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Aims Deregulation of epigenetic processes and aberrant gene expression are important mechanisms in heart failure. Here
we studied the potential relevance of m6A RNA methylation in heart failure development.
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Methods
and results

We analysed m6A RNA methylation via next-generation sequencing. We found that approximately one quarter of
the transcripts in the healthy mouse and human heart exhibit m6A RNA methylation. During progression to heart
failure we observed that changes in m6A RNA methylation exceed changes in gene expression both in mouse and
human. RNAs with altered m6A RNA methylation were mainly linked to metabolic and regulatory pathways, while
changes in RNA expression level mainly represented changes in structural plasticity. Mechanistically, we could link
m6A RNA methylation to altered RNA translation and protein production. Interestingly, differentially methylated
but not differentially expressed RNAs showed differential polysomal occupancy, indicating transcription-independent
modulation of translation. Furthermore, mice with a cardiomyocyte restricted knockout of the RNA demethylase
Fto exhibited an impaired cardiac function compared to control mice.
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Conclusions We could show that m6A landscape is altered in heart hypertrophy and heart failure. m6A RNA methylation changes
lead to changes in protein abundance, unconnected to mRNA levels. This uncovers a new transcription-independent
mechanisms of translation regulation. Therefore, our data suggest that modulation of epitranscriptomic processes
such as m6A methylation might be an interesting target for therapeutic interventions.
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Introduction
Heart failure, characterized by reduced cardiac function and left
ventricular dilatation, is a leading cause of hospital admission and
mortality.1 This process is accompanied by increased apoptosis,
fibrosis and changes in gene expression.2,3 Until now, inhibition of
neuroendocrine stimulation is the only treatment for heart failure;
however, the therapeutic efficacy of this approach is limited and
cannot prevent the eventual progression of the disease.4 Therefore,
additional therapeutic options are needed.

There is increasing evidence that aberrant gene expression,
orchestrated by transcription factors and epigenetic processes
such as non-coding RNAs, DNA and histone modifications, rep-
resents a key event in heart failure and could thus offer new ways
for therapeutic intervention.5,6 While methylation of DNA seems
to be important during maturation of the heart,7 the role of RNA
modifications has not been studied in detail until now.

N6-adenosine methylation (m6A) of RNA transcripts is the most
prevalent modification found in many classes of RNA.8 Similar to
epigenetic changes in DNA and histone modifications, m6A in
RNA is dynamic and reversible.8–10 In all classes of RNA, m6A
mainly occurs within a highly-conserved consensus motif identified
as RRACH (R=G or A, H=A, C or U). The formation of m6A
is regulated by methyltransferases (METTL3, METTL14, WTAP,
METTL16)11,12 and demethylases (FTO, ALKBH5).13,14 m6A rec-
ognizing proteins such as members of the YTH domain protein
family and HNRNPA2B1 are involved in processes regulating the
fate of target transcripts. The current data suggest that the degree
and the pattern of methylation of mRNAs can affect their splicing,
transport, storage, translation and/or decay.10

At present, there is only one recent study which reported a role
for m6A in the peri-infarct zone after myocardial infarction.15 In our
study, we consequently applied transcriptome-wide approaches
and defined changes in m6A in mouse and human heart failure
development. We found that m6A RNA methylation appears to
affect cardiac signalling and metabolic processes by modulation of
translation. Our data provide evidence that m6A RNA methylation
is involved in heart failure development and might be a novel
therapeutic target.

Methods
See online supplementary Methods S1 for detailed description. The
investigation conforms to the principles outlined in the Declaration
of Helsinki and the Guide for the Care and Use of Laboratory
Animals (NIH publication No. 85–23, revised 1996). All patients
provided written informed consent for the use of cardiac tissue
samples. Surgery on mice was done using a minimally invasive approach.
Echocardiography was performed on anaesthetized animals.

