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1  | INTRODUC TION

Scaling is ubiquitous and persistent in ecology. Following the ac-
claimed concept of pattern and scale (Levin, 1992), patterns and pro-
cesses at a certain spatial or temporal scale or organizational level 
emerge from patterns and processes at finer scales or levels and 
these, in turn, are influenced by the large-scale patterns (Figure 1,  
Lischke, Löffler, Thornton, & Zimmermann,  2007). Due to this, 
scaling, that is, changing from one scale to another, is not always 
straightforward, and sometimes can cause problems due to scale 

breaks, nonlinearities, feedbacks and heterogeneity in such pattern- 
process relationships (Snell et  al.,  2014). Additionally, scaling is 
sometimes not explicit, and confusion in terminology adds to scal-
ing-related problems. Here, we (1) address scaling terminology; (2) 
define three categories of scaling approaches, (a) pre-model scaling, 
(b) in-model scaling and (c) post-model scaling; and (3) explore ex-
amples, problems, and, where available, potential solutions in each 
category. We also elaborate our main claim that modelling is often 
confronted with scaling challenges, because modelling—directly or 
indirectly—always implies scaling.
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Abstract
1.	 Modelling is often confronted with scaling problems, because modelling—directly 

or indirectly—always implies scaling. This is because models simplify. Simplification 
usually means aggregation, and aggregation is a scaling process. As scaling cannot 
be avoided in modelling, it should carefully be addressed and resolved, at least to 
the degree possible.

2.	 In this paper, we give an overview of scaling approaches in ecological modelling. 
We propose to classify scaling approaches into pre-model scaling, in-model scal-
ing and post-model scaling depending on the timing of the scaling relative to the 
main modelling process.

3.	 We show general approaches, examples and potential application problems for 
each category. We suggest that scaling problems might be more widespread than 
previously thought. These scaling problems are matched with a range of solutions, 
but often these solutions will have to be adapted and tailored to the specific scal-
ing case.

4.	 Thus, we recommend that ecologists be aware of scaling challenges especially 
where models do not explicitly aim at scaling. Developing general test systems 
for scaling methods may help to broaden and enhance the application of scaling 
methods in ecology.
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The term ‘scale’ has several meanings in different scientific 
fields. Moreover, scale is not a property of the observed system, 
but of the observer, so that the observed systems may appear dif-
ferent at different scales, although the system does not change. In 
the ecological context, scale usually refers to the combination of 
extent and grain. Extent is the overall area of space or overall du-
ration in time of the study, divided into sub-units with dimensions 
defined by the grain. Sub-units with small dimensions have a fine 
grain (also ‘fine scale’), and sub-units with large dimensions have a 
coarse grain (also ‘coarse scale’). Ecological scales are usually ex-
plicit (spatially and or temporally) and thus can be quantified with 
SI units [e.g. time in (s) or area in (m2)]. On the contrary, hierar-
chical levels or entities such as individual, population and commu-
nity or local, regional and landscape usually cannot be converted, 
combined or divided in the same way. Unfortunately, hierarchical 
or organizational levels and entities are also referred to as ‘scales’. 
This is a common source of terminological confusion yielding im-
precise descriptions such as ‘at the landscape scale’ instead of an 
exact scale quantification in terms of extent and grain or simply 
‘at the landscape level’. Furthermore, different scientific fields 
accept different terminologies, which may prevent agreement on 
a standard definition (Schneider,  2009) and hinder interdisciplin-
ary collaborations. For example, cartographers use ‘large scale’ to 
describe maps with small extent (e.g. with a side length of 1 km), 
whereas ecologists often use ‘large scale’ to refer to large extents 
of areas (e.g. with a side length of 1,000 km). Here, we follow the 
ecologists’ approach and use large scale and small scale to refer to 
large and small extents if not indicated otherwise.

Scaling or process scaling is defined as translating information 
from one scale to the other. These scales are called source and tar-
get scale and differ in grain, extent or both. The direction of the in-
formation transfer defines whether it is scaling-up or scaling-down. 

