used and years where it was not used was significant and that the
slopes of ASAT warning trends for years where PMD was used were near zero in most cases.
This could be an indication that best practices that were reported by Google (Sadowski et al.
2018) and Facebook (Distefano et al. 2019), i.e., only new code is scrutinized during static
analysis are also utilized in open source projects.

To measure the impact of PMD on software quality, we measured defect density as a proxy
metric for external software quality. We compared defect density of samples of development
years where PMD was used and where PMD was not used. We found a statistically sig-
nificant difference of defect density between years where PMD was used and years where
it was not used. This result shows that for years in which PMD was included in the build
process the study subjects had a smaller defect density than in years where PMD was not
used. Future work in this topic, aside from increasing the number of projects in our dataset,
could encompass inspecting code changes that increase quality as perceived by develop-
ers. When we determine changes which the developers perceive as quality increasing, we
could measure how many ASAT warnings are removed or introduced in these changes. This
would provide a more developer centric viewpoint to complement the defect density view
on software quality investigated in this publication.

A subset of data available to us contains manually validated information (Herbold et al.
2019). This information consists of links between commits and bugs and types of bug
reports as well as an improved SZZ (Śliwerski et al. 2005) variant to create links between
bug fixes and their inducing changes. It would be interesting to measure impact of bug fix-
ing changes on the number of ASAT warnings. This could shed light on how many ASAT
warnings may be part of a bug. In our opinion, this would be more within the scope of
FindBugs, as PMD contains more general rules. As far as we know there is no study that
investigated PMD with validated issue types and improved links to inducing changes.

Acknowledgments This work was partly funded by the German Research Foundation (DFG) through the
project DEFECTS, grant 402774445. We also want to thank the GWDG Göttingen14, as without the usage
of their HPC-Cluster the data collection would have taken decades.

14https://www.gwdg.de

Empirical Software Engineering (2020) 25:5137–51925176

https://www.gwdg.de

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

Appendix A : Study subjects

Project Timeframe #Files #Commits

archiva 2006-2017 750 7170
calcite 2013-2017 1626 1543
cayenne 2008-2017 3608 3655
commons-bcel 2002-2017 489 1285
commons-beanutils 2002-2017 257 1028
commons-codec 2004-2017 126 1562
commons-collections 2002-2017 531 2885
commons-compress 2004-2017 335 2197
commons-configuration 2004-2017 457 2639
commons-dbcp 2002-2017 105 1578
commons-digester 2002-2017 315 1143
commons-imaging 2008-2017 491 981
commons-io 2003-2017 234 1908
commons-jcs 2003-2017 559 1288
commons-jexl 2003-2017 149 1207
commons-lang 2003-2017 323 4394
commons-math 2004-2017 1374 5603
commons-net 2003-2017 272 1570
commons-rdf 2015-2017 165 221
commons-scxml 2006-2017 176 760
commons-validator 2003-2017 149 1233
commons-vfs 2003-2017 382 1921
eagle 2016-2017 1801 725
falcon 2012-2017 850 1669
flume 2012-2017 646 973
giraph 2010-2017 1569 876
gora 2011-2017 440 417
helix 2012-2017 823 952
httpcomponents-client 2006-2017 660 2799
httpcomponents-core 2006-2017 747 2592
jena 2013-2017 5669 2120
jspwiki 2001-2017 529 6829
knox 2013-2017 1031 967
kylin 2015-2017 1384 2145
lens 2014-2017 846 763
mahout 2009-2017 1220 3065
manifoldcf 2011-2017 1283 1569

Empirical Software Engineering (2020) 25:5137–5192 5177

http://creativecommonshorg/licenses/by/4.0/

mina-sshd 2009-2017 931 1217
nifi 2015-2017 3993 2165
opennlp 2011-2017 949 1703
parquet-mr 2013-2017 685 501
pdfbox 2009-2017 1192 6512
phoenix 2015-2017 1731 1613
ranger 2015-2017 944 1651
roller 2006-2015 610 2257
santuario-java 2002-2017 660 2583
storm 2012-2017 1897 172
streams 2013-2017 528 313
struts 2007-2017 1953 2628
systemml 2012-2017 1628 3917
tez 2014-2017 1089 1737
tika 2008-2017 988 2724
wss4j 2005-2017 720 2156
zeppelin 2014-2017 563 2185

Appendix B : PMD rules with groups and severities

Group Severity Rule

Basic Rules Major Avoid Branching Statement As Last In Loop
Basic Rules Critical Avoid Decimal Literals In Big Decimal Con-

structor
Basic Rules Major Avoid Multiple Unary Operators
Basic Rules Critical Avoid Thread Group
Basic Rules Major Avoid Using Hard Coded IP
Basic Rules Critical Avoid Using Octal Values
Basic Rules Minor Big Integer Instantiation
Basic Rules Minor Boolean Instantiation
Basic Rules Critical Broken Null Check
Basic Rules Critical Check Result Set
Basic Rules Critical Check Skip Result
Basic Rules Critical Class Cast Exception With To Array
Basic Rules Minor Collapsible If Statements
Basic Rules Critical Dont Call Thread Run
Basic Rules Critical Dont Use Float Type For Loop Indices
Basic Rules Critical Double Checked Locking
Basic Rules Critical Empty Catch Block
Basic Rules Minor Empty Finally Block
Basic Rules Major Empty If Stmt
Basic Rules Minor Empty Statement Block
Basic Rules Minor Empty Statement Not In Loop
Basic Rules Minor Empty Static Initializer
Basic Rules Major Empty Switch Statements
Basic Rules Major Empty Synchronized Block

Empirical Software Engineering (2020) 25:5137–51925178

Basic Rules Major Empty Try Block
Basic Rules Critical Empty While Stmt
Basic Rules Minor Extends Object
Basic Rules Minor For Loop Should Be While Loop
Basic Rules Critical Jumbled Incrementer
Basic Rules Critical Misplaced Null Check
Basic Rules Critical Override Both Equals And Hashcode
Basic Rules Critical Return From Finally Block
Basic Rules Major Unconditional If Statement
Basic Rules Minor Unnecessary Conversion Temporary
Basic Rules Critical Unused Null Check In Equals
Basic Rules Critical Useless Operation On Immutable
Basic Rules Minor Useless Overriding Method
Brace Rules Minor For Loops Must Use Braces
Brace Rules Minor If Else Stmts Must Use Braces
Brace Rules Minor If Stmts Must Use Braces
Brace Rules Minor While Loops Must Use Braces
Clone Implementation Rules Major Clone Throws Clone Not Supported Excep-

tion
Clone Implementation Rules Critical Proper Clone Implementation
Controversial Rules Minor Assignment In Operand
Controversial Rules Major Avoid Accessibility Alteration
Controversial Rules Minor Avoid Prefixing Method Parameters
Controversial Rules Major Avoid Using Native Code
Controversial Rules Minor Default Package
Controversial Rules Major Do Not Call Garbage Collection Explicitly
Controversial Rules Major Dont Import Sun
Controversial Rules Minor One Declaration Per Line
Controversial Rules Major Suspicious Octal Escape
Controversial Rules Minor Unnecessary Constructor
Design Rules Minor Abstract Class Without Abstract Method
Design Rules Minor Abstract Class Without Any Method
Design Rules Critical Assignment To Non Final Static
Design Rules Minor Avoid Constants Interface
Design Rules Major Avoid Instanceof Checks In Catch Clause
Design Rules Minor Avoid Protected Field In Final Class
Design Rules Minor Avoid Protected Method In Final Class Not