RNA isolation from left ventricles was performed with Trizol
reagent according to the manufacturer’s instruction. DNase treated
and fragmentized RNA was subjected first to immunoprecipitation
with anti-m6A antibody (Synaptic Systems, #202003) and then to
high-throughput sequencing on Illumina 2000 platform. Generated
reads were mapped to mm10 and hg19, and peaks showing signifi-
cant enrichment for m6A in immunoprecipitated samples compared
to corresponding input samples were detected with the MeTPeak ..
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.. package.16 For the polysomal occupancy experiment, RNA extracted
from polysomal fractions of the snap-frozen tissues was sequenced
on the Illumina HiSeq2000. Differential methylation analysis was done
using an in-house developed pipeline. Deseq2 was used for differen-
tial gene expression and differential polysome binding analysis. mRNAs
showing significant (Padj < 0.05) and at least two-fold change in m6A
levels, mRNA levels and polysome binding are reported in this study.
Differential m6A methylation was further verified using qRT-PCR on
RNAs immunoprecipitated with anti-m6A antibody without fragmen-
tation. Western blot analysis for different protein level evaluation was
performed following manufacturer’s instructions for the corresponding
antibodies. We used the ClueGo plug-in in the Cytoscape software for
pathway analysis for genes identified in different experiments.

Results
m6A RNA methylation in the adult heart
Fto, Mettl3 and Mettl14 as the key regulators of m6A RNA methy-
lation are expressed in the adult mouse heart (Figure 1A and online
supplementary Figure S9). Transcriptome-wide analysis of m6A
RNA methylation via m6A-specific methylated RNA immunopre-
cipitation followed by next-generation sequencing (MeRIP-Seq)17

revealed that 24% of all detected transcripts carry m6A marks
(n = 5). More specifically, we detected 3208 peaks linked to 2164
transcripts (Figure 1B and online supplementary Table S4). The qual-
ity of our data was confirmed by an unbiased motif search using
the detected m6A peaks as input that identified the previously
reported m6A consensus sequence RRACH (Figure 1C). Relative
quantification of m6A peaks across all transcripts showed a distri-
bution similar as in other tissues17–19 with an enrichment of m6A
toward the translation end site (Figure 1D).

The majority of the m6A-containing transcripts carried this mark
in the 5′UTR or 3′UTR and the coding sequence (CDS). Only a
negligible number of transcripts were exclusively m6A-methylated
in 5′UTR (n = 9) or 3′UTR (n = 163) (Figure 1E). A gene ontol-
ogy (GO) analysis revealed that transcripts with m6A in the
5′UTR and/or CDS were linked to energy metabolism, mito-
chondrial function and intra-cellular signalling, while transcripts
methylated in the 3′UTR mostly code for proteins involved in
pathways linked to more specific metabolic processes such as
‘acetyl-CoA or glycerol biosynthesis’ and ‘positive regulation of
protein dephosphorylation’ (Figure 1F).

Transcripts that carry m6A in the 5′UTR and CDS showed a mild
positive correlation of m6A marks with expression level (r = 0.10,
P = 5.86e-07; Figure 1G), whereas methylation marks within the
3′UTR showed a mild negative correlation (r = −0.08, P = 0.006;
Figure 1G). We also detected long non-coding RNAs with m6A
marks (online supplementary Figure S1A), but here m6A was not
correlated to its expression level (r = 0.06, P = 0.72; online supple-
mentary Figure S1B). A detailed annotation of the m6A-containing
non-coding peaks is found in online supplementary Table S4.

Cardiac hypertrophy and failure are
linked to substantial changes in m6A
Next, we studied m6A RNA methylation during the progression
of heart failure. Therefore we used the mouse model of

© 2019 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 1 m6A RNA methylation in the healthy mouse heart. (A) Representative western blot images showing expression of Fto, Mettl3 and
Mettl14 protein in mouse heart tissue. (B) Pie and bar charts showing the amount and distribution of m6A RNA methylation in the mouse
heart. (C) Sequence motif identified within m6A peaks. (D) Distribution of m6A peaks across mRNA transcripts. (E) Venn diagram showing
methylation marks across transcript regions. (F) Heat map showing pathway analysis of transcripts that carry m6A marks in either 5′UTR and
CDS or 3′UTR. (G) Correlation analysis between transcript level and m6A methylation at 5′UTR and CDS (upper panel) and 3′UTR (lower
panel). n = 5 per group.

transverse aortic constriction (TAC) to induce pressure overload.3

One week after TAC mice responded with compensated
hypertrophy (Figure 2A), whereas after 8 weeks heart failure
developed (Figure 2B). In addition to m6A RNA methylation,
we also analysed expression changes from the same material
by RNA Seq. ..

..
..

..
..

..
..