In ecology, scaling is inevitable because ecological studies typically 
involve a range of scales. Ecosystem patterns and processes cover 
a wide range of space and time and often have multiple drivers that 
act at different scales.

Scaling problems arise basically from the loss of fine-scale 
information involved in scaling-up the grain or scaling-down the 
extent and the lack of information involved in scaling-up the ex-
tent or scaling-down the grain (Figure 2). They are reinforced by 
the complexity of the involved systems or models. In scaling-up, 
problems can be caused by fine-scale heterogeneity, unknown 
factors, temporally changing relationships, interactions, nonlin-
earity and feedbacks, the latter three leading to scale dependence 
(partly reviewed by Lischke et al., 2007; Snell et al., 2014). These 
problems can originate at the fine scale, at the coarse scale, or 
in between. Fine-scale problems are due to heterogeneity or in-
teractions. These scaling problems occur if the quantity to scale 
is not proportional to the ratio of area in spatial scaling or the 
time step ratio in temporal scaling. This means that proportion-
ality to these scale ratios is only given if the process forming the 
quantity is homogeneous over the scale range and no interactions 
distort the proportionality. There are a few cases where this pro-
portionality to scale ratios holds true, for example, for allometric 
relationships in tropical forests (Chave et al., 2005). Allometric re-
lationships include nonlinear relationships that are still monotonic 
so that scaling problems may be overcome through the derivation 
of power equations, with further examples ranging from body-size 
allometry to species–area curves (Miller, Turner, Smithwick, Dent, 
& Stanley, 2004). However, most real situations are more complex 
than this (e.g. Muller-Landau et  al.,  2006) and span several do-
mains of scale, which are characterized by abrupt changes or crit-
ical thresholds in the target process. Scaling via power laws (and 
in fact via most available techniques) is ill-advised across domains 
of scale. Here, inappropriate scaling equations would result in an 
aggregation error. At the coarse scale, unknown factors may play 
a role that were not considered important enough to be included 
at the fine scale. Scaling-up without considering these factors may 
thus lead to erroneous coarse-scale results. The same holds for 
scaling-down, where, for example, microclimate can have a huge 
effect not visible at the coarse scale. Between the scales, scaling 
problems arise from feedbacks between processes or patterns at 
different levels and from scale-dependent processes. Scale de-
pendence occurs where a process or pattern is significantly dif-
ferent at different scales due to local interactions and feedbacks. 
Such processes at broader scales emerge from the finer-scale 
processes. For example, following the gap-dynamics theory, the 
succession in a natural forest stand emerges from the stochastic 
dynamics of tree groups on many small patches, which show very 
different trajectories (Botkin, Janak, & Wallis, 1972).

Modelling is often confronted with scaling challenges, because 
scaling is an integral part of all modelling; otherwise, every process 
would have to be described on the spatial, temporal and organiza-
tional scale of sub-atomic particles. Here, we broadly define mod-
els as purposeful simplifications, including conceptual, statistical, 

F I G U R E  1   Concept of the relationship between models and 
scaling (bold arrows) in the context of scaling-up. Models are scaling 
methods in themselves, because they aggregate data to answer 
questions. We call this in-model scaling. Pre-model scaling methods 
can precede the actual model where model parameterization is 
based on statistical models of empirical data. Post-model scaling 
translates model results from one scale to another and reflects 
what traditionally is considered as scaling. Input data can also 
operate on the same scale as models and models can also produce 
same-scale results (thin arrows)
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equation-based, process-based, rule-based, simulation-based or 
agent-based models. Essentially, models have inputs (data, param-
eters), do something (calculation, simulation) and then produce an 
output (values, statistics, patterns). Even in the simple case of a sta-
tistical model that is calculating the mean value of a sample, the scale 
or level of the output differs from the scale or level of the input be-
cause the model provides aggregated information about the sample. 
We call this scaling in the broad sense, whereas scaling in the strict 
sense is translating a result obtained at one scale to another scale 
(e.g. Barraquand & Murrell, 2013; Denny & Benedetti-Cecchi, 2012; 
Englund & Leonardsson, 2008; Johst, Lima, & Berryman, 2013). In 
summary, models, by definition, simplify and simplification is a scal-
ing process.

