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Abstract. Mycorrhizal symbiosis has received relatively little attention as a mechanism explaining plant
naturalizations at a global scale. Here, we combined data on vascular plant species occurrences in over 840
mainland and island regions from the Global Naturalized Alien Flora (GloNAF) database with up-to-date
databases of mycorrhizal associations. We tested whether the mycorrhizal type (arbuscular, AM; ectomycor-
rhizal, ECM; and non-mycorrhizal, NM) and status (facultative and obligate) were associated with two mea-
sures of naturalization success, (1) naturalization incidence (reflecting the ability to naturalize, and expressed
as whether or not a plant species is recorded as naturalized anywhere in the world) and (2) naturalization
extent (expressed as the number of GloNAF regions where the species occurs). In total, we found information
on mycorrhizal type and status for 3211 naturalized plant species and 4200 non-naturalized plant species.
Mycorrhizal plant species, both AM and ECM, were more likely to be naturalized and naturalized to a
greater extent than NM plants. The effect of being an AM species was always stronger, with AM species hav-
ing a greater naturalization extent than ECM species. Being the same mycorrhizal type or status, annual spe-
cies were generally more likely to be naturalized than perennials. Species with facultative mycorrhizal
associations were more successful than those with obligate mycorrhizal associations, but both groups tended
to have a greater chance of being naturalized than NM species. These results indicate that being NM is gener-
ally less favorable for naturalization. Overall, our results confirm, at the global scale, those of regional studies
that facultative association with AM provides plant species with a naturalization advantage. For the first
time, we have shown that being mycorrhizal contributes not only to the size of the naturalized range, reflect-
ing the ability to spread, but also to the ability to become naturalized in the first instance.
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INTRODUCTION

A key stage in the process of plant invasion is
the naturalization phase (Richardson and Py�sek
2012), which involves the establishment of self-
sustaining populations in resident plant commu-
nities after anthropogenic introduction into a
new region (Div�ı�sek et al. 2018). This results in
integration of alien species into local floras
(Py�sek et al. 2012, 2017), once the species have
overcome environmental and biotic barriers to
reproduction (Richardson et al. 2000b, Blackburn
et al. 2011). Success or failure in naturalization is
driven by complex interactions of multiple fac-
tors including climatic matching between the
native and introduced region, habitat legacy,
propagule pressure (Lonsdale 1999), and species’
biological and ecological traits (van Kleunen
et al. 2015b, Py�sek et al. 2015). However, the role
these factors play depends on the stage of inva-
sion process and may differ for naturalized and
invasive plants (Williamson 2006, K€uster et al.
2008, Py�sek et al. 2009), that is, a subset of natu-
ralized species that spread over large distances
(Richardson et al. 2000b).

Despite the considerable attention paid to
determinants of naturalization success, the role
of mutualisms has received relatively less atten-
tion (Richardson et al. 2000a, Mitchell et al.
2006). One example is the relationship with myc-
orrhizal fungi. Although mycorrhizal symbiosis
has been thoroughly studied in plant ecology,
particularly since the seminal paper of Grime
et al. (1987), in plant invasions it has been rather
understudied. Recently, the rapid development
of molecular techniques has improved our
knowledge of these symbioses; biogeographic
and taxonomic data are now available at a global
scale (€Opik et al. 2010, Tedersoo et al. 2014,
P€artel et al. 2017). As a result, the role of mycor-
rhizal symbioses in plant invasions is becoming
better understood (Delavaux et al. 2019, Stei-
dinger et al. 2019).

Most mycorrhizal fungi exhibit low host speci-
ficity (van der Heijden et al. 2015), and arbuscu-
lar mycorrhizal (AM) fungi are generally widely
distributed; some are even cosmopolitan (Davi-
son et al. 2015). There is more specialization
among ectomycorrhizae (ECM), as well as
among mycoheterotrophic ericoid- and orchid-