Extending
Design Rules Minor Avoid Reassigning Parameters
Design Rules Minor Avoid Synchronized At Method Level
Design Rules Critical Bad Comparison
Design Rules Minor Class With Only Private Constructors Should

Be Final
Design Rules Critical Close Resource
Design Rules Critical Constructor Calls Overridable Method
Design Rules Minor Default Label Not Last In Switch Stmt
Design Rules Major Empty Method In Abstract Class Should Be

Abstract

Empirical Software Engineering (2020) 25:5137–5192 5179

Design Rules Critical Equals Null
Design Rules Minor Field Declarations Should Be At Start Of

Class
Design Rules Minor Final Field Could Be Static
Design Rules Major Idempotent Operations
Design Rules Minor Immutable Field
Design Rules Major Instantiation To Get Class
Design Rules Minor Logic Inversion
Design Rules Critical Missing Break In Switch
Design Rules Minor Missing Static Method In Non Instantiatable

Class
Design Rules Critical Non Case Label In Switch Statement
Design Rules Critical Non Static Initializer
Design Rules Critical Non Thread Safe Singleton
Design Rules Major Optimizable To Array Call
Design Rules Critical Position Literals First In Case Insensitive

Comparisons
Design Rules Critical Position Literals First In Comparisons
Design Rules Major Preserve Stack Trace
Design Rules Major Return Empty Array Rather Than Null
Design Rules Minor Simple Date Format Needs Locale
Design Rules Minor Simplify Boolean Expressions
Design Rules Minor Simplify Boolean Returns
Design Rules Minor Simplify Conditional
Design Rules Major Singular Field
Design Rules Major Switch Stmts Should Have Default
Design Rules Minor Too Few Branches For ASwitch Statement
Design Rules Minor Uncommented Empty Constructor
Design Rules Minor Uncommented Empty Method
Design Rules Minor Unnecessary Local Before Return
Design Rules Critical Unsynchronized Static Date Formatter
Design Rules Major Use Collection Is Empty
Design Rules Critical Use Locale With Case Conversions
Design Rules Critical Use Notify All Instead Of Notify
Design Rules Minor Use Varargs
Finalizer Rules Major Avoid Calling Finalize
Finalizer Rules Minor Empty Finalizer
Finalizer Rules Critical Finalize Does Not Call Super Finalize
Finalizer Rules Minor Finalize Only Calls Super Finalize
Finalizer Rules Critical Finalize Overloaded
Finalizer Rules Critical Finalize Should Be Protected
Import Statement Rules Minor Dont Import Java Lang
Import Statement Rules Minor Duplicate Imports
Import Statement Rules Minor Import From Same Package
Import Statement Rules Major Too Many Static Imports
Import Statement Rules Minor Unnecessary Fully Qualified Name
J2EE Rules Critical Do Not Call System Exit
J2EE Rules Major Local Home Naming Convention

Empirical Software Engineering (2020) 25:5137–51925180

J2EE Rules Major Local Interface Session Naming
Convention

J2EE Rules Major MDBAnd Session Bean Naming
Convention

J2EE Rules Major Remote Interface Naming Convention
J2EE Rules Major Remote Session Interface Naming

Convention
J2EE Rules Critical Static EJBField Should Be Final
JUnit Rules Minor JUnit Assertions Should Include Message
JUnit Rules Critical JUnit Spelling
JUnit Rules Critical JUnit Static Suite
JUnit Rules Minor JUnit Test Contains Too Many Asserts
JUnit Rules Major JUnit Tests Should Include Assert
JUnit Rules Minor Simplify Boolean Assertion
JUnit Rules Minor Test Class Without Test Cases
JUnit Rules Minor Unnecessary Boolean Assertion
JUnit Rules Major Use Assert Equals Instead Of Assert True
JUnit Rules Minor Use Assert Null Instead Of Assert True
JUnit Rules Minor Use Assert Same Instead Of Assert True
JUnit Rules Minor Use Assert True Instead Of Assert

Equals
Jakarta Commons Logging Rules Major Guard Debug Logging
Jakarta Commons Logging Rules Minor Guard Log Statement
Jakarta Commons Logging Rules Minor Proper Logger
Jakarta Commons Logging Rules Major Use Correct Exception Logging
Java Logging Rules Major Avoid Print Stack Trace
Java Logging Rules Minor Guard Log Statement Java Util
Java Logging Rules Minor Logger Is Not Static Final
Java Logging Rules Major More Than One Logger
Java Logging Rules Major System Println
JavaBean Rules Major Missing Serial Version UID
Naming Rules Minor Avoid Dollar Signs
Naming Rules Minor Avoid Field Name Matching Method

Name
Naming Rules Minor Avoid Field Name Matching Type Name
Naming Rules Minor Boolean Get Method Name
Naming Rules Minor Class Naming Conventions
Naming Rules Minor Generics Naming
Naming Rules Minor Method Naming Conventions
Naming Rules Minor Method With Same Name As Enclos-

ing Class
Naming Rules Minor No Package
Naming Rules Minor Package Case
Naming Rules Minor Short Class Name
Naming Rules Minor Short Method Name
Naming Rules Minor Suspicious Constant Field Name
Naming Rules Critical Suspicious Equals Method Name
Naming Rules Critical Suspicious Hashcode Method Name

Empirical Software Engineering (2020) 25:5137–5192 5181

Naming Rules Minor Variable Naming Conventions
Optimization Rules Minor Add Empty String
Optimization Rules Major Avoid Array Loops
Optimization Rules Minor Redundant Field Initializer
Optimization Rules Major Unnecessary Wrapper Object Creation
Optimization Rules Minor Use Array List Instead Of Vector
Optimization Rules Major Use Arrays As List
Optimization Rules Major Use String Buffer For String Appends
Security Code Guideline Rules Major Array Is Stored Directly
Security Code Guideline Rules Major Method Returns Internal Array
Strict Exception Rules Major Avoid Catching Generic Exception
Strict Exception Rules Critical Avoid Catching NPE
Strict Exception Rules Major Avoid Catching Throwable
Strict Exception Rules Major Avoid Losing Exception Information
Strict Exception Rules Minor Avoid Rethrowing Exception
Strict Exception Rules Minor Avoid Throwing New Instance Of

Same Exception
Strict Exception Rules Critical Avoid Throwing Null Pointer

Exception
Strict Exception Rules Major Avoid Throwing Raw Exception Types
Strict Exception Rules Critical Do Not Extend Java Lang Error
Strict Exception Rules Critical Do Not Throw Exception In Finally
Strict Exception Rules Major Exception As Flow Control
String and StringBuffer Rules Major Avoid Duplicate Literals
String and StringBuffer Rules Minor Avoid String Buffer Field
String and StringBuffer Rules Minor Consecutive Appends Should Reuse
String and StringBuffer Rules Minor Consecutive Literal Appends
String and StringBuffer Rules Minor Inefficient String Buffering
String and StringBuffer Rules Critical String Buffer Instantiation With

Char
String and StringBuffer Rules Minor String Instantiation
String and StringBuffer Rules Minor String To String
String and StringBuffer Rules Minor Unnecessary Case Change
String and StringBuffer Rules Critical Use Equals To Compare Strings
Type Resolution Rules Major Clone Method Must Implement

