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Abstract
In this article, the existence of ghost classes for the Shimura varieties associated to algebraic
groups of orthogonal similitudes of signature (2, n) is investigated. Wemake use of the study
of the weights in the mixed Hodge structures associated to the corresponding cohomology
spaces and results on the Eisenstein cohomology of the algebraic group of orthogonal simil-
itudes of signature (1, n − 1). For the values of n = 4, 5 we prove the non-existence of ghost
classes for most of the irreducible representations (including most of those with an irregular
highest weight). For the rest of the cases, we prove strong restrictions on the possible weights
in the space of ghost classes and, in particular, we show that they satisfy the weak middle
weight property.

Keywords Shimura varieties · Ghost classes · Mixed Hodge structures
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1 Introduction

Let (G, X) be a Shimura pair, and let ρ : G → GL(V ) be an irreducible finite dimensional
representation (not necessarily defined over Q). For every open compact subgroup K f ⊂
G(A f ) of the group of finite adelic points of G, we consider the level variety

SK = G(Q)\X × (G(A f )/K f )

and we denote by S the projective limit, over the directed set of open compact subgroups, of
these level varieties (i.e. the space of complex points of the corresponding Shimura variety).
One can define in a natural way a local system ˜V on the Shimura variety S associated to
(G, X), underlying a variation of complex Hodge structure of a given weight wt(V ).
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Let A ⊂ G be a maximal Q-split torus and T ⊂ G a maximal torus defined over Q
such that A ⊂ T. We choose systems of positive roots in the corresponding root systems
�(G,T),�(G,A) so that they are compatible, i.e. the restriction to A, of a positive root in
�(G,T) is either zero or positive in �(G,A). Let λ : T(C) −→ C× be the highest weight
of V . We will usually denote V by Vλ. The choice of the system of positive roots �+(G,A)

in �(G,A) defines a set of standard proper Q-parabolic subgroups denoted by PQ(G).
From now on we will assume that the semisimple Q-rank of G is 2. In this case PQ(G)

consists of three elements: two maximal Q-parabolic subgroups denoted by P1 and P2, and
a minimal Q-parabolic subgroup denoted by P0.

We consider the Borel–Serre compactification S of S (see [2]). The inclusion S ↪→ S is a
homotopy equivalence and ˜Vλ can be extended naturally to S. The corresponding local system
will again be denoted by ˜Vλ. In fact there is a natural isomorphism H•(S, ˜Vλ) ∼= H•(S, ˜Vλ)

and as a consequence we obtain a long exact sequence in cohomology

· · · → Hq
c (S, ˜Vλ) → Hq(S, ˜Vλ)

rq−→ Hq(∂S, ˜Vλ) → · · · (1)

where H•
c (S, ˜Vλ) denotes the cohomology with compact support and ∂S = S − S is the

boundary of the Borel–Serre compactification.
On the other hand, we have a covering ∂S = ∪P∈PQ(G)∂P, where this union is indexed

by the elements of PQ(G). The aforementioned covering induces a spectral sequence in
cohomology abutting to H•(∂S, ˜Vλ) and in the case of Q-rank 2 this is just a long exact
sequence in cohomology

· · · → Hq(∂S, ˜Vλ)
pq

−→ Hq(∂P1 ,
˜Vλ) ⊕ Hq(∂P2 ,

˜Vλ) → Hq(∂P0 ,
˜Vλ) → · · · (2)

We define the space of q-ghost classes by Ghq(˜Vλ) = I m(rq)∩K er(pq). Both long exact
sequences in cohomology (1) and (2) are long exact sequences of mixed Hodge structures
(see [12]).

For each i ∈ {0, 1, 2} there is a decomposition (see [16, Section 7.2]):

Hq(∂Pi ,
˜Vλ) =

⊕

w∈WPi

I nd
G(A f )

Pi (A f )
Hq−�(w)(SMi , ˜Ww∗(λ)) (3)

obtained by using Kostant’s theorem (see [13]), where the induction is the algebraic (unnor-
malized) induction, WPi is the set of Weyl representatives associated to Pi , SMi is the
symmetric space associated to the Levi quotient Mi of Pi , �(w) denotes the length of the
element w and Ww∗(λ) is the irreducible representation of Mi with highest weight w∗(λ) (see
Sect. 6.1 for the definition of w∗(λ)).

The mixed Hodge structure on Hq(∂Pi ,
˜Vλ) splits completely with respect to the afore-

mentioned decomposition (see Remark 5.5.6 of [12]). Moreover, for i ∈ {1, 2} there exists
a subset W0

i ⊂ W(G,T) such that W0
i WPi = WP0 and the corresponding morphism in

cohomology ri : H•(∂Pi ,
˜Vλ) → H•(∂P0 , ˜Vλ) restricted to I nd

G(A f )

Pi (A f )
Hq−�(w)(SMi , ˜Ww∗(λ))

(with w ∈ WPi ) has image in
⊕

w̃∈W0
i

I nd
G(A f )

P0(A f )
Hq−�(w)−�(w̃)(SM0 , ˜W(w̃w)∗(λ)).

In the cases to be studied in this article, SM0 has non trivial cohomology only in degree
zero, and when i = 0, the mixed Hodge structure of each term in (3) has a pure weight.