mycorrhizal associations (Kennedy 2010, P~olme
et al. 2018). Generally, however, there is a high
probability that alien plant species, especially
those with AM, will interact with mycorrhizal
fungi not only in their native but also in their
invaded range. The benefits of mycorrhizal fungi
for the host plant are more efficient acquisition of
water (Aug�e 2001) and nutrients, such as phos-
phorus, nitrogen, potassium, and zinc from the
substrate (in exchange for photosynthates pro-
vided by the host plant; Smith and Read 1997),
and protection of roots against pathogens (Vere-
soglou and Rillig 2012). In addition, mycorrhizal
fungi can mediate plant–plant interactions (Klir-
onomos 2002, Callaway et al. 2004) and plant–
herbivore interactions (Kempel et al. 2013), they
can signal immediate threats to neighboring
plants such as herbivores or pathogens (Gilbert
and Johnson 2017), and they can affect other
mutualistic partners of the host plant, including
aboveground mutualists (Wolfe et al. 2005).
Thus, mycorrhizal fungi can influence the perfor-
mance of individual plant species and the com-
position of plant communities (van der Heijden
et al. 1998, Klironomos et al. 2011).
Conceptual frameworks and meta-analyses

(Pringle et al. 2009, Meisner et al. 2014) show
how symbiotic fungi influence the success, fail-
ure, or trajectories of plant invasions. However,
most studies assessing the role of mycorrhizal
symbiosis in the plant invasion process have so
far focused on the regional scale (�Stajerov�a et al.
2009, Hempel et al. 2013, Bunn et al. 2015, Men-
zel et al. 2017, 2018, Reinhart et al. 2017), were
based on a limited number of plant species (Call-
away et al. 2004, 2008), or were conducted at the
community level (Checinska Sielaff et al. 2019).
Therefore, the effects of mycorrhizal associations
on plant naturalization and invasion success at
the global scale are still largely unknown. How-
ever, we can now assess how naturalization is
related to mycorrhizal associations using the
Global Naturalized Alien Flora (GloNAF) data-
base, which is currently the most comprehensive
compilation of naturalized alien floras, including
data from over 1000 regional checklists across
the globe (van Kleunen et al. 2015a, 2019, Py�sek
et al. 2017). GloNAF includes data on natural-
ized plant species in both mainland and island
regions, and has been used to study various
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aspects of plant invasions at a global scale, pro-
viding robust tests of multiple invasion concepts
and hypotheses (Seebens et al. 2015, Razanaja-
tovo et al. 2016, Guo et al. 2018, 2019, Py�sek
et al. 2019). Recently, Delavaux et al. (2019) used
GloNAF data to perform a biogeographic study
comparing naturalized alien floras in mainland
vs. island regions and to infer colonization pro-
cesses leading to current plant species distribu-
tions. The study revealed that the proportion of
mycorrhizal plants in floras decreases from the
equator toward the poles. In addition, members
of naturalized floras on islands are more often
mycorrhizal than naturalized species in main-
land regions, a pattern attributed to the anthro-
pogenic co-introduction of plants with their
symbionts to islands and anthropogenic distur-
bance of symbionts on the mainland. Delavaux
et al. (2019) suggested that mycorrhizal associa-
tions are an overlooked driver of global phyto-
geographical patterns. It is therefore useful to
explore this dataset further to study large-scale
macroecological patterns of mycorrhizal associa-
tions among the world’s naturalized plants.

To standardize studies of mycorrhizal associa-
tions in the global flora, Moora (2014) suggested
distinguishing four mycorrhizal attributes of a
plant species: (1) mycorrhizal status (obligate or
facultative), (2) mycorrhizal type (arbuscular,
ectomycorrhizal, ericoid, and orchid), (3) mycor-
rhizal flexibility, and (4) mycorrhizal depen-
dency. The first two traits can provide insights
into co-evolutionary processes underlying global
patterns and ecological relationships between
plants, mycorrhizal fungi, and the environment;
however, the mechanisms behind these relation-
ships remain largely unknown. To obtain infor-
mation on the mycorrhizal status and type for
hundreds to thousands of species, several data-
bases have been collated: Harley and Harley
(1987) for the British flora, Wang and Qiu (2006)
with a global scope, Akhmetzhanova et al.
(2012) for the former Soviet Union, and Hempel
et al. (2013) and more recently Bueno et al.
(2017) for Central Europe. Mycorrhizal flexibility
(defined as plant species’ ability to exist with or
without mycorrhizal associations under given
conditions) and mycorrhizal dependency (i.e.,
whether a plant species response to colonization
by mycorrhizal fungi under different abiotic/bi-
otic conditions is negative, neutral, or positive)

