Published for SISSA by 🖉 Springer

RECEIVED: June 24, 2019 ACCEPTED: June 27, 2019 PUBLISHED: July 4, 2019

## Erratum: Searching for flavored gauge bosons

Eung Jin Chun,<sup>a</sup> Arindam Das,<sup>a</sup> Jinsu Kim<sup>b,1</sup> and Jongkuk Kim<sup>c</sup>

<sup>a</sup>Korea Institute for Advanced Study, Seoul 02455, Korea

<sup>c</sup>Department of Physics, BK21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea

*E-mail:* ejchun@kias.re.kr, arindam@kias.re.kr,

jinsu.kim@theorie.physik.uni-goettingen.de, jongkukkim@skku.edu

ERRATUM TO: JHEP02(2019)093

ARXIV EPRINT: 1811.04320

We provide a change to the LHC bounds on  $B - 3L_i$  (i = 1, 2, 3) scenario in ref. [1]. In figure 3 of the original article [1], the LHC bounds on  $B - 3L_i$  are depicted as solid and dashed brown curves. They are modified as figure 1 in this erratum.

Accordingly the last paragraph of section 7 of the original article [1] is updated as follows. For all  $B - 3L_i$  cases, the LHC bounds become the strongest bounds for large  $M_{Z'}$  region;  $M_{Z'} \gtrsim 150 \text{ GeV}$  for i = 1, 2 cases and  $M_{Z'} \gtrsim 500 \text{ GeV}$  for i = 3 case. In the  $B - 3L_1$  case, the LEP bounds on  $e^-e^+ \rightarrow \ell^-\ell^+$  processes give the most stringent bounds on small  $M_{Z'}$  region, 10 GeV  $\lesssim M_{Z'} \lesssim 150$  GeV. The  $B - 3L_2$  case is particularly interesting. Due to the strong bounds from HFAG lepton universality test, only a small region 60 GeV  $\lesssim M_{Z'} \lesssim 150$  GeV is consistent with all the constraints at  $2\sigma$ .

## Acknowledgments

We thank Hongkai Liu for pointing out our mistakes.



<sup>&</sup>lt;sup>b</sup>Institute for Theoretical Physics, Georg-August University Göttingen,

Friedrich-Hund-Platz 1, Göttingen D-37077, Germany

<sup>&</sup>lt;sup>1</sup>Corresponding author.



Figure 1. Upper left panel: bounds on g' and  $M_{Z'}$  for the  $B-3L_1$  model. The thin (thick) dashedred and solid-black curves correspond to  $1\sigma$   $(2\sigma)$  bounds from LEP search [2] and SLD/LEP Z-decay lepton universality test [3], respectively. The green region is excluded by BaBar bounds [4]. The brown curve is the LHC bound from ATLAS observed limits. Upper right panel: bounds on g' and  $M_{Z'}$  for the  $B - 3L_2$  model. The thin (thick) solid-black curve corresponds to  $1\sigma$   $(2\sigma)$  bound from the SLD/LEP Z-decay lepton universality test [3]. The blue (cyan) shaded region between thin (thick) dotted-blue curves is the  $1\sigma$   $(2\sigma)$  allowed region by the HFAG lepton universality test [5]. The brown curve is the LHC bound from ATLAS observed limits. The lighter- and darker-grey regions are excluded by neutrino-trident bound [6, 7] and the LHC bound for  $Z \to 4\mu$  [8]. Therefore, only a small region 60 GeV  $\leq M_{Z'} \leq 150$  GeV is consistent with all the constraints at  $2\sigma$ . Lower panel: bounds on g' and  $M_{Z'}$  for the  $B - 3L_3$  model. The thin (thick) dotted blue and solid black curves correspond to  $1\sigma$   $(2\sigma)$  bounds from the HFAG lepton universality test [5] and SLD/LEP Z-decay lepton universality test [3], respectively. The solid and dashed brown curves are the LHC bounds from ATLAS and CMS respectively.

**Open Access.** This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- E.J. Chun, A. Das, J. Kim and J. Kim, Searching for Flavored Gauge Bosons, JHEP 02 (2019) 093 [arXiv:1811.04320] [INSPIRE].
- [2] ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group, Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

- [3] ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group, *Precision electroweak measurements* on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
- [4] BABAR collaboration, Search for a Dark Photon in e<sup>+</sup>e<sup>-</sup> Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
- [5] HFLAV collaboration, Averages of b-hadron, c-hadron and  $\tau$ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
- [6] CCFR collaboration, Neutrino tridents and WZ interference, Phys. Rev. Lett. 66 (1991) 3117 [INSPIRE].
- [7] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801
  [arXiv:1406.2332] [INSPIRE].
- [8] CMS collaboration, Search for an  $L_{\mu} L_{\tau}$  gauge boson using  $Z \to 4\mu$  events in proton-proton collisions at  $\sqrt{s} = 13$  TeV, Phys. Lett. **B** 792 (2019) 345 [arXiv:1808.03684] [INSPIRE].