..
.. We detected a number of differentially expressed genes either

1 or 8 weeks after TAC that were mainly linked to structural
cardiac plasticity pathways (n = 6 per group; online supplemen-
tary Figure S2, Tables S3 and S4). Using the same cut-offs as for
the detection of differential methylated transcripts (Log2FC>1,
Padj <0.05) we observed that at both time points after TAC

© 2019 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Legend on next page.

© 2019 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.



58 T. Berulava et al.

the number of transcripts with significant changes in m6A was
much higher than the number of differentially expressed genes
[Figure 2C and 2D; 1 week: 1638 transcripts differentially methy-
lated, 217 differentially expressed (online supplementary Figure S2
and Table S3); 8 weeks: 1215 transcripts differentially methylated
and 174 differentially expressed (online supplementary Figure S2
and Table S4)]. The global distribution of m6A marks across hyper-
and hypomethylation 1 week after TAC did not differ from control
(Figure 2E and 2G), whereas in case of 8 weeks after TAC a signifi-
cant shift toward hypomethylation specifically at the transcription
start site (TSS) was visible with an area under the curve (AUC) of
0.2733 (95% confidence interval 0.2731–0.2735) for hypomethy-
lation whereas AUC for hypermethylation at 5′UTR was 0.1617
(95% confidence interval 0.1614–0.1619) (Figure 2G). Transcripts
affected by m6A RNA methylation were substantially different from
the transcripts affected at the level of expression (online supple-
mentary Figure S3, Tables S3 and S4), suggesting that changes in
m6A RNA methylation and the regulation of transcript level likely
represent distinct cellular processes.

Next, we performed a GO analysis of differentially methylated
transcripts. Interestingly, only few pathways involved in contractile
or structural processes could be detected. However, both hypo-
and hypermethylated transcripts in case of heart hypertrophy were
enriched in GO categories linked to metabolic processes and gene
expression regulation such as ‘histone modification’ and ‘cellular
response to stress’ (Figure 2F). Additionally, hypermethylated tran-
scripts were linked to signalling pathways such as ERK1/2 signalling
(Figure 2F). The differentially methylated transcripts detected in the
heart failure model were also linked to metabolic processes and
mitochondrial functions and especially hypermethylated transcripts
were also involved in cardiac muscle development (Figure 2H).

m6A RNA methylation in the human
heart
The key enzymes, METTL3, METTL4 and FTO, were expressed
in the human heart (Figure 3A and online supplementary Figure
S9). MeRIP-Seq analysis from non-failing hearts (n = 5; online sup-
plementary Table S2) showed a substantial number of transcripts ..
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.. carrying m6A marks (Figure 3B and online supplementary Table S5)

and a motif search confirmed the previously described m6A RNA
methylation motif (Figure 3C).

The distribution of m6A along transcripts was similar to the
mouse (Figure 3D and online supplementary Figure S5). Also, in line
with the mouse data, most m6A marks occurred in the CDS and
5′UTR of the corresponding transcripts (Figure 3E). A substantial
number of transcripts carried m6A marks exclusively within the
3′UTR (Figure 3E). GO term analysis revealed that m6A contain-
ing transcripts encoded proteins linked to cardiomyocyte func-
tions such as ‘sarcomere organization’, intracellular signalling and
metabolic pathways (Figure 3F and 3G). Similar to the mouse data,
we observed a mild correlation of transcript levels and m6A RNA
methylation at the 5′UTR and CDS (r = 0.19, P = 3.85e-08), while
no significant correlation was seen for the 3′UTR (r = −0.05,
P = 0.3248) (Figure 3H). Comparison of the m6A-containing tran-
scripts detected in the healthy mouse and human heart revealed
a significant overlap of m6A-containing transcripts among the two
species (representation factor 7.6, P< 2.37e-21; Figure 3I). It has
to be mentioned that more m6A methylated transcripts were
detected in mouse heart when compared to the human heart
(Figures 1B and 3B). While these data likely reflect species differ-
ences, we cannot exclude that also methodological issues play a
role. For example, the preparation of tissue takes 5 min in case
of humans but less than 1 min in the mouse model, which corre-
lates with RNA integrity values [RIN; 9.00± 0.23 for mouse and
7.80± 0.57 for human (mean± standard deviation)]. Transcripts
that were m6A methylated in both mouse and humans mainly code
for proteins linked to metabolic processes, and heart and circula-
tion system development (Figure 3I).