are also likely to be relevant for the invasion pro-
cess. However, although such data are gradually
accumulating (Chaudhary et al. 2016), they are
still far too scarce to allow analysis of a large
number of species.
Here, we tested whether the mycorrhizal sta-

tus and type affect the global naturalization suc-
cess of plant species. To this end, we combined
information on the mycorrhizal type and status
from the above-mentioned databases with infor-
mation on species’distribution and biogeograph-
ical status from GloNAF (van Kleunen et al.
2015a, 2019, Py�sek et al. 2017). We measured nat-
uralization success in two ways: (1) whether a
species is recorded as naturalized anywhere in
the world (naturalization incidence), and (2) if
so, how widespread/successful it is (naturaliza-
tion extent). This approach has been successfully
used in previous studies testing the relationships
between traits and global naturalization success,
as it has revealed that factors related to likeli-
hood of naturalizing per se may differ from those
related to how widely naturalized a species is
(Razanajatovo et al. 2016, Fenesi et al. 2019).

METHODS

Data
For each vascular plant species included in the

mycorrhizal database, we acquired information
on its mycorrhizal type and status. The classifica-
tion into mycorrhizal types was based on the fol-
lowing types: AM, arbuscular mycorrhiza; ECM,
ectomycorrhiza; ERM, ericoid mycorrhiza; and
ORM, orchid mycorrhiza. For mycorrhizal sta-
tus, we distinguished whether the mycorrhiza
was obligate (OM) or facultative (FM). Non-myc-
orrhizal (NM) species were used for comparison
against both mycorrhizal type and status.
The mycorrhizal associations were assigned

based on two methods (cf. Bueno et al. 2019a).
First, we applied the empirical approach to deter-
mine both the mycorrhizal type and status, by
using (as of 2018) the most complete georefer-
enced mycorrhizal trait dataset for vascular
plants (Bueno et al. 2017). These authors esti-
mated vascular plant mycorrhizal traits by col-
lecting and reviewing species-level information
from large datasets of plant mycorrhizal infor-
mation (Harley and Harley 1987, Wang and Qiu
2006, Akhmetzhanova et al. 2012, Hempel et al.
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2013) and updated the list with an intensive liter-
ature search that added references to the empiri-
cal mycorrhizal information uncovered by the
previous datasets. The core of the database used
was checked for the effects of potential misclassi-
fication errors. An error rate of 20% did not
change the mycorrhizal distribution pattern in
Europe (Bueno et al. 2017).

Second, we applied a taxonomic approach to
determine mycorrhizal types. This approach is
based on an expert review of published informa-
tion about mycorrhizal associations, and a fur-
ther integration of this information with plant
taxonomy. The ECM and ERM plant species are
assigned mainly at the plant genus level (cf. Koh-
out 2017, Tedersoo and Brundrett 2017) and AM,
NM, and FM plants at the plant family level
(Brundrett 2017). Once plant families or genera
were assigned, all unstudied species within those
higher-order taxonomic groups were subse-
quently assigned to the same trait category. The
taxonomic approach may result in incorrect
assignments, especially in the case of the NM
and FM categories (Bueno et al. 2019a, b). At the
same time, the approach maximizes complete-
ness of species coverage. We assigned mycor-
rhizal types to all species in the GloNAF dataset
using the taxonomic approach.

The mycorrhizal trait data were combined
with the GloNAF database (release 1.1), which
provides information on the distribution of natu-
ralized plant species in 843 regions (mostly at the
scale of countries or smaller administrative units,
such as states or provinces in the case of larger
countries). The database includes 482 mainland
regions and 361 islands (van Kleunen et al.
2015a, Py�sek et al. 2017). This version of the
database included information on over 13,000
species introduced beyond their native range by
human action and records of naturalization in
the above regions. To be included in GloNAF, a
species needs to be reported as naturalized (ac-
cording to criteria of Richardson et al. 2000b,
Blackburn et al. 2011) in at least one region of the
world. Specifically, we determined (1) whether a
species is capable of naturalization and hence is
included in the GloNAF database (naturalization
incidence), and for those that are, (2) in how
many regions they occur (naturalization extent;
as in Razanajatovo et al. 2016, Guo et al. 2018,
Fenesi et al. 2019). In total, there were 3211