Scaling can, thus, not be avoided in modelling and should care-
fully be addressed, at least to the degree possible. Scaling may occur 
at different stages during the modelling process (Figure 1). We have 
pointed out that models in themselves are scaling procedures. Such 
‘in-model scaling’ can also be done on purpose, for example, for a 
controlled simplification (Lischke, Löffler, & Fischlin,  1998), or for 
including finer-scale processes, for example, hourly transpiration 
in a vegetation model acting on a yearly time step (Speich, Zappa, 
& Lischke, 2018; Speich, Zappa, Scherstjanoi, & Lischke,  2019). 
However, scaling can also happen before and after the actual mod-
elling process. For example, when models are parametrized with 
empirical data, the parameter values usually are the result of statis-
tical models of these data such as slopes and intercepts of a linear 

regression model. Since statistical analysis can be an aggregation 
and thus a scaling process, we suggest to call this ‘pre-model scaling’. 
Pre-model scaling includes any scaling that is done prior to running 
a model, including the data collection process. It can involve the use 
of other models, such as statistical models in the example, or climatic 
relationships in statistical climate downscaling (Karger et al., 2017). 
‘Post-model scaling’ then captures scaling based on model outputs, 
that is, scaling in the strict sense. Neither pre-model nor post-model 
scaling are essential, because a model can do without empirical input 
data if it addresses theoretical questions or without outputs scaled 
up in space or time if outputs at the spatial and temporal scales of the 
model are sufficient to answer the model question. We think that the 
classification into pre-model, in-model and post-model scaling meth-
ods facilitates revealing hidden scaling procedures and disentangling 
some of the confusion and ambiguity in current treatments of scal-
ing methods. Where the application of this classification reveals hid-
den scaling methods, it becomes apparent that scaling methods and 
thus scaling problems might be more widespread than previously 
thought. We assigned some commonly used scaling techniques to 
those new categories, describing the purpose of the scaling methods 
and whether they accept heterogeneous input, visualizing their main 
principle and giving at least one example application from the litera-
ture for each of them (Table 1).

In the following, we will specify scaling problems and exam-
ples for approaches from pre-model scaling via in-model scal-
ing to post-model scaling. Finally, we will make some practical 

F I G U R E  2   (a) During scaling-up of the extent, there may be a lack of information regarding areas not covered at the fine scale. Scaling-
up of fine grain to coarse grain requires aggregation and thus loss of information. Scaling-up methods can directly (e.g. via individual-based 
models) or indirectly exploit the emergence of broad-scale patterns from fine-scale interactions. (b) Scaling-down of the extent involves loss 
of information about the areas not anymore covered by the model. Scaling-down of the grain may require fine-grain information that is not 
available. Lacking fine-scale information such as fine-scale interactions can sometimes be derived from broad-scale patterns
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recommendations to guide the application of scaling approaches 
(see also Figure 3) and point out theoretical avenues towards min-
imizing some related problems in scaling.

2  | SC ALING APPROACHES ALONG THE 
MODEL CHAIN

2.1 | Pre-model scaling

Pre-model scaling refers to aggregation or disaggregation of values 
to make them usable as model inputs. This (dis)aggregation is not 
necessarily related to a scaling procedure across space or time (note 
that if parameters were aggregated across spatial or temporal scales, 
the result would be called an effective parameter and the procedure 
would fall into the category in-model scaling). Pre-model scaling 