Next, we performed MeRIP-Seq and RNA-Seq analysis of
non-failing and end-stage heart failure biopsies (n = 6 per group;
online supplementary Table S1). In line with the mouse data, we
observed that – using FDR <0.05 and two-fold change cut-off in
both cases – more transcripts displayed m6A methylation changes
(n = 1246) than genes that were differentially expressed (n = 228)
(Figure 4A; online supplementary Figure S6A and Table S4). The dif-
ferentially expressed genes were mainly linked to processes of

Figure 2 m6A RNA methylation changes associated with heart hypertrophy and heart failure. (A) Echocardiographic phenotyping 1 week
after transverse aortic constriction (TAC) (anterior wall thickness: sham 0.94 mm, TAC 1.31 mm, P = 0.0001; ejection fraction: sham 61%, TAC
59%, P = 0.6172). (B) Echocardiographic phenotyping 8 week after TAC (anterior wall thickness: sham 0.983 mm, TAC 1.351 mm, P = 0.0001;
ejection fraction: sham 59%, TAC 46%, P = 0.0002). Values represent mean± standard error of the mean (n = 6 animals per group except for
sham 8 weeks with 5 mice available). (C) Left panel: Bar chart showing the number of genes differentially methylated and differentially expressed
in the TAC model for cardiac hypertrophy. Right panel: Pie charts showing the distribution of m6A RNA methylation changes across hyper-
and hypomethylated transcripts. (D) Left panel: Bar chart showing the number of differentially m6A methylated and differentially expressed
genes in the TAC model for heart failure. Right panel: Pie charts showing the distribution of m6A RNA methylation changes across hyper-
and hypomethylated transcripts. (E) Distribution of hyper- and hypomethylated peaks along the gene body in the TAC model for cardiac
hypertrophy. (F) Gene ontology analysis (left panel) and integrated genome browser views of representative transcripts (right panel) hypo- and
hypermethylated in cardiac hypertrophy. (G) Distribution of hyper- and hypomethylated peaks along the gene body in heart failure. Significant
enrichment of hypomethylation at 5′UTR was observed [hypomethylation: area under the curve (AUC) = 0.2733, 95% confidence interval (CI)
0.2731–0.2735; hypermethylation: AUC = 0. 1617, 95% (CI 0. 1614–0. 1619]. (H) Gene ontology analysis (left panel) and integrated genome
browser views of representative transcripts (right panel) hypo- and hypermethylated in the TAC model for heart failure.

© 2019 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 3 m6A RNA methylation in the healthy human heart. (A) Representative western blot images showing expression of FTO, METTL3
and METTLl4. (B) Pie and bar charts showing the amount and distribution of m6A RNA methylation in the human heart. (C) Sequence
motif identified within m6A peaks. (D) Distribution of m6A peaks across mRNA transcripts. (E) Venn diagram showing m6A marks across
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structural plasticity such as ‘regulation of smooth cell prolifera-
tion’, ‘extracellular matrix organization’ as well as ‘metabolic func-
tion’ (online supplementary Figure S6A). Similar to our findings in
mice after 8 weeks of TAC (online supplementary Figure S3B), in
human failing heart tissue, genes differentially expressed were sub-
stantially different from the transcripts that underwent differential
m6A methylation (online supplementary Figure S6B and Table S5)
providing further evidence that changes in m6A methylation and
transcript level represent different cellular responses to cardiac
stress.

We found that hypermethylated transcripts were mainly linked
to processes that control the ‘response to muscle stretch’,
‘response to growth factor’ as well as ‘heart morphogenesis’
and metabolic processes (Figure 4B). Hypomethylated transcripts
were associated with ‘adrenergic receptor signalling in the heart’,
‘negative regulation of signal transduction’, mitochondrial function ..
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. and metabolic processes (Figure 4C). Comparison of differentially

m6A methylated transcripts detected in mouse and human heart
failure showed a significant overlap (403 transcripts, representa-
tion factor 7.8, P< 3.851e-251) (Figure 4D). These transcripts code
for proteins that are, for example, linked to ‘cardiac muscle dif-
ferentiation’ and metabolic processes (Figure 4D). Future research
is needed to analyse more heart biopsy material from patients. It
will be interesting to see if the degree of m6A RNA methylation
changes might be correlated to the severity of clinical parameters.