Cloneable
Type Resolution Rules Major Loose Coupling
Type Resolution Rules Major Signature Declare Throws Exception
Type Resolution Rules Minor Unused Imports
Unnecessary and Unused Code Rules Major Unused Local Variable
Unnecessary and Unused Code Rules Major Unused Private Field
Unnecessary and Unused Code Rules Major Unused Private Method

Empirical Software Engineering (2020) 25:5137–51925182

A
p
p
en

d
ix
C
:P

M
D
ru
le
s
w
it
h
o
ve

rl
ap

p
in
g
A
SA

Ts

R
ul

e
O

ve
rl

ap
pi

ng

A
vo

id
B

ra
nc

hi
ng

St
at

em
en

tA
s

L
as

tI
n

L
oo

p
A

vo
id

D
ec

im
al

L
ite

ra
ls

In
B

ig
D

ec
im

al
C

on
st

ru
ct

or
Fi

nd
B

ug
s

(D
M

I
B

IG
D

E
C

IM
A

L
C

O
N

ST
R

U
C

T
E

D
FR

O
M

D
O

U
B

L
E

)
A

vo
id

M
ul

tip
le

U
na

ry
O

pe
ra

to
rs

A
vo

id
T

hr
ea

d
G

ro
up

A
vo

id
U

si
ng

H
ar

d
C

od
ed

IP
A

vo
id

U
si

ng
O

ct
al

V
al

ue
s

B
ig

In
te

ge
r

In
st

an
tia

tio
n

B
oo

le
an

In
st

an
tia

tio
n

C
he

ck
st

yl
e

(E
xp

lic
itI

ni
tia

liz
at

io
n)

Fi
nd

B
ug

s
(D

M
B

O
O

L
E

A
N

C
T

O
R

)
B

ro
ke

n
N

ul
lC

he
ck

C
he

ck
R

es
ul

tS
et

C
he

ck
Sk

ip
R

es
ul

t
C

la
ss

C
as

tE
xc

ep
tio

n
W

ith
To

A
rr

ay
C

ol
la

ps
ib

le
If

St
at

em
en

ts
D

on
tC

al
lT

hr
ea

d
R

un
Fi

nd
B

ug
s

(R
U

IN
V

O
K

E
R

U
N

)
D

on
tU

se
Fl

oa
tT

yp
e

Fo
r

L
oo

p
In

di
ce

s
D

ou
bl

e
C

he
ck

ed
L

oc
ki

ng
E

m
pt

y
C

at
ch

B
lo

ck
C

he
ck

st
yl

e
(E

m
pt

yC
at

ch
B

lo
ck

)
E

m
pt

y
Fi

na
lly

B
lo

ck
E

m
pt

y
If

St
m

t
E

m
pt

y
St

at
em

en
tB

lo
ck

E
m

pt
y

St
at

em
en

tN
ot

In
L

oo
p

E
m

pt
y

St
at

ic
In

iti
al

iz
er

E
m

pt
y

Sw
itc

h
St

at
em

en
ts

E
m

pt
y

Sy
nc

hr
on

iz
ed

B
lo

ck
E

m
pt

y
T

ry
B

lo
ck

E
m

pt
y

W
hi

le
St

m
t

E
xt

en
ds

O
bj

ec
t

Fo
r

L
oo

p
Sh

ou
ld

B
e

W
hi

le
L

oo
p

Empirical Software Engineering (2020) 25:5137–5192 5183

Ju
m

bl
ed

In
cr

em
en

te
r

M
is

pl
ac

ed
N

ul
lC

he
ck

O
ve

rr
id

e
B

ot
h

E
qu

al
s

A
nd

H
as

hc
od

e
C

he
ck

st
yl

e
(E

qu
al

sH
as

hC
od

e)
Fi

nd
B

ug
s

(H
E

E
Q

U
A

L
S

N
O

H
A

SH
-

C
O

D
E

,H
E

H
A

SH
C

O
D

E
N

O
E

Q
U

A
L

S)
R

et
ur

n
Fr

om
Fi

na
lly

B
lo

ck
U

nc
on

di
tio

na
lI

f
St

at
em

en
t

U
nn

ec
es

sa
ry

C
on

ve
rs

io
n

Te
m

po
ra

ry
U

nu
se

d
N

ul
lC

he
ck

In
E

qu
al

s
U

se
le

ss
O

pe
ra

tio
n

O
n

Im
m

ut
ab

le
U

se
le

ss
O

ve
rr

id
in

g
M

et
ho

d
Fo

r
L

oo
ps

M
us

tU
se

B
ra

ce
s

C
he

ck
st

yl
e

(N
ee

dB
ra

ce
s)

If
E

ls
e

St
m

ts
M

us
tU

se
B

ra
ce

s
C

he
ck

st
yl

e
(N

ee
dB

ra
ce

s)
If

St
m

ts
M

us
tU

se
B

ra
ce

s
C

he
ck

st
yl

e
(N

ee
dB

ra
ce

s)
W

hi
le

L
oo

ps
M

us
tU

se
B

ra
ce

s
C

he
ck

st
yl

e
(N

ee
dB

ra
ce

s)
C

lo
ne

T
hr

ow
s

C
lo

ne
N

ot
Su

pp
or

te
d

E
xc

ep
tio

n
Pr

op
er

C
lo

ne
Im

pl
em

en
ta

tio
n

C
he

ck
st

yl
e

(S
up

er
C

lo
ne

)
Fi

nd
B

ug
s

(C
N

ID
IO

M
SU

PE
R

C
A

L
L

)
A

ss
ig

nm
en

tI
n

O
pe

ra
nd

C
he

ck
st

yl
e

(I
nn

er
A

ss
ig

nm
en

t)
A

vo
id

A
cc

es
si

bi
lit

y
A

lte
ra

tio
n

A
vo

id
Pr

ef
ix

in
g

M
et

ho
d

Pa
ra

m
et

er
s

A
vo

id
U

si
ng

N
at

iv
e

C
od

e
D

ef
au

lt
Pa

ck
ag

e
D

o
N

ot
C

al
lG

ar
ba

ge
C

ol
le

ct
io

n
E

xp
lic

itl
y

D
on

tI
m

po
rt

Su
n

C
he

ck
st

yl
e

(I
lle

ga
lI

m
po

rt
)

O
ne

D
ec

la
ra

tio
n

Pe
r

L
in

e
Su

sp
ic

io
us

O
ct

al
E

sc
ap

e
U

nn
ec

es
sa

ry
C

on
st

ru
ct

or
A

bs
tr

ac
tC

la
ss

W
ith

ou
tA

bs
tr

ac
tM

et
ho

d
A

bs
tr

ac
tC

la
ss

W
ith

ou
tA

ny
M

et
ho

d
A

ss
ig

nm
en

tT
o

N
on

Fi
na

lS
ta

tic

Empirical Software Engineering (2020) 25:5137–51925184

A
vo

id
C

on
st

an
ts

In
te

rf
ac

e
C

he
ck

st
yl

e
(I

nt
er

fa
ce

Is
Ty

pe
)