The idea behind this paper is the fact that the space K er(pq) (involved in the definition of
ghost classes) is the image of the connecting homomorphism Hq−1(∂P0 ,

˜Vλ) → Hq(∂S, ˜Vλ)
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Ghost classes inQ-rank two orthogonal Shimura varieties 1211

from the long exact sequence (2) and, after (3), we have a list of possible weights in the corre-
sponding space of ghost classes. By using mixed Hodge theory and Eisenstein cohomology,
a study of the morphisms r• : H•(S, ˜Vλ) → H•(∂S, ˜Vλ), ri : H•(∂Pi ,

˜Vλ) → H•(∂P0 , ˜Vλ)

is used to rule out most of the possible weights in the space of ghost classes.
Ghost classes were introduced by A. Borel [1] in 1984. Later on, G. Harder mentioned

these classes several times in his work. At the very end in the article [9], Harder refers to the
case of GL3 and said “... the ghost classes appear if some L-values vanish. The order of
vanishing does not play a role. But this may change in the higher rank case”. He further added
that this aspect is worth investigating. Not to mention much, this gives a nice motivation to
pursue the study of ghost classes further and specially in higher rank groups. Since then,
though some mathematicians have studied them, the general theory of these classes has been
slow in coming.

Ghost classes can be introduced for any reductive algebraic group and their definition does
not depend on the existence of a complex structure. In the case of a Shimura variety, the space
of ghost classes is equipped with mixed Hodge structure. It is then interesting to study the
nontriviality of the space of ghost classes for a Shimura variety and to give some description
of the possible weights in its mixed Hodge structure. When S is a Shimura variety, the local
system ˜Vλ defines a complex variation of Hodge structure of a certain weight wt(Vλ) (see
[18] for this notion) and it is known that the weights in the mixed Hodge structure on the
space Hq(S, ˜Vλ) are greater than or equal to the middle weight, given by q + wt(Vλ) (see
Theorem 2.2.7 of [11]). Therefore the weights in the mixed Hodge structure on the space
of ghost classes are greater than or equal to the middle weight. We say that the Shimura
variety satisfies the weak middle weight property if for every finite dimensional highest
weight representation Vλ of G and every nonnegative integer q , the only possible weights in
the mixed Hodge structure on the space of q-ghost classes, in Hq(∂S, ˜Vλ), are the middle
weight and the middle weight plus one. In addition, the Shimura variety is said to satisfy the
middle weight property if, for every choice of highest weight λ and every nonnegative integer
q , the only possible weight in the space of ghost classes in Hq(∂S, ˜Vλ) is the middle weight.

The middle weight property is expected to be true by the experts, but there is no proof of
this fact for the moment. We were unable to trace down the attribution of this conjecture in
the literature and therefore we consider it a folklore conjecture. Recently, the second author
has provided a strong support for the (weak) middle weight property by a thorough study of
the cases of the Shimura varieties associated to GSp(4) in [4] and GU(2, 2) in [5].

In this article, we present a study of the Shimura varieties associated to the groups of
orthogonal similitudes GO(2, n) for n ≥ 3. The study of ghost classes is discussed in detail,
in the last two sections, for the cases n = 4 and n = 5. For example, in the case of n = 5
(see Theorem 11) we obtain the following result:

Theorem Let Vλ be the finite dimensional irreducible representation with highest weight
λ = a1ε1 + a2ε2 + a3ε3 + cκ . One has:

(1) If a2 �= 0 then there are no ghost classes in the cohomology space H•(∂S, ˜Vλ).
(2) If a2 = 0 (which implies a3 = 0 and therefore in terms of fundamental weights one has

λ = a1
1 + cκ), then the only possible weights in the mixed Hodge structure of the
space of ghost classes are the middle weight and the middle weight plus one.

We obtain a similar result in the case n = 4 (see Theorem 9). When the highest weight λ
of the irreducible representation is regular, one can obtain the non-existence of ghost classes
by combining [15, Theorem 4.11] and [3, Theorem 19]. In this article, we take a step further
and prove the non-existence of ghost classes for most of the irregular highest weights. In the
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remaining cases we restrict the list of degrees in cohomology in which there could exist ghost
classes and prove that there is, in each degree, only one possible weight in their corresponding
mixed Hodge structure which is in all cases the middle weight or the middle weight plus one.

2 The Shimura variety involved

In this section we present the family of Shimura varieties to be studied. Throughout the
article, n ≥ 3. We denote by Gm the multiplicative group and by S the restriction of scalars
ResC/RGm . That is,

S(F) = Gm(F ⊗R C) for every R-algebra F .

and in particularS(R) = C× is themultiplicative group ofC.Wedenote by z, z̄ : S(C) → C×
the algebraic characters of S(C) such that the composition of C× = S(R) ↪→ S(C) with
them are respectively the identity and the complex conjugation. Consider the Shimura pair
(GO(2, n), X), where GO(2, n) is the group of orthogonal similitudes of signature (2, n)

defined by

GO(2, n)(A) = {

g ∈ GLn+2(A) | gt I2,ng = ν(g)I2,n, ν(g) ∈ A×}

,

for every Q-algebra A, where I2,n = −2I d2 × I dn−2 × 2I d2 and X is the GO(2, n)(R)-
conjugacy class of homomorphisms containing the element h : S(R) −→ GO(2, n)(R)

given by

h(x + iy) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2 − y2 2xy
−2xy x2 − y2

x2 + y2

. . .

x2 + y2

x2 + y2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∀(x + iy) ∈ S(R).