Differential m6A methylation during
heart failure is linked to transcripts
with altered polysome binding
The data obtained from the mouse model of heart failure and
failed human heart samples suggest that changes in m6A mRNA
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methylation might play a role in cardiac function. Generally, RNA
methylation has been associated with an altered mRNA decay
rate,20,21 suggesting that changes in m6A RNA methylation may
affect transcript levels. However, altered transcript levels are
unlikely to be the major cellular consequence of altered m6A RNA
methylation in the failing heart given that the vast majority of tran-
scripts that exhibited changes in m6A levels were not differentially
expressed (online supplementary Figures S3A,B and S4). In line with
these data, the correlation of differentially methylated transcripts
with their expression levels in mice and humans was not different
to genes at baseline expression (online supplementary Figure S3C).
Previous studies have also suggested that RNA methylation could
impact mRNA translation by affecting ribosome occupancy.22,23 To
analyse this further, we performed polysome profiling to compare
transcripts bound to translating ribosomes24 in mouse heart tissue
8 weeks post-sham/TAC.

We identified 225 transcripts that were significantly enriched or
depleted from polysome fractions 8 weeks after TAC (Figure 5A
and online supplementary Table S4). Transcripts depleted from
polysomes were almost exclusively linked to metabolic processes,
while those that were enriched mRNAs were involved in path-
ways such as calcium signalling, smooth muscle-related processes ..
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.. and apoptosis (Figure 5A). Differentially methylated and differen-
tially polysome-bound transcripts 8 weeks after TAC showed a
significant positive correlation of (r = 0.37, P< 2.2e-16; Figure 5B),
indicating an effect of m6A methylation on polysome binding. Inter-
estingly, this correlation was specific to transcripts that underwent
differential m6A methylation after TAC, since no such correlation
was observed in the sham control group (online supplementary
Figure S4).

In order to provide first evidence that altered polysome binding
could be a mechanism by which m6A RNA methylation impacts
on cardiac plasticity in the human heart as well, we compared
the 403 transcripts that exhibited altered m6A methylation in
both mouse and human heart failure (Figure 4D) with our mouse
polysome-bound transcripts and found a significant positive corre-
lation (Figure 5C). Enrichment analyses of these transcripts showed
pathways essential for cardiac function and metabolic processes
(Figure 5D). Furthermore, we verified differential m6A RNA methy-
lation by qRT-PCR analysis for Calm1 and some other mRNAs by
analysing input and m6A immunoprecipitated RNA samples from
heart tissue of mice after 8 weeks of TAC surgery with qRT-PCR
(Figure 5E and online supplementary Figure S8). mRNAs of the
selected candidate genes showed no change in RNA expression
while their methylation levels differed in the failing heart. Western
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Figure 5 Changes in m6A RNA methylation during heart failure correlate with changes in polysome occupancy. (A) Heat map showing
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Figure 6 Fto-knockout mice show a worsened cardiac phenotype after transverse aortic constriction (TAC) surgery. (A) Scheme of generation
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blot analysis of Calm1 and Smyd1 proteins revealed decrease levels
as well (Figure 5E and online supplementary Figure S8). The same
results gave analysis of human heart samples – mRNA levels of
CALM1 was not affected in failed heart tissue while hypomethyla-
tion revealed by MeRIP was confirmed with qRT-PCR and the pro-
tein level decreased significantly (Figure 5F). In summary, these data
suggest that altered m6A methylation of mRNA affects polysome
binding of the corresponding transcripts in the heart and thus has
an impact on proteostasis in a transcription-independent manner.

Fto-knockout mice show a worsened
cardiac phenotype
To provide further evidence that m6A levels play a role in normal
cardiac function, we generated mice that lack m6A demethylase Fto ..
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.. in cardiomyocytes (Fto-KO) (Figure 6A and online supplementary

Figure S10). Compared to Cre– wild-type (wt) and Cre+ wt
control mice, Fto-cKO mice showed a more severe reduction in
ejection fraction (16.2% and 22.25% vs. 8.01%, Cre– wt and Cre+
wt vs. Fto-cKO, respectively) and a higher degree of dilatation upon
TAC surgery (4.85 and 4.52 mm vs. 5.54 mm, Cre– wt and Cre+
wt vs. Fto-cKO, respectively) (Figure 6B–E). Thus, cardiac function
depends on the presence of the Fto demethylase and the cellular
m6A landscape.