naturalized species with information on mycor-
rhizal type and status in the empirical dataset
and 13,791 naturalized species with information
on mycorrhizal type in the taxonomic dataset;
the 4200 non-naturalized species with informa-
tion on mycorrhizal type and status were appli-
cable to both datasets (see Fig. 1 and
Appendix S1: Fig. S1 for the structure of the data-
set and species numbers in particular categories
and their combinations). Further, it is known that
some life forms are more likely to have (or not
have) mycorrhizal associations than others; to
account for the interaction of the effects of myc-
orrhizal associations with life form, we used data
on life form of each species (annual/biennial;
perennial), taken from the GloNAF database and
GIFT database (Weigelt et al. 2019).

Phylogeny
To account for phylogenetic relatedness of spe-

cies, we constructed a species-level phylogeny
using the dated supertree initially constructed by
Zanne et al. (2014) and corrected and extended
by Qian and Jin (2016). This tree includes 31,749
plant species and was generated based on several
genetic markers. We pruned the supertree using
the R function S.PhyloMaker (Qian and Jin 2016)
to generate phylogenies for species used in our
study. Species absent from the supertree were
inserted as polytomies at the root node for their
family or genera membership, following the
approach implemented in Phylomatic and Bladj
(Webb et al. 2008).

Statistical analyses
All analyses were performed in R (R Core

Team 2018). If a species was reported to occur in
more than one mycorrhiza type or status cate-
gory, it was assigned to each of them. The G test
of goodness of fit was used to test whether the
observed frequencies of each mycorrhizal type
(both empirical and taxonomic data) in the Glo-
NAF database were the same as those in the glo-
bal flora reported by Brundrett (2017), that is,
AM 78%, ECM 2%, ERM 2%, NM 8%, and ORM
10% of all species with known mycorrhizal
types.
Due to very few species associated with ORM

or ERM types in our datasets (125 ORM and 131
ERM in the empirical, and 184 ORM and 167
ERM in the taxonomic; Fig. 1 and Appendix S1:
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Fig. S1), these two mycorrhizal types were
removed from the following mycorrhizal type
analyses (i.e., both empirical and taxonomic data;
Appendix S1: Figs. S2, S3). Species without life
form information were also removed from the
dataset (Appendix S1: Figs. S2, S3). Our data
included hundreds of species showing variable
life forms (Appendix S1: Table S1). Because of
this, the previously reported effect of life form on
naturalization incidence and extent (Guo et al.
2018), and the ambiguous effects of life form and
mycorrhizal status on naturalization extent
(Menzel et al. 2017), we ran the following analy-
ses separately for each life form group, that is,
annual/biennial and perennial. We used

phylogenetic logistic regression (Ives and Gar-
land 2010), as implemented in the R package
phylolm (Ho and Ane 2014), to analyze the rela-
tionships between naturalization incidence and
either mycorrhizal type or mycorrhizal status,
while accounting for phylogenetic relatedness.
Similarly, we tested for the associations between
naturalization extent and either mycorrhizal type
or status using phylogenetic generalized linear
regression in the phylolm package (Ho and Ane
2014), with naturalization extent log10-trans-
formed to improve the model normality. As our
main aim was to test the effects of different myc-
orrhizal types/status on naturalization success,
we releveled mycorrhizal types/status and then

Fig. 1. Summary of species numbers used in the naturalization incidence analysis, based on the empirical
approach. From interior to outward are groupings of naturalized/non-naturalized plant species, mycorrhizal sta-
tus (facultative, obligate, and non-mycorrhizal), and mycorrhizal types (arbuscular, ectomycorrhizal, ericoid,
orchid, and non-mycorrhizal; see Methods for explanation of abbreviations).
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repeatedly ran the same models to obtain the
pairwise differences.