A
vo

id
In

st
an

ce
of

C
he

ck
s

In
C

at
ch

C
la

us
e

A
vo

id
Pr

ot
ec

te
d

Fi
el

d
In

Fi
na

lC
la

ss
A

vo
id

Pr
ot

ec
te

d
M

et
ho

d
In

Fi
na

lC
la

ss
N

ot
E

xt
en

di
ng

Fi
nd

B
ug

s
(D

L
S

D
E

A
D

L
O

C
A

L
ST

O
R

E
,D

L
S

D
E

A
D

L
O

C
A

L
ST

O
R

E
O

F
N

U
L

L
)

A
vo

id
R

ea
ss

ig
ni

ng
Pa

ra
m

et
er

s
C

he
ck

st
yl

e
(P

ar
am

et
er

A
ss

ig
nm

en
t)

A
vo

id
Sy

nc
hr

on
iz

ed
A

tM
et

ho
d

L
ev

el
B

ad
C

om
pa

ri
so

n
C

la
ss

W
ith

O
nl

y
Pr

iv
at

e
C

on
st

ru
ct

or
s

Sh
ou

ld
B

e
Fi

na
l

C
he

ck
st

yl
e

(F
in

al
C

la
ss

)
C

lo
se

R
es

ou
rc

e
Fi

nd
B

ug
s

(O
D

R
O

PE
N

D
A

TA
B

A
SE

R
E

SO
U

R
C

E
,

O
D

R
O

PE
N

D
A

TA
B

A
SE

R
E

SO
U

R
C

E
E

X
C

E
PT

IO
N

PA
T

H
,

O
S

O
PE

N
ST

R
E

A
M

,O
S

O
PE

N
ST

R
E

A
M

E
X

C
E

PT
IO

N
PA

T
H

,
O

B
L

U
N

SA
T

IS
FI

E
D

O
B

L
IG

A
T

IO
N

,O
B

L
U

N
SA

T
IS

FI
E

D
O

B
L

IG
A

T
IO

N
E

X
C

E
PT

IO
N

E
D

G
E

)
C

on
st

ru
ct

or
C

al
ls

O
ve

rr
id

ab
le

M
et

ho
d

D
ef

au
lt

L
ab

el
N

ot
L

as
tI

n
Sw

itc
h

St
m

t
C

he
ck

st
yl

e
(D

ef
au

ltC
om

es
L

as
t)

E
m

pt
y

M
et

ho
d

In
A

bs
tr

ac
tC

la
ss

Sh
ou

ld
B

e
A

bs
tr

ac
t

E
qu

al
s

N
ul

l
Fi

nd
B

ug
s

(E
C

N
U

L
L

A
R

G
)

Fi
el

d
D

ec
la

ra
tio

ns
Sh

ou
ld

B
e

A
tS

ta
rt

O
f

C
la

ss
Fi

na
lF

ie
ld

C
ou

ld
B

e
St

at
ic

Id
em

po
te

nt
O

pe
ra

tio
ns

Im
m

ut
ab

le
Fi

el
d

In
st

an
tia

tio
n

To
G

et
C

la
ss

L
og

ic
In

ve
rs

io
n

M
is

si
ng

B
re

ak
In

Sw
itc

h
Fi

nd
B

ug
s

(S
F

SW
IT

C
H

FA
L

LT
H

R
O

U
G

H
)

M
is

si
ng

St
at

ic
M

et
ho

d
In

N
on

In
st

an
tia

ta
bl

e
C

la
ss

N
on

C
as

e
L

ab
el

In
Sw

itc
h

St
at

em
en

t
N

on
St

at
ic

In
iti

al
iz

er
N

on
T

hr
ea

d
Sa

fe
Si

ng
le

to
n

O
pt

im
iz

ab
le

To
A

rr
ay

C
al

l
Po

si
tio

n
L

ite
ra

ls
Fi

rs
tI

n
C

as
e

In
se

ns
iti

ve
C

om
pa

ri
so

ns

Empirical Software Engineering (2020) 25:5137–5192 5185

Po
si

tio
n

L
ite

ra
ls

Fi
rs

tI
n

C
om

pa
ri

so
ns

C
he

ck
st

yl
e

(E
qu

al
sA

vo
id

N
ul

l)
Pr

es
er

ve
St

ac
k

T
ra

ce
R

et
ur

n
E

m
pt

y
A

rr
ay

R
at

he
r

T
ha

n
N

ul
l

Fi
nd

B
ug

s
(P

Z
L

A
PR

E
FE

R
Z

E
R

O
L

E
N

G
T

H
A

R
R

A
Y

S)
Si

m
pl

e
D

at
e

Fo
rm

at
N

ee
ds

L
oc

al
e

Si
m

pl
if

y
B

oo
le

an
E

xp
re

ss
io

ns
C

he
ck

st
yl

e
(S

im
pl

if
yB

oo
le

an
E

xp
re

ss
io

n)
Si

m
pl

if
y

B
oo

le
an

R
et

ur
ns

C
he

ck
st

yl
e

(S
im

pl
if

yB
oo

le
an

R
et

ur
n)

Si
m

pl
if

y
C

on
di

tio
na

l
Si

ng
ul

ar
Fi

el
d

Sw
itc

h
St

m
ts

Sh
ou

ld
H

av
e

D
ef

au
lt

C
he

ck
st

yl
e

(M
is

si
ng

Sw
itc

hD
ef

au
lt)

Fi
nd

B
ug

s
(S

F
SW

IT
C

H
N

O
D

E
FA

U
LT

)
To

o
Fe

w
B

ra
nc

he
s

Fo
r

A
Sw

itc
h

St
at

em
en

t
U

nc
om

m
en

te
d

E
m

pt
y

C
on

st
ru

ct
or

U
nc

om
m

en
te

d
E

m
pt

y
M

et
ho

d
U

nn
ec

es
sa

ry
L

oc
al

B
ef

or
e

R
et

ur
n

U
ns

yn
ch

ro
ni

ze
d

St
at

ic
D

at
e

Fo
rm

at
te

r
Fi

nd
B

ug
s

(S
T

C
A

L
ST

A
T

IC
SI

M
PL

E
D

A
T

E
FO

R
M

A
T

IN
ST

A
N

C
E

,
ST

C
A

L
ST

A
T

IC
SI

M
PL

E
D

A
T

E
FO

R
M

A
T

IN
ST

A
N

C
E

)
U

se
C

ol
le

ct
io

n
Is

E
m

pt
y

U
se

L
oc

al
e

W
ith

C
as

e
C

on
ve

rs
io

ns
U

se
N

ot
if

y
A

ll
In

st
ea

d
O

f
N

ot
if

y
Fi

nd
B

ug
s

(N
O

N
O

T
IF

Y
N

O
T

N
O

T
IF

Y
A

L
L

)
U

se
V

ar
ar

gs
A

vo
id

C
al

lin
g

Fi
na

liz
e

Fi
nd

B
ug

s
(F

I
E

X
PL

IC
IT

IN
V

O
C

A
T

IO
N

)
E

m
pt

y
Fi

na
liz

er
Fi

nd
B

ug
s

(F
I

E
M

PT
Y

)
Fi

na
liz

e
D

oe
s

N
ot

C
al

lS
up

er
Fi

na
liz

e
C

he
ck

st
yl

e
(S

up
er

Fi
na

liz
e)

Fi
nd

B
ug

s
(F

I
M

IS
SI

N
G

SU
PE

R
C

A
L

L
)