Thus, the weight morphism ωX : Gm −→ GO(2, n) of the Shimura pair is given by
ωX (t) = t2 I dn+2 where I dn+2 denotes the identity in dimension n + 2.

The choice of I2,n may seem a bit artificial, but we are using it only to get the description
of h and being able to work with the more canonical quadratic form defined below by Jn . In
fact, what follows is also valid for general orthogonal groups of signature (2, n) but we will
keep working with this particular orthogonal group in order to give an explicit description of
this case.

For the description of the parabolic subgroups it is better to consider the algebraic group
Gn that is isomorphic, as an algebraic group defined over Q, to GO(2, n), given by

Gn(A) = {

g ∈ GLn+2(A) | gt Jng = ν(g)Jn, ν(g) ∈ A×}

, for every Q-algebra A,

where

Jn =

⎡

⎢

⎢

⎢

⎢

⎣

1
1

I dn−2

1
1

⎤

⎥

⎥

⎥

⎥

⎦

.
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In fact, it can be verified that the conjugation, inside GLn+2, by the element

D =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 1
0 1 0 1 0
0 0 I dn−2 0 0
0 −1 0 1 0

−1 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,

gives an isomorphism between the groups GO(2, n) and Gn defined over Q. We introduced
the group GO(2, n) because it allows to give an explicit and simple description of h. From
now on we will work with the group Gn (and in this setting, the corresponding morphism
S(R) → Gn(R) is given by z �→ Dh(z)D−1).

We denote by A f the ring of finite adeles and by K∞ the centralizer in Gn(R) of the
morphism Dh D−1 : S(R) → Gn(R). Let K f ⊂ Gn(A f ) be an open compact subgroup, we
denote K = K∞ × K f ⊂ Gn(A) and define by

SK = Gn(Q)\Gn(R) × Gn(A f )/K∞ × K f

its corresponding level variety and by

S = lim←−
K

SK

the space of complex points of the Shimura variety defined by this Shimura datum.

3 Root system,Q-parabolic subgroups and irreducible representations

Consider the maximal Q-split torus

A =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

h

⎡

⎢

⎢

⎢

⎢

⎣

h1 0 0 0 0
0 h2 0 0 0
0 0 I dn−2 0 0
0 0 0 h−1

2 0
0 0 0 0 h−1

1

⎤

⎥

⎥

⎥

⎥

⎦

: h, h1, h2 ∈ Gm

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⊂ Gn

Let a and gn denote the Lie algebra of A and Gn , respectively. The corresponding Q-root
system �(gn, a) is of type B2 and Q = {ε1 − ε2, ε2}, where ε1, ε2 ∈ a∗ denote the usual
elements, is a system of simple roots. This determines a set of proper standard Q-parabolic
subgroups P(Gn)Q = {P0,P1,P2}, given by

P1(C) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∗ ∗ . . . ∗ ∗
0 ∗ . . . ∗ ∗
...

...
. . .

...
...

0 ∗ . . . ∗ ∗
0 0 . . . 0 ∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ GL(n + 2,C)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

∩ Gn(C),
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P2(C) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
...

...
...

. . .
...

...
...

0 0 ∗ . . . ∗ ∗ ∗
0 0 0 . . . 0 ∗ ∗
0 0 0 . . . 0 ∗ ∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ GL(n + 2,C)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

∩ Gn(C)

and P0 = P1 ∩ P2. Let AP0 ,AP1 ,AP2 ⊂ A be the following Q-subtori:

AP1 =
⎧

⎨

⎩

h

⎡

⎣

h1 0 0
0 I dn 0
0 0 h−1

1

⎤

⎦ : h, h1 ∈ Gm

⎫

⎬

⎭

,

AP2 =
⎧

⎨

⎩

h

⎡

⎣

h2 I d2 0 0
0 I dn−2 0
0 0 h−1

2 I d2

⎤

⎦ : h, h2 ∈ Gm

⎫

⎬

⎭

,

and AP0 = A. Finally, for i ∈ {0, 1, 2}, the Levi quotient Mi of Pi is canonically isomorphic
to the centralizer ZGn (APi ) of APi in Gn (so we will use the same notation Mi for both
groups). One can see that over C the group Gn is isomorphic to the group of orthogonal
similitudes GO(n + 2) of matrices preserving the quadratic form defined by the matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1
0 0 0 1 0

0 0
... 0 0

0 1 0 0 0
1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(in dimension n + 2) up to a scalar multiple. An isomorphism between Gn and GO(n + 2)
can be established by conjugation by a certain matrix of the form

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 M 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

where M ∈ GLn−2(C) is given by

1√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 −i

0
. . . 0 0

... 0
0 0 1 −i 0 0
0 0 1 i 0 0

0
... 0 0

. . . 0
1 0 0 0 0 i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and
1√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 −i