often involves statistical modelling if parameter values are deter-
mined by parameterization from detailed empirical data instead of 
by calibration with coarse empirical data (e.g. via pattern-oriented 
modelling; Grimm et al., 2005). Parameters of a model usually have 
a standard or reference value that needs to be extracted from em-
pirical data. These data can be obtained from literature sources, 
own measurements, expert knowledge or their combination. Even 
if only one source is used, the parameter value is in almost all cases 
the result of some statistical calculation to aggregate over a sample. 
This ranges from simple averages and estimates of linear regres-
sion models or generalized linear mixed effects models to results 
of more advanced techniques such as Bayesian analysis. All these 
approaches do some kind of aggregation, that is, scaling-up. This 
is more obvious where values from several sources are combined 
into one model parameter value, again using statistics and thus scal-
ing-up. Fortunately, pre-model scaling problems such as nonlinear 

F I G U R E  3   Suggestion on an identification key for scaling approaches (black boxes) based on the aims of the modeller (white boxes) and 
conditions set by the available data and knowledge (grey boxes). For example, if a modeller would like to obtain large-scale model output (i.e. 
do scaling-up), she first checks whether she can (or wants to) derive a mathematical or statistical relationship; if yes and she is not interested 
to provide an alternative model formulation for an existing large-scale model, but use the relationship to do the actual scaling-up, she might 
select scale transition theory if the relationship is simple, i.e. without extra assumptions (see also main text and Table 1)
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relationships, heterogeneity in the form of non-normal distributions, 
and interactions can be addressed with a broad array of statistical 
methods including nonlinear regression models, generalized linear 
models or mixed models (Crawley, 2012).

Model inputs such as spatial maps or time series can also be sub-
ject to pre-model scaling. The spatial resolution of input maps can 
significantly and differentially affect model behaviour. For instance, 
scaling-up is always associated with a loss of information or aggre-
gation error, for example with respect to landscape homogenization, 
when animal dispersal and animal population dynamics are simulated 
(Bocedi, Pe’er, Heikkinen, Matsinos, & Travis, 2012). This can lead to 
a bias depending on the aim of the model. Thus, the spatial resolution 
of input maps needs to be adapted to the requirements of the model 
by scaling-up and scaling-down. Common coarsening methods for ag-
gregation of information in gridded maps apply the majority rule (use 
the most common state of fine cells for the aggregated cell), simple av-
eraging (use the average of the fine-scale information), area-weighted 
mean (weigh the average by the area a state is covering inside the 
aggregated cell) and kriging (fit a spatial function of the information; 
Chiles & Delfiner, 1999). Scaling-down in contrast increases the in-
formation content by generating finer-scale patterns based on inter-
polating large-scale patterns, sometimes using additional information 
and models. One example is climate regionalization, where climatic 
variables are scaled down (Ekstroem, Grose, & Whetton, 2015). This 
includes that temperatures are interpolated and refined by fine-scale 
elevation data, and precipitation patterns by additional data about 
prevailing wind fields resulting in luv and lee effects of mountain 
ranges (Karger et al., 2017). Similarly, temporal scaling-down adds val-
ues between given values, by more or less explicit assumptions about 
the underlying process. For example, daily temperature data are often 
created by interpolation based on linear or sine-wave functions be-
tween monthly values (Lischke, Loffler, & Fischlin, 1997).

2.2 | In-model scaling

Modelling is a robust way to bridge scale discrepancies and to in-
clude multiple spatial and temporal interactions when analysing 
complex ecological phenomena (Urban,  2005). This is reflected in 
the broad range of model-based scaling-up methods. Reviews of eco-
logical model-based scaling methods are available for general ecology 
(Rastetter, Aber, Peters, Ojima, & Burke, 2003; Urban, 2005; Urban 
et al.,  1999; Wu et al., 2006), species distribution models (Miller 
et al., 2004), landscape research (Lischke et al., 2007), forest ecosys-
tem management (Seidl et al., 2013) and dynamic vegetation models 
(Snell et al., 2014); thus, we only give a short overview here (see also 
Table 1). Scaling-down refers to the refinement of processes within 
the model, sometimes by coupling a submodel for some processes to 
the original model. For example, the dynamic global vegetation model 
LPJ, which was based on representative (average) individuals of plant 
functional types, was merged with an individual-based model of tree 
species, significantly improving the simulated vegetation dynamics 
(Smith et al., 2008).