Fi
na

liz
e

O
nl

y
C

al
ls

Su
pe

r
Fi

na
liz

e
Fi

na
liz

e
O

ve
rl

oa
de

d
Fi

na
liz

e
Sh

ou
ld

B
e

Pr
ot

ec
te

d
Fi

nd
B

ug
s

(F
I

PU
B

L
IC

SH
O

U
L

D
B

E
PR

O
T

E
C

T
E

D
)

D
on

tI
m

po
rt

Ja
va

L
an

g
C

he
ck

st
yl

e
(R

ed
un

da
nt

Im
po

rt
)

D
up

lic
at

e
Im

po
rt

s
C

he
ck

st
yl

e
(R

ed
un

da
nt

Im
po

rt
)

Im
po

rt
Fr

om
Sa

m
e

Pa
ck

ag
e

C
he

ck
st

yl
e

(R
ed

un
da

nt
Im

po
rt

)
To

o
M

an
y

St
at

ic
Im

po
rt

s
U

nn
ec

es
sa

ry
Fu

lly
Q

ua
lif

ie
d

N
am

e

Empirical Software Engineering (2020) 25:5137–51925186

D
o

N
ot

C
al

lS
ys

te
m

E
xi

t
L

oc
al

H
om

e
N

am
in

g
C

on
ve

nt
io

n
L

oc
al

In
te

rf
ac

e
Se

ss
io

n
N

am
in

g
C

on
ve

nt
io

n
M

D
B

A
nd

Se
ss

io
n

B
ea

n
N

am
in

g
C

on
ve

nt
io

n
R

em
ot

e
In

te
rf

ac
e

N
am

in
g

C
on

ve
nt

io
n

R
em

ot
e

Se
ss

io
n

In
te

rf
ac

e
N

am
in

g
C

on
ve

nt
io

n
St

at
ic

E
JB

Fi
el

d
Sh

ou
ld

B
e

Fi
na

l
JU

ni
tA

ss
er

tio
ns

Sh
ou

ld
In

cl
ud

e
M

es
sa

ge
JU

ni
tS

pe
lli

ng
JU

ni
tS

ta
tic

Su
ite

Fi
nd

B
ug

s
(I

JU
B

A
D

SU
IT

E
M

E
T

H
O

D
,I

JU
SU

IT
E

N
O

T
ST

A
T

IC
)

JU
ni

tT
es

tC
on

ta
in

s
To

o
M

an
y

A
ss

er
ts

JU
ni

tT
es

ts
Sh

ou
ld

In
cl

ud
e

A
ss

er
t

Si
m

pl
if

y
B

oo
le

an
A

ss
er

tio
n

Te
st

C
la

ss
W

ith
ou

tT
es

tC
as

es
Fi

nd
B

ug
s

(I
JU

N
O

T
E

ST
S)

U
nn

ec
es

sa
ry

B
oo

le
an

A
ss

er
tio

n
U

se
A

ss
er

tE
qu

al
s

In
st

ea
d

O
f

A
ss

er
tT

ru
e

U
se

A
ss

er
tN

ul
lI

ns
te

ad
O

f
A

ss
er

tT
ru

e
U

se
A

ss
er

tS
am

e
In

st
ea

d
O

f
A

ss
er

tT
ru

e
U

se
A

ss
er

tT
ru

e
In

st
ea

d
O

f
A

ss
er

tE
qu

al
s

G
ua

rd
D

eb
ug

L
og

gi
ng

G
ua

rd
L

og
St

at
em

en
t

Pr
op

er
L

og
ge

r
U

se
C

or
re

ct
E

xc
ep

tio
n

L
og

gi
ng

A
vo

id
Pr

in
tS

ta
ck

T
ra

ce
G

ua
rd

L
og

St
at

em
en

tJ
av

a
U

til
L

og
ge

r
Is

N
ot

St
at

ic
Fi

na
l

M
or

e
T

ha
n

O
ne

L
og

ge
r

Sy
st

em
Pr

in
tln

M
is

si
ng

Se
ri

al
V

er
si

on
U

ID
Fi

nd
B

ug
s

(S
E

N
O

SE
R

IA
LV

E
R

SI
O

N
ID

)
A

vo
id

D
ol

la
r

Si
gn

s

Empirical Software Engineering (2020) 25:5137–5192 5187

A
vo

id
Fi

el
d

N
am

e
M

at
ch

in
g

M
et

ho
d

N
am

e
A

vo
id

Fi
el

d
N

am
e

M
at

ch
in

g
Ty

pe
N

am
e

B
oo

le
an

G
et

M
et

ho
d

N
am

e
C

la
ss

N
am

in
g

C
on

ve
nt

io
ns

C
he

ck
st

yl
e

(T
yp

eN
am

e)
Fi

nd
B

ug
s

(N
M

C
L

A
SS

N
A

M
IN

G
C

O
N

V
E

N
T

IO
N

)
G

en
er

ic
s

N
am

in
g

C
he

ck
st

yl
e

(C
la

ss
Ty

pe
Pa

ra
m

et
er

N
am

e,
In

te
rf

ac
eT

yp
eP

ar
am

et
er

N
am

e,
M

et
ho

dT
yp

eP
ar

am
et

er
N

am
e)

M
et

ho
d

N
am

in
g

C
on

ve
nt

io
ns

C
he

ck
st

yl
e

(M
et

ho
dN

am
e)

Fi
nd

B
ug

s
(N

M
M

E
T

H
O

D
N

A
M

IN
G

C
O

N
V

E
N

T
IO

N
)

M
et

ho
d

W
ith

Sa
m

e
N

am
e

A
s

E
nc

lo
si

ng
C

la
ss

C
he

ck
st

yl
e

(M
et

ho
dN

am
e)

Fi
nd

B
ug

s
(N

M
M

E
T

H
O

D
C

O
N

ST
R

U
C

T
O

R
C

O
N

FU
SI

O
N

)
N

o
Pa

ck
ag

e
C

he
ck

st
yl

e
(P

ac
ka

ge
D

ec
la

ra
tio

n)
Pa

ck
ag

e
C

as
e

Sh
or

tC
la

ss
N

am
e

Sh
or

tM
et

ho
d

N
am

e
Su

sp
ic

io
us

C
on

st
an

tF
ie

ld
N

am
e

Su
sp

ic
io

us
E

qu
al

s
M

et
ho

d
N

am
e

Fi
nd

B
ug

s
(N

M
B

A
D

E
Q

U
A

L
)

Su
sp

ic
io

us
H

as
hc

od
e

M
et

ho
d

N
am

e
Fi

nd
B

ug
s

(N
M

L
C

A
SE

H
A

SH
C

O
D

E
)

V
ar

ia
bl

e
N

am
in

g
C

on
ve

nt
io

ns
C

he
ck

st
yl

e
(S

ta
tic

V
ar

ia
bl

eN
am

e,
Pa

ra
m

et
er

N
am

e,
Pa

ra
m

et
er

N
am

e,
Pa

ra
m

et
er

N
am

e,
Pa

ra
m

et
er

N
am

e,
C

on
st

an
tN

am
e)

Fi
nd

B
ug

s
(N

M
FI

E
L

D
N

A
M

IN
G

C
O

N
V

E
N

T
IO

N
)