Due to many infraspecific taxa in the taxo-
nomic dataset, it was impossible to obtain a spe-
cies-level phylogeny. Therefore, for the
mycorrhizal type obtained from the taxonomic
approach, we also ran generalized linear mixed-
effects models (GLMMs) with a binomial error
distribution (naturalization incidence model) or
with a negative binomial error distribution (natu-
ralization extent model) in the lme4 package
(Bates et al. 2015), with genus nested within fam-
ily as random factor to account for phylogenetic
nonindependence of the species. As the main
findings from both empirical and taxonomic data
are largely similar, we show the results based on
the empirical data in the main text and those of
the taxonomic approach mainly in the supple-
mentary material (Appendix S1).

RESULTS

Mycorrhizal associations in naturalized vs. global
flora

For both the empirical and taxonomic datasets,
the G tests of goodness of fit revealed significant
differences between observed numbers, which
reflect the frequencies of mycorrhizal types among
naturalized plant species, and expected numbers,
derived from the global flora based on Brundrett
(2017; empirical—G = 955.99, df = 4, P < 0.001;
taxonomic—G = 3285.9, df = 4, P < 0.001; Fig. 2
and Appendix S1: Fig. S4). In addition, post hoc
tests between the expected and observed frequen-
cies of mycorrhizal types also showed significant
differences for most pairs of mycorrhizal types
(P < 0.001, Fig. 2 and Appendix S1: Fig. S4). Spe-
cies with the ECM type and NM species were sig-
nificantly over-represented among naturalized
species, while those with ERM and ORM were
under-represented. In the empirical dataset, the
observed number of plant species with the AM
type was almost the same as the expected number
(Fig. 2), but, in the taxonomic dataset, the AM-
type plant species were significantly over-repre-
sented (Appendix S1: Fig. S4).

Naturalization incidence
The effects of the mycorrhizal type varied with

life form. Arbuscular mycorrhizal plant species
were more likely to be naturalized than NM

species, and the pattern was held for both
annual/biennial species (that are generally more
likely to be naturalized) and perennials. How-
ever, plant species with ECM type, which is only
present among perennials, had lower naturaliza-
tion incidence than both AM and NM plant spe-
cies (Fig. 3a).
For the effect of mycorrhizal status on natural-

ization incidence (Fig. 3b), species with faculta-
tive mycorrhizas were more likely to become
naturalized than those with obligate mycor-
rhizas, and non-mycorrhizal species had the low-
est naturalization incidence. This pattern was
consistent regardless of life form, even though
the marginal effect varied slightly between life
forms: Belonging to the same mycorrhizal status,
annual/biennial species generally have higher
chance to become naturalized than perennials.
The results based on the taxonomic approach

differed from those based on the empirical data-
set (cf. Fig. 3a with Appendix S1: Fig. S5). For the
annual/biennial life form, the probability of being
naturalized was similar for AM and NM species.
For perennials, having the AM type significantly

Fig. 2. Observed and expected frequencies of myc-
orrhizal types for the plant species in the Global Natu-
ralized Alien Flora database, based on the empirical
data (i.e., plant species with documented mycorrhizal
type according to Bueno et al. 2017). Values above bars
are the observed and expected number of plant species
in each mycorrhizal type: AM, arbuscular; ECM, ecto-
mycorrhizal; ERM, ericoid; ORM, orchid; NM, non-
mycorrhizal. *** P < 0.001.
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increased the probability of plants being natural-
ized compared to NM or ECM species.

Naturalization extent
Generally, analyses of the effect of mycorrhizal

symbiosis on naturalization extent (Table 1)
yielded similar results when we considered all
regions, mainland regions (i.e., regions that are
located on a continent), or islands separately. In
terms of mycorrhizal type, both annual/biennial
and perennial species with AM showed a signifi-
cantly greater naturalization extent than non-my-
corrhizal species (Fig. 4a). Perennial ECM
species did not differ in naturalization extent
from NM perennials but were significantly less
widely naturalized than AM species on islands.

For annual/biennial life form, both facultative
and obligate mycorrhizal species were natural-
ized in significantly more regions than non-myc-
orrhizal species. For perennials, species with
facultative mycorrhiza had a significantly greater
naturalization extent than both with obligate
mycorrhiza and non-mycorrhizal species, which
did not significantly differ from each other
(Fig. 4b).

Using the taxonomic dataset, the GLMMs of
mycorrhizal type (cf. Fig. 4a with Appendix S1:
Fig. S7) provided similar results for annual/

biennial species, but for perennials, they differed
in that the ECM species had a significantly
greater naturalization extent than AM and NM
globally and among mainland regions.