The purposes of in-model scaling-up are deriving simpler models 
for (a) computationally more efficient simulations (in terms of mem-
ory and time), (b) mathematical tractability and (c) detecting and 
formalizing emergent dynamics. A few in-model scaling-up methods 
will be reviewed in the following (see also Table 1).

Averaged or ‘effective’ parameters (Wu et al., 2006) can some-
times be derived from the small scale for the large scale and directly 
used as input to the original small-scale model to generate large-
scale output (Cipriotti et al., 2016). This only works in the absence of 
scale-dependent processes or interactions at the large scale.

Brute force approaches work with copies of a small-scale 
model that are run in each cell of a large-scale grid using the local 
conditions of the respective cell as inputs (Cipriotti et  al., 2016; 
Peters et al., 2004). To work trustworthily, they also require the 
absence of additional large-scale processes and large-scale inter-
actions. A brute force approach can be combined with interactions 
at the large scale to broaden its applicability. However, this comes 
at the cost of huge computing power requirements and is often 
not feasible. In individual-based modelling, computing power 
constraints of brute force approaches can be alleviated using su-
per-individuals or representative individuals. In individual-based 
models (and some complex physiological models), population- or 
community-level dynamics are not imposed, but emerge from in-
dividual-level interactions (Grimm & Railsback, 2005). Aggregating 
such individuals into super-individuals that share similar prop-
erties such as age or size is very useful to save computing time 
(Scheffer, Baveco, DeAngelis, Rose, & van Nes, 1995). For exam-
ple, Xavier et al. (2007) successfully implemented a multiscale 
individual-based model of microbial and bioconversion dynam-
ics with bacterial groups clustered into super-individuals called 
granules. Representative individuals are also typical of forest gap 
models (Bugmann, 2001). Similarly, grid cells can be clustered into 
similar representative cells. For example, the forest landscape 
models LANDIS II (Scheller et al., 2007) and iLand (Seidl, Rammer, 
Scheller, & Spies, 2012) work with ecoregions that are considered 
homogeneous over the entire simulation time. In their dynamic 
global vegetation model, Lehsten et al. (2019) simulate local for-
est dynamics only along transects, interpolate between them, but 
simulate dispersal in all fine-scale grid cells. Nabel (2015) dynam-
ically assign cells of similar species composition to representative 
cells in which local forest dynamics are simulated and then redis-
tributed into space. However, the aggregation bias associated to 
a super-individual or representative cell approach arising from 
the clustering of similar but not necessarily identical entities can 
advocate against this approach and in favour of non-aggregated 
approaches (Parry & Evans, 2008).

A very elegant but also very difficult way of scaling-up is to derive 
the broad-scale process functions of the model given the scaling-up 
of the state variables, ideally mathematically or partly heuris-
tically (see Figure 1 in Lischke et  al.,  2007). For example, Lischke 
et al. (1998) aggregated tree populations of a forest gap model into 
height classes. The main heuristic assumption was that a crucial el-
ement of the gap models—namely the between-gap heterogeneity 
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resulting from the small-scale demographic stochasticity in each 
gap—can be mimicked by a random spatial distribution of the trees. 
Based on this assumption, it was possible to mathematically derive 
the main process functions.

Scale transition theory also provides analytical methods for 
such a mathematical scaling-up of population dynamics based 
on nonlinear population growth and spatial or temporal varia-
tion in population densities as well as abiotic factors (Chesson, 
Donahue, Melbourne, & Sears,  2005). These methods are based 
on a mathematical manipulation, the Laplace transform, and draw 
on the phenomenon of nonlinear averaging (Chesson, 1978, 1981). 
It has, for example, been applied to scale-up the population dy-
namics of caddisflies from riffles to whole streams (Melbourne 
& Chesson,  2005). Scale transition theory has been elaborated 
and widely extended over the past decades (Benedetti-Cecchi 
et  al.,  2012; Chesson,  1998, 2009, 2012; Chesson et  al.,  2005; 
Melbourne & Chesson, 2006).