A
dd

E
m

pt
y

St
ri

ng
A

vo
id

A
rr

ay
L

oo
ps

R
ed

un
da

nt
Fi

el
d

In
iti

al
iz

er
U

nn
ec

es
sa

ry
W

ra
pp

er
O

bj
ec

tC
re

at
io

n
U

se
A

rr
ay

L
is

tI
ns

te
ad

O
f

V
ec

to
r

U
se

A
rr

ay
s

A
s

L
is

t
U

se
St

ri
ng

B
uf

fe
r

Fo
r

St
ri

ng
A

pp
en

ds
A

rr
ay

Is
St

or
ed

D
ir

ec
tly

M
et

ho
d

R
et

ur
ns

In
te

rn
al

A
rr

ay
A

vo
id

C
at

ch
in

g
G

en
er

ic
E

xc
ep

tio
n

C
he

ck
st

yl
e

(I
lle

ga
lC

at
ch

)
Fi

nd
B

ug
s

(R
E

C
C

A
T

C
H

E
X

C
E

PT
IO

N
)

A
vo

id
C

at
ch

in
g

N
PE

A
vo

id
C

at
ch

in
g

T
hr

ow
ab

le
C

he
ck

st
yl

e
(I

lle
ga

lC
at

ch
)

A
vo

id
L

os
in

g
E

xc
ep

tio
n

In
fo

rm
at

io
n

Empirical Software Engineering (2020) 25:5137–51925188

A
vo

id
R

et
hr

ow
in

g
E

xc
ep

tio
n

A
vo

id
T

hr
ow

in
g

N
ew

In
st

an
ce

O
f

Sa
m

e
E

xc
ep

tio
n

A
vo

id
T

hr
ow

in
g

N
ul

lP
oi

nt
er

E
xc

ep
tio

n
A

vo
id

T
hr

ow
in

g
R

aw
E

xc
ep

tio
n

Ty
pe

s
C

he
ck

st
yl

e
(I

lle
ga

lT
hr

ow
s)

D
o

N
ot

E
xt

en
d

Ja
va

L
an

g
E

rr
or

D
o

N
ot

T
hr

ow
E

xc
ep

tio
n

In
Fi

na
lly

E
xc

ep
tio

n
A

s
Fl

ow
C

on
tr

ol
A

vo
id

D
up

lic
at

e
L

ite
ra

ls
Fi

nd
B

ug
s

(H
SC

H
U

G
E

SH
A

R
E

D
ST

R
IN

G
C

O
N

ST
A

N
T

)
A

vo
id

St
ri

ng
B

uf
fe

r
Fi

el
d

C
on

se
cu

tiv
e

A
pp

en
ds

Sh
ou

ld
R

eu
se

C
on

se
cu

tiv
e

L
ite

ra
lA

pp
en

ds
In

ef
fi

ci
en

tS
tr

in
g

B
uf

fe
ri

ng
St

ri
ng

B
uf

fe
r

In
st

an
tia

tio
n

W
ith

C
ha

r
St

ri
ng

In
st

an
tia

tio
n

St
ri

ng
To

St
ri

ng
U

nn
ec

es
sa

ry
C

as
e

C
ha

ng
e

U
se

E
qu

al
s

To
C

om
pa

re
St

ri
ng

s
C

he
ck

st
yl

e
(S

tr
in

gL
ite

ra
lE

qu
al

ity
)

Fi
nd

B
ug

s
(E

S
C

O
M

PA
R

IN
G

PA
R

A
M

E
T

E
R

ST
R

IN
G

W
IT

H
E

Q
,E

S
C

O
M

PA
R

IN
G

PA
R

A
M

E
T

E
R

ST
R

IN
G

W
IT

H
E

Q
)

C
lo

ne
M

et
ho

d
M

us
tI

m
pl

em
en

tC
lo

ne
ab

le
Fi

nd
B

ug
s

(C
N

IM
PL

E
M

E
N

T
S

C
L

O
N

E
B

U
T

N
O

T
C

L
O

N
E

A
B

L
E

)
L

oo
se

C
ou

pl
in

g
C

he
ck

st
yl

e
(I

lle
ga

lT
yp

e)
Si

gn
at

ur
e

D
ec

la
re

T
hr

ow
s

E
xc

ep
tio

n
U

nu
se

d
Im

po
rt

s
C

he
ck

st
yl

e
(U

nu
se

dI
m

po
rt

s)
U

nu
se

d
L

oc
al

V
ar

ia
bl

e
C

he
ck

st
yl

e
(F

in
al

L
oc

al
V

ar
ia

bl
e)

Fi
nd

B
ug

s
(D

L
S

D
E

A
D

L
O

C
A

L
ST

O
R

E
,

D
L

S
D

E
A

D
L

O
C

A
L

ST
O

R
E

O
F

N
U

L
L

)
U

nu
se

d
Pr

iv
at

e
Fi

el
d

Fi
nd

B
ug

s
(U

W
F

U
N

W
R

IT
T

E
N

PU
B

L
IC

O
R

PR
O

T
E

C
T

E
D

FI
E

L
D

,
U

W
F

U
N

W
R

IT
T

E
N

PU
B

L
IC

O
R

PR
O

T
E

C
T

E
D

FI
E

L
D

,
U

W
F

U
N

W
R

IT
T

E
N

PU
B

L
IC

O
R

PR
O

T
E

C
T

E
D

FI
E

L
D

,
U

U
F

U
N

U
SE

D
FI

E
L

D
,U

R
F

U
N

R
E

A
D

FI
E

L
D

,U
W

F
U

N
W

R
IT

T
E

N
FI

E
L

D
)

U
nu

se
d

Pr
iv

at
e

M
et

ho
d

Fi
nd

B
ug

s
(U

PM
U

N
C

A
L

L
E

D
PR

IV
A

T
E

M
E

T
H

O
D

)

Empirical Software Engineering (2020) 25:5137–5192 5189

References

Abdi H (2007) Bonferroni and Sidak corrections for multiple comparisons. In: Encyclopedia of Measurement
and Statistics, Sage, Thousand Oaks, CA, pp 103–107

Aloraini B, Nagappan M, German DM, Hayashi S, Higo Y (2019) An empirical study of security warn-
ings from static application security testing tools. J Syst Softw 158:110427. https://doi.org/10.1016/
j.jss.2019.110427. http://www.sciencedirect.com/science/article/pii/S0164121219302018

Aversano L, Canfora G, Cerulo L, Del Grosso C, Di Penta M (2007) An empirical study on the evolution
of design patterns. In: Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ACM,
New York, NY, USA, ESEC-FSE ’07, pp 385–394. http://doi.acm.org/10.1145/1287624.1287680

Bakota T, Hegedűs P, Körtvélyesi P, Ferenc R, Gyimóthy T (2011) A probabilistic software quality model.
In: 2011 27th IEEE International Conference on Software Maintenance (ICSM), pp 243–252

Beller M, Bholanath R, McIntosh S, Zaidman A (2016) Analyzing the state of static analysis: A large-scale
evaluation in open source software. In: 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 1, pp 470–481

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of mining
git. In: 2009 6th IEEE International Working Conference on Mining Software Repositories, pp 1–10

Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation of software quality. In: Proceedings of the
2Nd International Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos,
CA, USA, ICSE ’76, pp 592–605. http://dl.acm.org/citation.cfm?id=800253.807736