0
. . . 0 0 0

... 0
0 0 1 0 −i 0 0
0 0 0 1 0 0 0
0 0 1 0 i 0 0

0
... 0 0 0

. . . 0
1 0 0 0 0 0 i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

if n is even and odd respectively. The point is the following. We will study the cohomology
spaces of the Shimura variety S with respect to the local systems defined by absolutely
irreducible representations of Gn , that is by representations of Gn that are irreducible overC.
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Ghost classes inQ-rank two orthogonal Shimura varieties 1215

These are therefore the same as the absolutely irreducible representations of GO(n + 2). On
the other hand the classification of the irreducible representations of GO(n + 2) is easier to
obtain. There is a canonical maximal torus T in GO(n + 2) which is given by the subgroup
of all its diagonal matrices. It is clear that, under the aforementioned isomorphism Gn ∼=
GO(n + 2) the maximal Q-split torus A is contained in T (this is important because of
the compatibility condition between A and T enunciated in the introduction). Let t be the
Lie algebra associated to T then t is given by all the diagonal elements in the Lie algebra
g = go(n + 2) corresponding to GO(n + 2). For the study of the corresponding root system
and the irreducible representations we need to treat the cases n odd and n even separately. In
what follows, tC is the Lie algebra of T(C).

3.1 Case n odd

T is a torus of dimension l + 1, where l = n+1
2 . Now, we describe the irreducible finite

dimensional representations of Gn . One can see that go(n + 2)C = so(n + 2)C ⊕ CI dn+2.
On the other hand, let t′

C
⊂ so(n + 2)C be the l-dimensional subspace of diagonal matrices.

Here t′
C
is a Cartan subalgebra of so(n +2)C. We consider the canonical coordinate elements

ε′
1, . . . , ε

′
l ∈ (t′

C
)∗. Then one knows that the corresponding root system is of type Bl and

 = {

ε′
1 − ε′

2, . . . , ε
′
l−1 − ε′

l , ε
′
l

}

is a system of simple roots. With respect to this choice of
system of simple roots, the fundamental weights for so(n + 2) are given by:


k =
k

∑

i=1

ε′
i , for 1 ≤ k < l and 
l = 1

2

l
∑

i=1

ε′
i

and the finite dimensional irreducible representations of so(n + 2) are determined by their
highest weights, given by the expressions of the form n1
1+· · ·+nl
l with n1, . . . , nl ∈ N.
One says that such a representation is regular if ni > 0 for all i ∈ {1, . . . , l}. Only the highest
weights with nl even will correspond to a finite dimensional irreducible representation of
SO(n + 2) (see for example, Proposition 3.1.19 and Theorem 5.5.21 of [6]). In other words,
the irreducible finite dimensional representations of SO(n + 2) can be determined by their
highest weights and these are given by the elements of the form a1ε′

1 + · · · + alε
′
l with

a1 ≥ · · · ≥ al ∈ N. With respect to the decomposition tC = t′
C

⊕ CI dn+2, let εi ∈ t∗
C
, for

each i ∈ {1, . . . , l}, be the extension of ε′
i by zero on the second component and let κ ∈ t∗

C

be the element that is zero in the first component and such that κ(z I dn+2) = z. From the fact
that GO(n + 2) is the direct product of its center Z (∼= Gm) and SO(n + 2), one can deduce
that the finite dimensional irreducible representations of GO(n + 2) are in bijection with the
highest weights of the form a1ε1 + · · · + alεl + cκ with a1 ≥ · · · ≥ al ∈ N and c ∈ Z.

Finally, with respect to the root system defined by t, the Weyl group W = W(go(n +
2)C, tC) has 2l l! elements and these elements are given by the composition of a permutation
in Sl acting on {ε1, . . . , εl} and any possible change of signs on these elements. For a given
permutation σ ∈ Sl and f : {1, . . . , l} → {1,−1}, we denote by w = wσ, f the element in
W that takes each εi to f (σ (i))εσ(i).

3.2 Case n even

Following a similar procedure, we can determine the irreducible finite dimensional repre-
sentations of Gn by their corresponding highest weights. In this case l = n+2

2 and T has
dimension l + 1. Let t′

C
⊂ so(n + 2)C be, again, the l-dimensional subspace of diagonal
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1216 J. Bajpai, M.V. Moya Giusti

matrices, then t′
C
is a Cartan subalgebra of so(n + 2)C. The corresponding root system is

of type Dl and  = {

ε′
1 − ε′

2, . . . , ε
′
l−1 − ε′

l , ε
′
l−1 + ε′

l

}

is a system of simple roots, where
ε′
1, . . . , ε

′
l ∈ (t′

C
)∗ is the canonical base in (t′

C
)∗. Therefore the fundamental weights for

so(n + 2) are given by:


k =
k

∑

i=1

ε′
i , for 1 ≤ k < l − 1, 
l−1 = 1

2

(

l−1
∑

i=1

ε′
i − ε′

l

)

and 
l = 1

2

l
∑

i=1

ε′
i

and the finite dimensional irreducible representations of so(n + 2) are determined by their
highest weights, given by the expressions of the form n1
1+· · ·+nl
l with n1, . . . , nl ∈ N.
One says that such a representation is regular if ni > 0 for all i ∈ {1, . . . , l}. Among these
highest weights, only those with nl−1 + nl even will correspond to a finite dimensional
irreducible representation of SO(n + 2).