Discussion
Our study reveals that (i) m6A RNA methylation is altered in
heart hypertrophy and heart failure; (ii) m6A RNA methylation
degree positively correlates with ribosomal occupancy, leading to
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increased and decreased protein levels for hyper- and hypomethy-
lated transcripts, respectively; (iii) m6A RNA methylation levels
affect protein abundance of genes that do not change their mRNA
levels, pointing to the transcription-independent mechanism of
translation regulation; (iv) modulation of the m6A RNA system
by cardiomyocyte specific knockout of the demethylase Fto leads
to a faster progression of heart failure with significant reduction in
ejection fraction and increased dilatation.

Changes in transcriptome
and epitranscriptome in heart failure
When we investigated m6A RNA methylation during heart failure
development, we found that the number of RNAs with altered
methylation levels was much higher than the number of genes that
change their mRNA levels, meaning that changes in m6A RNA
methylation exceed changes in gene expression. It is important
to note that we applied the same cut-off to determine signifi-
cant changes in either gene expression or m6A RNA methylation,
thereby allowing a direct comparison. Interestingly, changes in m6A
RNA methylation mainly occur in transcripts coding for proteins
involved in cardiac signalling and metabolic processes whereas
changes in gene expression were mainly linked to structural
targets. Therefore, m6A RNA methylation is likely to influence
the very early steps of gene expression regulation since tran-
scripts encoding several transcription factors (FOXO1, FOXO4,
ELF2, EIF5a), epigenetic proteins (SMYD1, DICER1, RBM20)
and corresponding regulators of signalling pathways up-stream of
gene expression (for example ERK and MDM2) are differentially
methylated. Small changes in the expression of these ‘regulatory’
targets might lead to more profound changes of their downstream
targets and therefore m6A RNA methylation could have a larger
impact on the cardiac phenotype.

Transcription-independent effect of m6A
RNA methylation
As m6A RNA methylation is present and furthermore changes also
in transcripts that do not change their mRNA levels, m6A RNA
methylation could affect mRNA translation and hence the pro-
teome independent of transcription. For example, we could show,
that the protein abundance of calmodulin 1 (Calm1) – a member
of the important CaMKII signalling pathway – is reduced while its
mRNA level is unaffected but m6A RNA methylation decreases.
This shows that until now, the focus on RNA expression regulation
is insufficient to describe the changes in protein abundance and
that additional mechanisms – like m6A RNA methylation – can
contribute to changes in the levels of proteins and, in our case,
to heart failure development. This could also help to explain the
often observed discrepancy between disease-associated changes in
mRNA levels and the corresponding protein level.25,26

Biological importance of m6A RNA
methylation
We reasoned that m6A marks on different regions of tran-
scripts might have diverse influence on mRNA, like RNA stability, ..
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.. transport, ribosomal binding and decay. To our knowledge this is
one of the first studies showing a link between transcript levels and
the extent of m6A methylation at 5′UTR and CDS but not 3′UTR
and non-coding RNAs. m6A RNA methylation was described to
play a role in promoting mRNA decay.21 The correlation of m6A
RNA methylation and transcript levels in cardiac tissue is however
comparatively small, suggesting that m6A RNA methylation in the
heart does not have a major effect on RNA decay. Indeed, studies
in other tissues reported that m6A RNA methylation also affects
processes such as translation initiation and/or efficiency.22,23 Since
we found a correlation between m6A RNA methylation and ribo-
somal occupancy, we believe that this mechanism is present in the
heart. Also m6A RNA methylation can affect other RNA-based
processes, for example RNA transport.14,27,28 These different con-
sequences of m6A RNA methylation are most likely mediated by
specific m6A RNA methylation reader proteins10,20 but the details
of such a regulation are currently not well understood. More
research is needed to increase the understanding of the functions
of m6A methylation in the heart and the mechanisms by which
these effects are exerted.