Campbell MJ, Gardner MJ (1988) Statistics in medicine: Calculating confidence intervals for some non-
parametric analyses. BMJ 296(6634):1454–1456. https://doi.org/10.1136/bmj.296.6634.1454. https://
www.bmj.com/content/296/6634/1454.full.pdf, https://www.bmj.com/content/296/6634/1454

Christakis M, Bird C (2016) What developers want and need from program analysis: An empirical study.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
ACM, New York, NY, USA, ASE 2016, pp 332–343. http://doi.acm.org/10.1145/2970276.2970347

Cohen J (1988) Statistical power analysis for the behavioral sciences, L. Erlbaum Associates
Devanbu P, Zimmermann T, Bird C (2016) Belief evidence in empirical software engineering. In: 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp 108–119
Digkas G, Lungu M, Avgeriou P, Chatzigeorgiou A, Ampatzoglou A (2018) How do developers fix issues

and pay back technical debt in the apache ecosystem? In: 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp 153–163

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271.
https://doi.org/10.1007/BF01386390

Distefano D, Fähndrich M, Logozzo F, O’Hearn PW (2019) Scaling static analyses at facebook. Commun.
ACM 62(8):62–70. https://doi.org/10.1145/3338112

Faragó C, Hegedűs P, Ferenc R (2015) Code ownership: Impact on maintainability. In: Gervasi O, Murgante
B, Misra S, Gavrilova ML, Rocha AMAC, Torre C, Taniar D, Apduhan BO (eds) Computational Science
and Its Applications – ICCSA 2015, Springer International Publishing, Cham, pp 3–19

Fenton N, Bieman J (2014) Software metrics: A rigorous and practical approach, 3rd edn. CRC Press, Inc.,
Boca Raton, FL, USA

Ferenc R, Hegedűs P, Gyimóthy T (2014) Software product quality models. In: Mens T, Serebrenik A,
Cleve A (eds) Evolving Software Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 65–100,
https://doi.org/10.1007/978-3-642-45398-4 3

Ferenc R, Tóth Z, Ladányi G, Siket I, Gyimóthy T (2020) A public unified bug dataset for java and its assess-
ment regarding metrics and bug prediction. Softw Qual J. https://doi.org/10.1007/s11219-020-09515-0

Fowler M (1999) Refactoring: Improving the design of existing code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA

FrontEndART (2019) Sourcemeter. https://www.sourcemeter.com/
Habib A, Pradel M (2018) How many of all bugs do we find? a study of static bug detectors. In: Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ACM, New York,
NY, USA, ASE 2018, pp 317–328. http://doi.acm.org/10.1145/3238147.3238213

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using Net-
workX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA, pp
11–15

Heckman S, Williams L (2009) A model building process for identifying actionable static analysis alerts. In:
2009 International Conference on Software Testing Verification and Validation, pp 161–170

Empirical Software Engineering (2020) 25:5137–51925190

https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://doi.acm.org/10.1145/1287624.1287680
http://dl.acm.org/citation.cfm?id=800253.807736
https://doi.org/10.1136/bmj.296.6634.1454
https://www.bmj.com/content/296/6634/1454.full.pdf
https://www.bmj.com/content/296/6634/1454.full.pdf
https://www.bmj.com/content/296/6634/1454
http://doi.acm.org/10.1145/2970276.2970347
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-3-642-45398-4_3
https://doi.org/10.1007/s11219-020-09515-0
https://www.sourcemeter.com/
http://doi.acm.org/10.1145/3238147.3238213

Heckman S, Williams L (2011) A systematic literature review of actionable alert identification techniques
for automated static code analysis. Inf. Softw. Technol. 53(4):363–387. https://doi.org/10.1016/j.infsof.
2010.12.007. http://dx.doi.org/10.1016/j.infsof.2010.12.007

Herbold S, Trautsch A, Trautsch F (2019) Issues with szz: An empirical assessment of the state of prac-
tice of defect prediction data collection. arxiv:1911.08938, Article is currently in submission to IEEE
Transactions on Software Engineering

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don't software developers use static
analysis tools to find bugs? In: Proceedings of the 2013 International Conference on Software Engi-
neering, IEEE Press, Piscataway, NJ, USA, ICSE ’13, pp 672–681. http://dl.acm.org/citation.cfm?
id=2486788.2486877

Jones E, Oliphant T, Peterson P et al (2001) SciPy: Open source scientific tools for Python. http://www.scipy.
org/, [Online; accessed 17.09.2018]

Kendall MG (1955) Rank correlation methods. Charles Griffin & Co. Ltd
Kim S, Ernst MD (2007) Prioritizing warning categories by analyzing software history. In: Proceedings of the

Fourth International Workshop on Mining Software Repositories, IEEE Computer Society, Washington,
DC, USA, MSR ’07, pp 27–, https://doi.org/10.1109/MSR.2007.26

Kim S, Ernst MD (2007) Which warnings should i fix first? In: Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ACM, New York, NY, USA, ESEC-FSE ’07, pp 45–54

Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target [special issues section]. IEEE Softw
13(1):12–21. https://doi.org/10.1109/52.476281

Kitchenham BA, Dyba T, Jorgensen M (2004) Evidence-based software engineering. In: Proceedings of
the 26th International Conference on Software Engineering, IEEE Computer Society, Washington, DC,
USA, ICSE ’04, pp 273–281. http://dl.acm.org/citation.cfm?id=998675.999432

Kreyszig E (2000) Advanced engineering mathematics: Maple computer guide, 8th edn. John Wiley & Sons,
Inc., New York, NY, USA

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: From metaphor to theory and practice. IEEE Softw
29(6):18–21. https://doi.org/10.1109/MS.2012.167

Lehman MM (1996) Laws of software evolution revisited. In: Proceedings of the 5th European Workshop on
Software Process Technology, Springer-Verlag, Berlin, Heidelberg, EWSPT ’96, pp 108–124. http://dl.
acm.org/citation.cfm?id=646195.681473

Levene H (1960) Robust tests for equality of variances. In: Contributions to probability and statistics,
Stanford Univ. Press, Stanford, Calif., pp 278–292

Liu K, Kim D, Bissyande TF, Yoo S, Le Traon Y (2018) Mining fix patterns for findbugs violations. IEEE
Trans Softw Eng, p 1–1. https://doi.org/10.1109/TSE.2018.2884955

Malloy BA, Power JF (2019) An empirical analysis of the transition from python 2 to python 3. Empir Softw
Eng 24(2):751–778. https://doi.org/10.1007/s10664-018-9637-2

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50–60

Marcilio D, Bonifácio R, Monteiro E, Canedo E, Luz W, Pinto G (2019) Are static analysis violations really
fixed?: A closer look at realistic usage of sonarqube. In: Proceedings of the 27th International Conference
on Program Comprehension, IEEE Press, Piscataway, NJ, USA, ICPC ’19, pp 209–219. https://doi.org/
10.1109/ICPC.2019.00040

McCabe TJ (1976) A complexity measure. IEEE Trans. Softw. Eng. 2(4):308–320. https://doi.org/10.1109/
TSE.1976.233837

McCall JA, Richards PK, Walters GF (1977) Factors in software quality: concept and definitions of software
quality. Rome Air Development Center, Air Force Systems Command, Griffiss Air Force Base, New
York, (13)