DISCUSSION

The majority of land plants are mycorrhizal
(Smith and Read 2008, Brundrett 2017), but the
influence of mycorrhizal symbiosis on plant spe-
cies’ ability to naturalize after introduction out-
side of their native range is still understudied.
This is partly due to a lack of data until recently
—the study by Delavaux et al. (2019) is an excep-
tion in this respect. Our present study differs
from that of these authors in addressing the myc-
orrhizal associations at the plant species level,
which allowed us to consider the effect of plants
species’ life history and phylogeny on the role of
mycorrhizal symbiosis in facilitating invasion
and in exploring naturalization likelihood and
how widespread naturalized species are across
regions. We also considered different mycor-
rhizal type and status.
In terms of mechanisms, it is still debated

whether alien plants benefit from being mycor-
rhizal, or if being dependent on the symbiosis
rather constrains their establishment and spread

Fig. 3. Effects of mycorrhizal types (a) and status (b) on naturalization incidence. Estimates (log odds ratios of
the probability of being naturalized) of the effects and the standard errors (bars) were extracted from each phylo-
genetic logistic regression model. Due to few annual/biennial species (5) associated with the ECM type, they were
excluded in the mycorrhizal type analysis (a). Different letters in each model indicate significant differences
between groups in the post hoc test (P < 0.05). Phylogenetic signals (a) for each model are shown in
Appendix S1: Table S2. Mycorrhizal type: AM, arbuscular; ECM, ectomycorrhizal; NM, non-mycorrhizal. Mycor-
rhizal status: FM, facultative; OM, obligate; NM, non-mycorrhizal.
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into new regions (Richardson et al. 2000a, Prin-
gle et al. 2009, Moora et al. 2011, Menzel et al.
2017). In our global study, mycorrhizal species,
both AM and ECM, were more likely to be natu-
ralized somewhere in the world than non-mycor-
rhizal species. It can be speculated that the high
dispersal ability of AM (Davison et al. 2015) but
to some extent also ECM fungi (Peay et al. 2012)
could play a role here. In addition, many AM
and ECM plant species with a high invasion
potential may associate with a wide range of
mycorrhizal fungi so finding an appropriate
mutualistic partner when introduced to a new
range is more likely (Richardson et al. 2000a).
For example, the Douglas fir (Pseudotsuga men-
ziesii; Pinaceae), native to western North America
and naturalized in Europe, Argentina, Chile, and
New Zealand where it is extensively planted for
timber, can associate with more than 2000 ECM
fungal species (Molina et al. 1992). For ECM,
there is some evidence that co-introductions pro-
mote naturalizations of northern conifers in the
Southern Hemisphere, but that introductions
from North America to Europe involve recruit-
ment of ECM fungi already present in Europe,
which associate with similar native conifer spe-
cies (Gundale et al. 2016). However, ECM fungi

are generally known to be rather host-specific
compared to AM fungi (van der Heijden et al.
2015). There is also experimental evidence that
alien species primarily associate with widely dis-
tributed generalist AM fungal taxa (Moora et al.
2011). In a recent study conducted in Texas,
USA, at a plant community scale, alien grassland
plant species had significantly higher coloniza-
tion by AM fungi than native species, and this
result was consistent across plant functional
groups (Checinska Sielaff et al. 2019).
We also found that the effect of AM association

was always stronger than for other mycorrhizal
types, favoring a greater extent of naturalization
than for ECM, while non-mycorrhizal species
were the least widely naturalized. This suggests
that being non-mycorrhizal is generally disad-
vantageous for alien plant success at a global
scale (Richardson et al. 2000a, Pringle et al.
2009). Yet, there are some non-mycorrhizal spe-
cies that are highly invasive under specific condi-
tions such as European garlic mustard (Alliaria
petiolata), which invades natural woodlands in
North America (Callaway et al. 2008, Colautti
et al. 2014). In addition, it is important to men-
tion that there is a trade-off in associating with
mycorrhizal fungi, because the association also

Table 1. Summary of the naturalization extent (i.e., the number of Global Naturalized Alien Flora regions occu-
pied) of species by mycorrhizal type and status