In other words, the finite dimensional irreducible representations of SO(n + 2) are deter-
mined by their highest weights, that are of the form a1ε′

1 + · · · + alε
′
l where a1 ≥ · · · ≥

al−1 ≥ |al | ∈ N.
In this case GO(n + 2) is the semidirect product of its center Z and SO(n + 2), and their

intersection is {±I dn+2}. We define the elements ε1, . . . , εl , κ ∈ t∗
C
as in Sect. 3.1. One can

finally deduce that the finite dimensional irreducible representations of Gn are in bijection
with the highest weights of the form a1ε1 +· · ·+alεl + cκ with a1 ≥ · · · ≥ al−1 ≥ |al | ∈ N

and c ∈ Z with c ≡ a1 + a2 + · · · + al (mod 2), where the congruence modulo 2 is the
compatibility condition between the representation of SO(n + 2) and the character on the
center.

The Weyl group W has 2(l−1)l! elements. It is given by all compositions of an element
of the group of permutations Sl on {ε1, . . . , εl} and a change of sign on an even number of
these elements. For a given permutation σ ∈ Sl and f : {1, . . . , l} → {1,−1}, we use the
same notation as in the last subsection to denote the corresponding element w = wσ, f in the
Weyl group.

4 Weyl representatives

In this section we describe the set of Weyl representatives associated to each standard Q-
parabolic subgroup of Gn as defined in [13]. i will denote the set of roots appearing in the
Lie algebra of the unipotent radical of the parabolic subgroup Pi of Gn , for i ∈ {0, 1, 2}.
Because of the difference between the corresponding Weyl groups, the even and odd cases
will be treated separately.

4.1 Case n odd

We begin with the description of the Weyl representatives for the minimal Q-parabolic sub-
group P0. The roots appearing in the unipotent radical of P0 are

0 = {ε1 ± ε2, . . . , ε1 ± εl , ε2 ± ε3, . . . , ε2 ± εl , ε1, ε2}
and by definition the set of Weyl representatives WP0 are the elements w ∈ W such
that w(�−) ∩ �+ ⊂ 0, but the elements in �+ which are not in 0 are �+\0 =
{εm ± εn, εm | 2 < m < n ≤ l} . From this fact one can see the following:

Lemma 1 Let wσ, f be an element of the Weyl group W , then wσ, f ∈ WP0 if and only if
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(1) f (m) = 1 ∀m > 2, and
(2) σ−1(m) < σ−1(n) for 2 < m < n ≤ l.

In factwσ, f ∈ WP0 is determined by the values f (1), f (2), σ−1(1) andσ−1(2). Therefore
WP0 has 4(l −1)l elements. Observe that the only element in0 which is not in2 is ε1−ε2.
Then, clearly WP2 is the subset of WP0 of Weyl elements w such that ε1 − ε2 /∈ w(�−).
From this fact one can easily see that, for wσ, f ∈ WP0 , if f (1) = −1 and f (2) = 1 then
wσ, f /∈ WP2 . On the other hand, if f (1) = 1 and f (2) = −1 then for any σ ∈ Sl , the
corresponding element wσ, f ∈ WP0 . Moreover we see the following

Lemma 2 WP2 consists of the elements wσ, f ∈ WP0 satisfying one of the following condi-
tions

• f (1) = 1 and f (2) = −1.
• f (1) = f (2) = 1 and σ−1(1) < σ−1(2).
• f (1) = f (2) = −1 and σ−1(1) > σ−1(2).

Finally, 1 = {e1 ± e2, . . . , e1 ± el , e1} and using the above methods, we get the follow-
ing

Lemma 3 WP1 consists of the elements wσ, f ∈ WP0 satisfying the following conditions

• f (2) = 1 and
• σ−1(2) < σ−1(3).

In particular, if l = 3, wσ, f ∈ WP1 if f (2) = f (3) = 1 and σ ∈ {id, (12), (123)}. One
can observe the similarity with the description of the Weyl representatives in Proposition 8
of [7].

We now describe the Weyl representatives W0
i of P0 ∩ Mi in Mi for i = 1, 2. Using the

same methods as above, we determine W0
2 = {

we,1, w(1,2),1
}

, where 1 denotes here the
constant function that takes always the value 1, and

W0
1 = {

wσ, f | f (m) = 1 ∀m �= 2, σ (1) = 1 and σ−1(m) < σ−1(n) ∀2 < m < n ≤ l
}

.

Note that WP0 = W i
0WPi for i = 1, 2.

4.2 Case n even

In this case, 0 is given by {ε1 ± εk | 1 < k ≤ l}∪ {ε2 ± εk | 2 < k ≤ l}. For 2 < k < l, we
see that if f (k) = −1 thenwσ, f /∈ WP0 (because this element takes the root−εσ−1(k)−εσ−1(l)
to a positive root not in 0). In fact we get the following

Lemma 4 WP0 is given by all the elements wσ, f ∈ W satisfying

(1) f (k) = 1 for 2 < k < l.
(2) σ−1(m) < σ−1(n) for 2 < m < n ≤ l.