Meta-models are doubly simplified, because they are models 
of models (Urban,  2005; reviewed in Pietzsch et  al.,  2020). To 
obtain a meta-model, first a small-scale simulation model is run 
under all sets of conditions that are relevant for large-scale model 
analysis. Then, the meta-model is fitted to the results of these 
simulations given the respective conditions. The meta-model is 
then used to make predictions at the large scale that are either 
directly used or entered into a simplified large-scale simulation 
model. In contrast to the method of analytical approximations 
(see Section 2.3), in meta-modelling, the small-scale model is not 
of interest in itself, but only as a basis for scaling-up with the 
meta-model. Typically, a meta-model is a statistical model such as 
a multiple regression, mixed effects or generalized linear model 
(Meier et al., 2012). More recent meta-modelling techniques in-
clude neural networks. Rammer and Seidl (2019) fitted a neural 
network to the IBM iLand, run in many combinations of environ-
mental conditions. The meta-model then gave the trajectories 
of the forest dynamics. In forest gap modelling, Markov mod-
els have also been used as meta-models (Acevedo et al.,  1995, 
1996) and can under certain conditions be generated automat-
ically (Acevedo et al.,  2001). Urban et  al.  (1999) presented a 
semi-Markov meta-model based on a cellular automaton. These 
meta-models interpolate over the whole parameter space given 
by the simulated conditions. In other cases, meta-models consist 
of libraries or lookup tables that contain results of small-scale 
simulations only for the simulated sets of conditions without in-
terpolation (Cipriotti et al., 2016; Seidl et al., 2012). These librar-
ies or lookup tables are then used in large-scale simulations to 
save ad hoc simulation time. If meta-models are used to avoid 
running many costly simulations of the original model, then they 
can be ‘black boxes’, as in the case of the neural networks. If the 
meta-model structure is based on ecological theory, such as the 
Lotka-Volterra competition model, meta-modelling could ad-
ditionally give ecological insights by relating the processes and 
parameters of the original complex model to that of a mathemat-
ically well studied simpler theoretical model.

2.3 | Post-model scaling

Post-model scaling addresses all scaling procedures that are applied 
to the output of models. Post-model scaling procedures comprise 
analytical approximations as well as statistical methods such as those 
described in the section on pre-model scaling but also advanced 
spatial statistical approaches such as the pair correlation function. 
Usually, simulation results are presented at different degrees of ag-
gregation, for example, as total biomass versus environmental gradi-
ents or as biodiversity in time and space, all of them representing a 
simple post-model scaling-up. In contrast, if representative-cell ap-
proaches have been used, the results are then redistributed in space, 
that is, scaled-down again.

Analytical approximations are elegant tools to simplify scaling-up 
approaches by fitting an analytical model to the large-scale output 
of a small-scale simulation model (Grimm & Railsback, 2005, chapter 
11). If a suitable analytical expression can be found, it is a huge ad-
vantage, because analytical models are computationally much sim-
pler than corresponding simulation models (Tietjen & Huth, 2006). 
Hence, it is not a scaling method per se, but a method to improve 
computing times during scaling. In contrast to meta-modelling (see 
Section 2.2), the analytical approximation is not necessary to fulfil 
the aim of the original model, but contributes an additional post-hoc 
scaling-up component. For instance, Moorcroft et al. (2001) used 
partial differential equations to approximate the results of a stochas-
tic individual-based simulation model of ecosystem dynamics. Their 
small-scale simulation model operates at the scale of 15 m × 15 m, 
representing a forest gap of a few individuals. With their analytical 
approximation of time-dependent model behaviour, they were able 
to scale up to one-degree grid cells. Analytical approximations can 
also help to gain insight from scaling-up between individuals and 
populations. Fahse et al. (1998) were able to show that the results 
of their individual-based simulation model on bird flocking corre-
sponded well with the analytical model of logistic growth. This was 
perceived as very beneficial during model analysis. However, appli-
cations of analytical approximations are not always unequivocal. In 
their analytical approximations of the population-level results of an 
individual-based competition model, Johst et  al.  (2013) found that 
the same type of resource competition was best described by dif-
ferent functional forms depending on the type of exogenous fluctu-
ation, that is, food availability or weather. Fitting analytical models 
should thus not only follow statistical criteria, but be tailored to the 
ecological case study.