Mechanisms underlying m6A RNA
methylation changes
Our study, showing differential m6A methylation in cardiac tissue
in case of heart failure, is in agreement with recent reports.15,29,30

Mathiyalagan et al.15 showed that m6A methylation is involved
in the regeneration of the infarct/peri-infarction area, whereas
Dorn et al.29 and Kmietczyk et al.30 reported that the hypertrophic
response is altered in Mettl3-knockout mice leading to heart fail-
ure after TAC. This is interesting since our study shows that
also Fto-cKO leads to a faster progression of heart failure with
reduced hypertrophy. Therefore, deletion of the RNA methyl-
transferase (Mettl3) as well as the RNA demethylase (Fto) may
impair the response to pressure overload. These data are in line
with our observation that hyper- and hypomethylated transcripts
are detected in response to heart insufficiency and suggest that
the regulatory function of m6A RNA methylation is complex. We
speculate that disturbance in either direction is linked to com-
promised cardiac function. It will be interesting to study to what
extent other factors, including genetic predisposition, influence the
direction and degree of m6A RNA methylation changes in cardiac
diseases, thereby offering the possibility for stratified therapies.
Moreover, since it has been shown that m6A methylation can have a
stimulatory23 or an inhibitory effect31 on translation, probably the
location of the methylation mark within a transcript might deter-
mine the functional consequences. Further research is needed to
study these possibilities.

One approach would be to elucidate the mechanisms that
lead to altered m6A RNA methylation in cardiac diseases. We
did not observe any changes of mRNA or protein levels of the
key regulators of m6A RNA methylation (online supplementary
Figure S7). The only exemption was a decrease of METTL3 protein
in human tissue from heart failure patients, suggesting that the
manipulation of Mettl3 and its counterplay Fto in a cell-specific
and temporally-controlled manner in mice and in human-induced
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pluripotent stem cell-derived cardiomyocytes might be a suit-
able approach for further studies. However, these regulators of
m6A RNA methylation are also regulated via post-translational
modifications13,32 and in case of FTO, shuttling between nucleus
and cytoplasm has been reported.33 Whether any of these
processes could explain the changes in m6A RNA methylation
alteration during heart failure development remains to be
investigated.

In conclusion, our data shows that m6A RNA methylation is
deregulated during heart failure progression. m6A RNA methyla-
tion changes are linked to changes in protein translation, even for
genes that do not change their mRNA levels. This uncovers a new
mechanism of translation regulation, independent of transcription.
Therefore, our data suggest that modulation of epitranscriptomic
processes, such as m6A RNA methylation, might be an interesting
target for therapeutic interventions.

Clinical perspective
Here we could show that methylation of RNA is changed in cardiac
hypertrophy and heart failure. We suggest a novel mechanism
where RNA methylation influences RNA–ribosome interaction
and leads to a change in protein expression and heart failure
progression. Importantly, this is also true for targets that show
no change in RNA expression level. This shows that protein
expression regulation in heart failure occurs partially only on
the translational level and without changes in DNA to RNA
transcription. Therefore, this novel mechanism opens potential
new treatment options for heart failure.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
Methods S1. Supplementary methods.
Figure S1. m6A landscape of non-coding RNA. (A) 1.15% of all
detected m6A peaks in normal heart tissue of mouse (n = 3208)
were mapped to non-coding RNA (n = 37). (B) Correlation
analysis between the methylation levels of non-coding RNA
and transcript abundance of the same molecules. In contrast
to the finding for 5′UTR and coding sequence, no relationship
was revealed for non-coding RNAs between these two values
(r = 0.06, P = 0.7188).
Figure S2. Gene expression changes in hypertrophic and failing
heart of mouse. (A) RNA-Seq followed by differential gene expres-
sion revealed 73 genes upregulated and 83 genes downregulated
after 1 week of TAC surgery (Log2FC>1, Padj< 0.05). Lower
part shows GO categories identified for deregulated genes. (B)
Eight weeks after TAC surgery, 144 genes showed increased levels
of transcripts while 91 genes were detected with reduced tran-
script abundance. Pathway analysis of differentially expressed genes
showed that both metabolic and cardiac function are affected. (C)
Venn diagram showing that 71 genes were differentially expresses ..
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.. 1 week and 8 weeks after TAC surgery. Gene enrichment anal-
ysis indicated that those genes participate in important cardiac
pathways.
Figure S3. Differentially methylated transcripts outnumber dif-
ferentially expressed RNAs. (A) One week after TAC surgery
217 genes showed deregulation at the transcript levels while
RNAs generated from 1611 loci were detected as differentially
methylated. Only 78 genes encoded transcripts differentially
expressed and differentially methylated at the same time
(Log2FC> 1, Padj< 0.05 cut-offs were used for both, differential
expression and differential methylation analysis). (B) Left panel: 47
genes showed differential methylation and differential expression
8 weeks after surgery compared to their control group. Many
more genes with differentially methylated RNAs (n = 1182) than
differentially expressed (n = 174) were detected. Right panel:
Venn diagram of differentially methylated, differentially transcribed
and differentially translated genes in the heart failure model.
(C) Correlation analysis between the levels of methylation and
abundance of transcripts that changed their methylation degrees
in failed heart tissue in mouse (left panel) and human (right panel).
Figure S4. Analysis of correlation between the levels of methy-
lation and polysome occupancy in healthy heart tissue of mouse.
No correlation (r = 0.003, P = 0.8765) was revealed between the
levels of RNA N6A methylation and polysome binding for those
RNAs in control group of mouse.