Also, the only element in0 which is not in2 is ε1−ε2 and1 = {ε1 ± εk | 1 < k ≤ l}.
From these facts we deduce the following

Lemma 5 WP2 is the subset of WP0 consisting of the elements wσ, f ∈ WP0 satisfying one
of the following conditions:
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(1) f (1) = 1 and f (2) = −1.
(2) f (1) = f (2) = 1 and σ−1(1) < σ−1(2).
(3) f (1) = f (2) = −1 and σ−1(1) > σ−1(2).

and WP1 is the subset of WP0 consisting of the elements wσ, f ∈ WP0 satisfying both condi-
tions

(1) f (2) = 1.
(2) σ−1(2) < σ−1(3).

By similar computations, the sets W0
2 and W0

1 are given by W0
2 = {

we,1, w(1,2),1
}

and

W0
1 = {

wσ, f ∈ WP0 | σ(1) = 1, f (1) = 1
}

.

5 Mixed Hodge theory

Wenow collect some information regarding theweight filtration of themixedHodge structure
for the cohomology spaces in the long exact sequences (1) and (2).

First of all, the weight morphism of the orthogonal Shimura variety associated to GO(2, n)

is givenby themorphismω : Gm → GO(2, n)definedby t �→ t2 I dn+2. Therefore, for afinite
dimensional irreducible representation (ρλ, Vλ) with highest weight λ = ∑l

i=1 aiεi + cκ ,
the composition ρλ ◦ ω : Gm → GL(Vλ) is given by t �→ t2c I dn+2. Therefore Vλ defines a
complex variation of Hodge structure of weight −2c and the mixed Hodge structure on the
space Hq(S, ˜Vλ) has weights greater than or equal to q − 2c (see Theorem 2.2.7 of [11]).

We continue by calculating, for each i ∈ {0, 1, 2}, the morphism hi : S → Gh,i defining
a Shimura pair (Gh,i , hi ) where Gh,i is the Hermitian part of the Levi subgroup Mi of Pi .
For this we use the description given in [10] (but one could also use Chapter 4 of [14]).

First of all, we need to introduce some notation. Given an algebraic representation ρ :
Gn → GL(V ) defined over Q one has:

• A decreasing filtration F•
h VC of VC = V ⊗Q C defined by the composition ρ ◦ h : S →

GL(V ) by

F p
h VC = ⊕p′≥pV p′,q

where for every p, q ∈ Z, V p,q = {v ∈ VC | ρ ◦ h(z)v = z−p z̄−qv} (where h, z and z̄
are as in Sect. 2).

• Every morphism χ : Gm → Gn defined over Q, defines an increasing filtration W χ• V
given by

W χ
n V = ⊕n′≤n V χ

n′

where for every n ∈ Z, V χ
n = {v ∈ V | ρ ◦ χ(r)v = rnv}.

Let ωPi be the unique admissible Cayley morphism ωPi : Gm → APi (see Theorem 5.1.3
of [10]). In particular, this morphism satisfies:

• For every representation ρ : Gn → GL(V ) defined over Q, the pair of filtrations
(W ωPi

• V , F•
h V ) defines a mixed Hodge structure on V .

• Let Ui ⊂ Pi be the unipotent radical and Wi ⊂ Ui be the center of Ui . For the adjoint
representation of Gn on its Lie algebra gn , the filtration W ωPi

• gn satisfies that (gn)ω
Pi

−2 is

the Lie algebra of Wi , (gn)ω
Pi

−1 ⊕ (gn)ω
Pi

−2 is the Lie algebra of Ui and (gn)ω
Pi

0 is the Lie
algebra of Mi .
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From now on, for every representation ρ : Gn → GL(V ), we will denote by W Pi• V and
V Pi• the filtration and the graduation on V , respectively, defined by the admissible Cayley
morphism ωPi .

Once we determine the admissible Cayley morphism by using the aforementioned proper-
ties, it will be enough in our case to use 5.1.9 of [10] with the standard representation, given
by the natural inclusion Gn ↪→ GLn+2, to calculate hi .

5.1 Case i = 1

LetωP1 : Gm → AP1 be the unique admissible Cayley morphism. Because of the description
of AP1 , there exists m, k ∈ Z such that

ωP1(r) =
⎡

⎣

rk+m 0 0
0 rk I dn 0
0 0 rk−m

⎤

⎦ ∀r ∈ C×.

By using the description of the filtration on the Lie algebra gn defined by the composition
of the adjoint representation with ωP1 and the fact that in this case, the unipotent radical is
commutative (therefore U1 = W1), one finally has m = −2.