Type
No. of
species Min Mean Median Max SD CV (%)

Species with

≤25 regions ≤50 regions ≤70 regions

(a) Mycorrhizal type:
taxonomic approach
AM 11,032 1 13.92 3 409 30.02 215.69 9364 (85%)
ECM 534 1 10.01 3 154 17.16 171.49 473 (89%)
ERM 70 1 3.29 2 26 4.06 123.59 69 (99%)
NM 2082 1 11.12 2 249 22.94 206.27 1805 (87%)
ORM 73 1 4.84 1 51 9.22 190.58 70 (96%)

(b) Mycorrhizal type:
empirical data
AM 2776 1 32.9 10.5 409 49.10 149.38 2155 (78%)
ECM 283 1 14.4 6 154 20.79 144.06 268 (95%)
NM 429 1 23.8 8 249 36.77 154.62 362 (84%)

(c) Mycorrhizal status:
empirical data
FM 863 1 43.07 17 311 58.34 135.43 676 (78%)
OM 2197 1 26.48 8 409 41.57 156.97 1938 (88%)
NM 429 1 23.78 8 249 36.77 154.62 387 (90%)

Notes: AM, arbuscular mycorrhiza; ECM, ectomycorrhiza; ERM, ericoid mycorrhiza; FM, facultative mycorrhiza; NM, non-
mycorrhiza; OM, obligate mycorrhiza; ORM, orchid mycorrhiza. (a) The mycorrhizal types were assigned using the taxonomic
approach. (b) Empirical mycorrhizal type. (c) Empirical mycorrhizal status. For more details of the frequency distribution of the
naturalization extents, see Appendix S1: Fig. S6.
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demands a considerable input from the plant
partner (Hempel et al. 2013). The pattern
described above, on the effect of AM associa-
tions, more or less holds regardless of life form,
with the interaction suggesting that the positive
effect of mycorrhizal association is more pro-
nounced in annual species. Annuals are gener-
ally more likely to naturalize than perennials,
and even non-mycorrhizal annual species rank
higher in terms of naturalization success than
AM perennials (Fig. 3a). This finding reflects the
main characteristics of AM fungi, that is, being
the most common and globally widespread type
of mycorrhizal fungi and having a low host

specificity (Davison et al. 2015, Brundrett and
Tedersoo 2018).
In terms of mycorrhizal status, plant species

with facultative mycorrhizal associations appear
to be most successful at being naturalized out-
side of their native range, more so than plants
with obligate mycorrhizal associations, but both
groups tend to have a higher probability of being
naturalized than non-mycorrhizal species. Being
a facultative mycorrhizal plant seems to be the
best strategy when introduced to a new range as
the naturalization process is not constrained by
the availability of suitable fungal partners occur-
ring in situ, and even the absence of mycorrhizal

Fig. 4. Effects of mycorrhizal types (a) and status (b) on naturalization extent. Estimates of the effects and the
standard errors (bars) were extracted from each phylogenetic generalized linear model regression model. As only
few annual/biennial species (5) are associated with the ECM type, they were excluded from the mycorrhizal type
analysis (a). Capital letters and lowercase letters indicate post hoc tests of annual/biennial and perennial models,
respectively, and different letters in each model indicate significant difference between groups (P < 0.05). Phylo-
genetic signals (k) for each model are shown in Appendix S1: Table S2. Mycorrhizal type: AM, arbuscular; ECM,
ectomycorrhizal; NM, non-mycorrhizal. Mycorrhizal status: FM, facultative; OM, obligate; NM, non-mycor-
rhizal.
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fungi in the soil is not a large constraint—our
paper provides robust empirical evidence for this
phenomenon. Results similar to ours are
reported at a regional scale by Hempel et al.
(2013) who studied relationships between the
occurrence of plant with various mycorrhizal
associations, habitat characteristics, various plant
traits, and patterns of plant distribution using
the German flora. They found that facultative
mycorrhizal plant species had a wider distribu-
tional range and broader ecological niche than
species with other mycorrhizal status (see also
Gerz et al. 2018). In another regional study, Gerz
et al. (2018) found that facultative mycorrhizal
plant species had the widest realized niches, in
terms of both width and volume. At the lower
taxonomic level, Dickie et al. (2010) showed that
the lack of suitable mycorrhizal fungal species is
a major constraint for invasions of pines (Pinus
spp.) on islands.