Advanced spatial statistics can also be used for scaling-up simula-
tion results. Azaele et al. (2015) applied the pair correlation function 
to scale spatial species abundance distributions from a 1 m radius 
to a 400  m radius. The pair correlation function describes spatial 
point patterns (e.g. of study subject locations) across scales by deter-
mining how the density of points varies depending on the distance 
to reference points. However, predicting species abundance distri-
butions from pair correlation functions relies on restrictive assump-
tions that exclude scale dependence in the functional form of the 
species abundance distribution, require the random environmental 
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variability in the region to be moderate and prohibit spatial hetero-
geneity. This strongly restricts the applicability of the pair correla-
tion function for scaling-up.

3  | CONCLUSIONS AND FUTURE 
DIREC TIONS

This review takes the perspective that scaling is inherent to model-
ling and elaborates how the scaling approaches that are available can 
be classified into pre-model, in-model and post-model scaling meth-
ods. This implies that scaling and the associated problems are prob-
ably more widespread than previously thought, since they cover so 
many different areas of modelling. Thus, we recommend that ecolo-
gists be aware of scaling problems especially where models do not 
explicitly aim at scaling.

In terms of practical recommendations, we have derived a 
rough identification key for scaling approaches based on the ap-
proaches reviewed here (Figure 3). Given the aims and conditions 
of an ecological modelling study, the key provides decision sup-
port which scaling approach may be most suitable in which cases. 
However, the small number of aims and conditions covered by the 
key also reveals that the available scaling approaches do not often 
provide generally applicable solutions. Often, scaling approaches 
will have to be tailored to the specific case or new methods will 
have to be developed.

Future directions for theoretical and methodical advancement 
include four steps: First, the potential of existing scaling approaches 
should be more fully exploited. For example, in meta-modelling, 
many more statistical techniques may be explored. Second, underex-
plored scaling techniques such as Bayesian approaches (Clark, 2003; 
Ellison, 2004; Wikle, Berliner, & Cressie, 1998) and spatial statistics 
(Azaele et al., 2015; Illian, Penttinen, Stoyan, & Stoyan, 2008) should 
be further developed. For example, a Bayesian approach has already 
been successfully applied to scale-up from the individual level to the 
population level in an animal movement model (Hooten, Buderman, 
Brost, Hanks, & Ivan, 2016). Third, gaps in the coverage of current 
approaches (Figure 3), for example, dealing with scale dependence, 
should be filled by developing entirely new scaling approaches. 
Finally and importantly, scaling-up results need to be evaluated 
(Moorcroft et al., 2001; Schindler, 1998). Such an evaluation requires 
knowledge of the true pattern for comparison, at least for parts of 
the target scale, and should ideally control for environmental vari-
ability (Azaele et al., 2015), which is difficult to achieve. One ave-
nue to address this evaluation challenge, for example, in vegetation 
modelling is to take advantage of data from mega-plots such as the 
ForestGEO plots with extents of more than 25 ha or of new methods 
in remote sensing that provide data at almost any desired grain and 
extent and compare them with scaling results. Another avenue is to 
design virtual test systems where the true patterns are known at 
any scale so that the relative performance of different scaling meth-
ods can be evaluated (e.g. case study 2 in Sciaini, Fritsch, Scherer, 
& Simpkins, 2018). Following these directions may help to improve 

current scaling solutions and diversify the portfolio of available scal-
ing methods in the future.
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