Now, consider the standard representation given by the inclusion Gn ↪→ GL2+n and let
V = Qn+2. We have defined h : S → GO(2, n), so we have to compose this morphism with
the conjugation by D in order to work with the group Gn (D as in Sect. 2) and consider the
filtration defined by Dh D−1 on V ⊗Q C. In particular, to get this filtration one can apply
D to the Hodge filtration defined by the morphism h : S → GO(2, n) ↪→ GL2+n on Cn+2.
Then the Hodge filtration F•

h V on VC is defined by the graduation

V p,q =
⎧

⎨

⎩

〈De1 − i De2〉 = 〈e1 − en+2 − ie2 + ien+1〉, if (p, q) = (0, −2)
〈De3, . . . , Den , Den+1, Den+2〉 = 〈e3, . . . , en , en+1 + e2, en+2 + e1〉, if (p, q) = (−1,−1)
〈De1 + i De2〉 = 〈e1 − en+2 + ie2 − ien+1〉, if (p, q) = (−2, 0)

and the weight filtration W P1• V on V is defined by the graduation

V P1
j =

⎧

⎨

⎩

〈en+2〉, if j = k + 2
〈e2, . . . , en+1〉, if j = k
〈e1〉, if j = k − 2

One can see that the Hodge filtration F•
h V induces on Wk−2V = V P1

k−2 the filtration

F j V P1
k−2 = F j

h C
n+2 ∩ (V P1

k−2 ⊗Q C) =
{

V P1
k−2 ⊗Q C, if j = −2

0, if j = −1

On the other hand, the Hodge filtration must define a Hodge structure of weight k − 2 on
Wk−2V . This implies that k = −2.

Now, by using 5.1.9 of [10] one finally can see, by using the standard representation, that
the morphism h1 : S → Gh,1 ⊂ GO(2, n) is given by

h1(z) =
⎡

⎣

|z|4
|z|2 I dn

1

⎤

⎦ , ∀z ∈ S(R).
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In particular, the weight morphism associated to (Gh,1, h1) is the morphism ω1 : Gm →
Gh,1 ⊂ M1 given by

ω1(t) =
⎡

⎣

t4

t2 I dn

1

⎤

⎦ = t2

⎡

⎣

t2

I dn

t−2

⎤

⎦ , ∀t ∈ Gm(R).

From this description of the weight morphism ω1 one can see the following. Let w ∈ WP1

and let w∗(λ) = n1ε1 +· · ·+ nlεl + cκ be defined as in Sect. 6.1. if Ww∗(λ) is the irreducible
representation ofMi with highest weightw∗(λ), then the mixed Hodge structure on the space
Hq(SM1 , ˜Ww∗(λ)), described in [12], has weights greater than or equal to q − 2c − 2n1.

5.2 Case i = 2

In this case, by using the same procedure as in the case i = 1, one has that U2 �= W2 and by
using the filtration that the Cayley morphism ωP2 induces on the Lie algebra of Gn one can
see that

ωP2(r) =
⎡

⎣

rk−1 I d2
rk I dn−2

rk+1 I d2

⎤

⎦ ∀r ∈ S(R),

for k ∈ Z. Now consider the representation ofGn on V = Qn+2 given by the natural inclusion
Gn ↪→ GLn+2. The property that the pair of filtrations (W ωP2

• V , F•
h V ) defines amixedHodge

structure on V implies that one has k = −2 and finally that h2 : S → Gh,2 ⊂ GO(2, n) is
given by

h2(z) =

⎡

⎢

⎢

⎢

⎢

⎣

|z|2
[

x y
−y x

]

|z|2 I dn−2
[

x y
−y x

]

⎤

⎥

⎥

⎥

⎥

⎦

∀z = (x + iy) ∈ S(R).

Thus, the corresponding weight morphism is given by

ω2(t) =
⎡

⎣

t3 I d2
t2 I dn−2

t I d2

⎤

⎦ = t2

⎡

⎣

t I d2
I dn−2

t−1 I d2

⎤

⎦ ∀t ∈ Gm(R).

One can deduce the following. For w ∈ W P2 and w∗(λ) = n1ε1 + · · · + nlεl + cκ defined
as in Sect. 6.1, the weights in the mixed Hodge structure associated to Hq(SM2 , ˜Ww∗(λ)) are
greater than or equal to q − 2c − n1 − n2.

5.3 Case i = 0

In this case, one has that the parabolic subgroup P0 is subordinate (in the sense of section
2.2 of [12]) to P1. Then the hermitian part of P0 is exactly the hermitian part of P1 and, for
w ∈ WP0 with w∗(λ) = n1ε1 + · · · + nlεl + cκ , the mixed Hodge structure on the space
H0(SM0 , ˜Ww∗(λ)) has weight equal to −2c − 2n1 (note that SM0 can only have cohomology
in degree zero).
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6 Important facts

For notational convenience, we use ∂i in place of ∂Pi for i ∈ {0, 1, 2}. In this section, we
explain the methods used to determine when a cohomology class in H∗(∂0, ˜Vλ) does not
contribute to a ghost class in the cohomology of the boundary. From now on, whenever n is
clear from the context, we will denote Gn simply by G.