Figure S5. Epitranscriptome of human heart tissue. (A) Distribu-
tion of m6A peaks across lncRNA. (B) No correlation was found
between the levels of methylation and abundance for non-coding
RNAs (r = –0.09, P = 0.6895). (C) Guitar plots showing distribu-
tion of peaks with gained and lost methylation levels in human
patients with heart failure.

Figure S6. Changes in transcriptome of heart tissue in human
patients. (A) Differential gene expression analysis revealed 228
genes with altered transcript levels (Log2FC> 1, Padj< 0.05).
mRNAs from only 30 loci were differentially methylated at the
same time (B). As shown in the mouse model of heart failure,
in human patients in compromised heart tissue much more tran-
scripts show differential methylation (n =1249) than differential
expression (n = 228). Pathway analysis of differentially expressed
genes revealed importance of those proteins in organization of
actomyosin structure, response to stress and formation of extra-
cellular matrix.

Figure S7. Expression of members of m6A machinery. (A)
RNA-Seq data did not reveal differential expression of m6A writ-
ers, readers and erasers in mouse model of heart hypertrophy (A)
and heart failure (B). No changes were detected on the level of
proteins for Fto, Mettl14 and Mettl16 genes while Mettl3 showed
mild reduction of protein levels in mouse failing heart samples.
(C) RNA expression analysis of different genes related to m6A
in human samples lead to no drastic changes in transcript levels
in human failing heart samples. Western blot analysis of METTL3,
METTL14 and FTO protein showed no difference in abundance
between healthy and failed human heart tissue.

Figure S8. Verification of differential m6A methylation by
qRT-PCR. Smyd1, Gata6 and Rnd3 transcripts were selected

© 2019 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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to verify MeRIP data by qRT-PCR of m6A immunoprecipitated
samples from heart RNA obtained from the new batch of animals
8 weeks after TAC surgery(n = 4 per group). mRNAs from Smyd1

and Gata6 showed hypomethylation, while for Rnd3 mRNAs hyper-
methylation was confirmed by showing increased trend of ratio of
IPed/input in TAC mice compared to sham animals. Western blot
analysis of Smyd1 protein revealed reduction.
Figure S9. Western blot analysis of m6A RNA machinery.
Full western blots are provided for main members of RNA
methyltransferase and RNA demethylase for both mouse and
human heart tissues.
Figure S10. Generation of Fto-cKO mice. A machinery. (A)
qRT-PCR analysis shows reduction of Fto mRNA by 80% in
heart tissue of Fto-cKO mice. (B) Western blot analysis revealed
depletion of Fto protein from isolated cardiomyocytes of Fto-cKO
animals, whereas in protein extract from the whole left ventricle
contains some detectable Fto protein.
Table S1. Patient characteristics and received treatments.
Table S2. Parameters of healthy human donors.
Table S3. m6A RNA methylation in mouse heart hypertrophy.
Lists of differentially methylated and differentially expressed genes
are provided
Table S4. m6A RNA methylation in mouse heart failure. Lists
of differentially methylated and differentially expressed genes are
provided. Transcripts showing differential polysome binding are
listed
Table S5. m6A RNA methylation in huma heart failure. Lists
of differentially methylated and differentially expressed genes are
provided
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