Previous studies have tested the roles of myc-
orrhizal type and status in naturalization suc-
cess at regional scales, albeit without
distinguishing between different stages of inva-
sion. Menzel et al. (2018) assessed the relation-
ship between area of occupancy in Germany
and two variables: plant species origin (natives;
archaeophytes—alien species introduced before
the year 1500; and neophytes—alien species
introduced after the year 1500) and AM status
(obligate, facultative, and non-mycorrhizal).
They found that AM status significantly
explained the area of occupancy of natives and
neophytes, with facultative mycorrhizal plant
species occupying larger areas in both groups—
this corresponds to our finding reported above.
These authors also showed that while in neo-
phytes with facultative mycorrhizal associations
there are trade-offs between plant retention of
the mycorrhizal symbiosis and allocation of C to
the development of other plant structures, such
trade-offs were almost absent among natives
(Menzel et al. 2018). This indicates that natives
and neophytes benefit differently from mycor-
rhizal symbiosis and suggests that native AM
fungal partners might be less important for neo-
phytes than for native plant species, or that
more time of co-evolutionary experience is
required to establish similar relationships
between neophytes and native fungal sym-
bionts. In another regional study, Menzel et al.

(2017) reported that the mycorrhizal status sig-
nificantly explained the occupied range of alien
plants, with facultative mycorrhizal species
inhabiting a larger range than non-mycorrhizal
species, while obligate mycorrhizal plant species
were intermediate. Moreover, aliens with stor-
age organs, shoot metamorphoses, or special-
ized structures promoting vegetative dispersal
were more widely distributed when being facul-
tatively mycorrhizal. This mycorrhizal status is
especially advantageous for successful spread of
alien plants, as the flexibility of being faculta-
tively mycorrhizal allows plants to explore a
broader set of ecological strategies (Menzel et al.
2017).
In scaling up from these regional studies to

our global one, we assume that facultative myc-
orrhizal plant species have a greater ability to
colonize a wider range of habitats than obligate
mycorrhizal and non-mycorrhizal plant species,
and so are likely to have a larger naturalization
extent. Indeed, when using the number of Glo-
NAF regions as a measure of naturalization
extent, our results support this assumption—
overall mycorrhizal associations favored a wide
distribution, but the effect was restricted to AM
species, and as with naturalization incidence, fac-
ultative mycorrhiza was the most advantageous
strategy for naturalization across a wide range of
regions.
Overall, we show at the global scale that facul-

tative AM plant species have the greatest advan-
tage from mycorrhizal association, in that it
favors their spread, resulting in a wide distribu-
tion. In addition, we show for the first time that
AM association is not only related to how wide-
spread naturalized plants are, but also to their
ability to become naturalized at all, as illustrated
by the effect of mycorrhizal type and status on
the naturalization incidence. We are confident
that the big picture we present here about the
effects of mycorrhizal symbiosis on the plant spe-
cies naturalization on the global scale is fairly
robust, being based on unprecedented dataset
for naturalized plants (Py�sek et al. 2017, van Kle-
unen et al. 2019). Although the data included in
GloNAF vary in quality due to nonrandom glo-
bal distribution of research efforts (van Kleunen
et al. 2019), they represent the best available
resource, covering a wide range of habitats, envi-
ronments, and climates.
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The importance of understanding the relation-
ships between alien plants and their symbionts,
including the extent to which the mycorrhizal
symbiosis facilitates plant naturalization and
spread, becomes even more urgent in light of
results of some recent studies, showing that native
and naturalized floras worldwide differ in their
composition in conjunction with mycorrhizal asso-
ciation (Delavaux et al. 2019). In our study, we
have found a link between the likelihood of a plant
species being naturalized somewhere, and once
naturalized how widespread it is globally, and its
mycorrhizal association. This finding may be use-
ful for forecasting global invasion risk, based on
the mycorrhizal association of species that may
not be introduced/naturalized outside of their
native range yet. What we still need to understand
is to what extent this link is due to fungal partners
in question being widespread, or non-host-speci-
fic, or due to co-introductions. This opens a poten-
tially promising venue for future research.
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