Panichella S, Arnaoudova V, Di Penta M, Antoniol G (2015) Would static analysis tools help developers
with code reviews? In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pp 161–170

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

Penta MD, Cerulo L, Aversano L (2009) The life and death of statically detected vulnerabilities: An empirical
study. Inf Softw Technol 51(10):1469–1484. https://doi.org/10.1016/j.infsof.2009.04.013. http://www.
sciencedirect.com/science/article/pii/S0950584909000500, Source Code Analysis and Manipulation,
SCAM 2008

Empirical Software Engineering (2020) 25:5137–5192 5191

https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
http://dx.doi.org/10.1016/j.infsof.2010.12.007
http://arxiv.org/abs/1911.08938
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://www.scipy.org/
http://www.scipy.org/
https://doi.org/10.1109/MSR.2007.26
https://doi.org/10.1109/52.476281
http://dl.acm.org/citation.cfm?id=998675.999432
https://doi.org/10.1109/MS.2012.167
http://dl.acm.org/citation.cfm?id=646195.681473
http://dl.acm.org/citation.cfm?id=646195.681473
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1007/s10664-018-9637-2
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1016/j.infsof.2009.04.013
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500

Plosch R, Gruber H, Hentschel A, Pomberger G, Schiffer S (2008) On the relation between external software
quality and static code analysis. In: 2008 32nd Annual IEEE Software Engineering Workshop, pp 169–
174

Querel L-P, Rigby PC (2018) Warningsguru: Integrating statistical bug models with static analysis to provide
timely and specific bug warnings. In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, Asso-
ciation for Computing Machinery, New York, NY, USA, ESEC/FSE 2018, pp 892–895. https://doi.org/
10.1145/3236024.3264599

Rahman F, Khatri S, Barr ET, Devanbu P (2014) Comparing static bug finders and statistical prediction. In:
Proceedings of the 36th International Conference on Software Engineering, ACM, New York, NY, USA,
ICSE 2014, pp 424–434. http://doi.acm.org/10.1145/2568225.2568269

Rosen C, Grawi B, Shihab E (2015) Commit guru: Analytics and risk prediction of software commits. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Association for
Computing Machinery, New York, NY, USA, ESEC/FSE 2015, pp 966–969. https://doi.org/10.1145/
2786805.2803183

Sadowski C, Aftandilian E, Eagle A, Miller-Cushon L, Jaspan C (2018) Lessons from building static analysis
tools at google. Commun. ACM 61(4):58–66. https://doi.org/10.1145/3188720

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? SIGSOFT Softw. Eng. Notes
30(4):1–5. https://doi.org/10.1145/1082983.1083147

Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:88–103
Szóke G, Antal G, Nagy C, Ferenc R, Gyimóthy T (2014) Bulk fixing coding issues and its effects on software

quality: Is it worth refactoring? In: 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation, pp 95–104

Thung F, Lucia, Lo D, Jiang L, Rahman F, Devanbu PT (2012) To what extent could we detect field defects?
an empirical study of false negatives in static bug finding tools. In: 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, pp 50–59

Trautsch A, Herbold S, Grabowski J (2020) A longitudinal study of static analysis warning evolution and the
effects of pmd on software quality in apache open source projects - online appendix and replication kit.
http://www.user.informatik.uni-goettingen.de/∼{}trautsch2/emse2019

Trautsch F, Herbold S, Makedonski P, Grabowski J (2017) Addressing problems with replicability and valid-
ity of repository mining studies through a smart data platform. Empir Softw Eng 23:1036–1083. https://
doi.org/10.1007/s10664-017-9537-x

Tufano M, Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD, Poshyvanyk D (2017) There and back
again: Can you compile that snapshot? J Soft Evol Process 29(4):e1838. http://dblp.uni-trier.de/db/
journals/smr/smr29.html#TufanoPBPOLP17

Vassallo C, Panichella S, Palomba F, Proksch S, Gall HC, Zaidman A (2019) How develop-
ers engage with static analysis tools in different contexts. Empir Softw Eng, pp 1419–1457.
https://doi.org/10.1007/s10664-019-09750-5

Vetro A, Morisio M, Torchiano M (2011) An empirical validation of findbugs issues related to defects. In:
15th Annual Conference on Evaluation Assessment in Software Engineering (EASE 2011), pp 144–153

Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R, Seidl A, Goeb A, Streit J (2012)
The quamoco product quality modelling and assessment approach. In: Proceedings of the 34th Inter-
national Conference on Software Engineering, IEEE Press, Piscataway, NJ, USA, ICSE ’12, pp 1133–
1142. http://dl.acm.org/citation.cfm?id=2337223.2337372

Wilk MB, Shapiro SS (1965) An analysis of variance test for normality (complete samples)†. Biometrika
52(3-4):591–611. https://doi.org/10.1093/biomet/52.3-4.591

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering: An introduction. Kluwer Academic Publishers, Norwell, MA, USA

Zampetti F, Scalabrino S, Oliveto R, Canfora G, Penta MD (2017) How open source projects use static code
analysis tools in continuous integration pipelines. In: 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pp 334–344

Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl JP, Vouk MA (2006) On the value of static analysis
for fault detection in software. IEEE Trans Softw Eng 32(4):240–253. https://doi.org/10.1109/TSE.2006.
38

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: Proceedings of the Third Inter-
national Workshop on Predictor Models in Software Engineering, IEEE Computer Society, Washington,
DC, USA, PROMISE ’07, pp 9–. http://dx.doi.org/10.1109/PROMISE.2007.10

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empirical Software Engineering (2020) 25:5137–51925192

https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
http://doi.acm.org/10.1145/2568225.2568269
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/3188720
https://doi.org/10.1145/1082983.1083147
http://www.user.informatik.uni-goettingen.de/~{{}}trautsch2/emse2019
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
https://doi.org/10.1007/s10664-019-09750-5
http://dl.acm.org/citation.cfm?id=2337223.2337372
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
http://dx.doi.org/10.1109/PROMISE.2007.10

	Static Analysis Warning Evolution and the Effects of PMD
	Abstract
	Introduction
	Related Work
	Background
	Mining Software Repository Histories
	Static Analysis Tools for Java
	Software Quality Evaluation

	Case Study Design
	Research Questions
	Subject Selection
	Methodology RQ1
	Select Commit Path
	Metric Extraction
	Calculate Warning Density
	Fit Linear Regression

	Methodology RQ2
	Parse buildfiles
	Filter Commits and Warnings
	Calculate Defect Density

	Analysis Procedure
	Replication Kit

	Case Study Results
	RQ1: How are ASAT warnings evolving over time?
	RQ1.1: Is the number of ASAT warnings generally declining over time?
	RQ1.2: Which warning types have declined or increased the most over time?

	RQ2: What is the impact of using PMD?
	RQ2.1: What is the short term impact of PMD on the number of ASAT warnings?
	RQ2.2: What is the long term impact of PMD on the number of ASAT warnings?
	RQ2.3: Does the active usage of custom rules for PMD correlate with higher ASAT warning removal?
	RQ2.4: Is there a difference in ASAT warning removal trends whether PMD is included in the build process or not?
	RQ2.5: Is there a difference in defect density whether PMD is included in the build process or not?

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion and Future work
	Appendix A Study subjects
	 PMD rules with groups and severities
	Appendix B PMD rules with groups and severities
	Appendix C: PMD rules with overlapping ASATs
	References