6.1 A decomposition of H•(@i,˜V�)

In this subsection, a well known decomposition of the spaces H•(∂i , ˜Vλ) is introduced. For
w ∈ W , we denote by �(w) the length of w. For each i ∈ {0, 1, 2} and w ∈ WPi , we write
w∗(λ) = w(λ + ρ) − ρ ∈ h∗ where ρ = 1

2

∑

α∈�+ α. Then w∗(λ) is the highest weight
associated to an irreducible finite dimensional representation Ww∗(λ) of Mi . For each q ∈ N

we have,
Hq(∂i , ˜Vλ) =

⊕

w∈WPi

I nd
G(A f )

Pi (A f )
Hq−�(w)(SMi , ˜Ww∗(λ)). (4)

where I nd
G(A f )

Pi (A f )
denotes the algebraic (unnormalized) induction and SMi is the symmetric

space associated to Mi . For the rest of this paper we will denote I nd
G(A f )

Pi (A f )
by I ndG

Pi
.

For each q ∈ N, let WPi (q) be the set of the elements w ∈ WPi with �(w) = q . Since
SM0 can only have nontrivial cohomology in degree 0,

Hq(∂0, ˜Vλ) =
⊕

w∈WP0 (q)

I ndG
P0 H0(SM0 , ˜Ww∗(λ)), ∀q ∈ N. (5)

In order to study ker(pq) (see (2)), we study the image of the map δq : Hq−1(∂0, ˜Vλ) →
Hq(∂S, ˜Vλ). Therefore, for each w ∈ W P0(q − 1) we study whether the space
I ndG

P0
H0(SM0 , ˜Ww∗(λ)) is in the kernel of δq and, when this is not the case, whether it

could contribute to ghost classes.

6.2 Middle weight

The fact that the weights in the mixed Hodge structure on Hq(S, ˜Vλ) are greater than or equal
to q − 2c is strongly used. Note that −2c is the unique weight in the variation of complex
Hodge structure defined by Vλ. If w ∈ WP0 and w∗(λ) = n1ε1 + n2ε2 + n3ε3 + cκ , then
the subspace I ndG

P0
H0(SM0 , ˜Ww∗(λ)) of Hq−1(∂0, ˜Vλ) in (5) has weight −2n1 − 2c. Note

that �(w) = q − 1. Thus, a necessary condition for the space I ndG
P0

H0(SM0 , ˜Ww∗(λ)) to
contribute to ghost classes is that −2c − 2n1 ≥ q − 2c = �(w) + 1 − 2c

We summarize the above discussion in the form of following lemma.

Lemma 6 If w ∈ WP0 satisfies the inequality

�(w) + 1 > −2n1

then the space I ndG
P0

H0(SM0 , ˜Ww∗(λ)) cannot contribute to ghost classes in H•(∂S, ˜Vλ).
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6.3 Image of ri : H•(@i,˜V�) → H•(@0,˜V�)

To study the image of ri we use the general description of Eisenstein cohomology in [15]
and [17]. In order to enunciate the main theorem that will be used for the study of the images
of the morphisms ri , we need to introduce some notations.

From now on, i will denote an element in {0, 1, 2}. As usual, we denote byUi the unipotent
radical of Pi . We denote di = dim(U0(R)/Ui (R)).

We use the following notations

aPi = X∗(APi) ⊗ R, ǎPi = X∗(Pi ) ⊗ R

where X∗(APi) and X∗(Pi ) denote, respectively, the group ofQ-rational cocharacters of APi
and the group ofQ-rational characters of Pi. There is a natural isomorphism between aPi and
the Lie algebra of APi(R), and ǎPi is naturally isomorphic to a∗

Pi
. The natural pairing between

ǎPi and aPi will be denoted by 〈, 〉. In particular, aP0 is naturally isomorphic to Lie(A(R)).
Remember, from Sect. 2, that ε1, ε2 denote the usual first and second coordinate functions
in the diagonal matrices of A.

Let 
Pi
P0

⊂ Q be the set of simple roots which occur in the Lie algebra of U0 but not

in the Lie algebra of Ui . We denote by ǎ
Pi
P0

the subspace of ǎP0 generated by the elements

in 
Pi
P0
. Let aPi

P0
be the subspace of aP0 annihilated by ǎPi . Let A

Pi
P0

⊂ AP0 be the subtorus

whose corresponding Lie subalgebra is aPi
P0

⊂ aP0 . Let (P0,A
Pi
P0

) be the system of simple

roots defined by the choice of minimal parabolic P0 and the torus APi
P0
.

On the other hand, for i = 1 or 2, let �Pi (aP0) be the set of isomorphisms of aP0 given by
the restriction to aP0 of an element of the Weyl groupW and leaving the space aPi pointwise
fixed. In our case, �Pi (aP0) has two elements, one is the identity and the other one will be
denoted by si . For the cases we will work on, the fact that si ∈ W0

i and �(w) + �(siw) = di

will be enough to describe si .
Finally, for w ∈ WP0 , we denote

�Pi
w = −w(λ + ρ)|

a
Pi
P0

Although in Section 6 of [17] one finds this definition with ρP0 (as in Section 1.7 of [15])
instead of ρ, one has ρ|aP0 = ρP0 (see Section 1.7 of [15]). That is why one also finds this
definition with ρ instead of ρP0 in the introduction of [17]. With all this notation, we can now
introduce the theorem that we will use, whose details for the proof can be found in [15] and
[17].

Theorem 7 Let i be 1 or 2. Let w ∈ WP0 be such that, if w = wPi /P0wPi with respect to
the decomposition WP0 = W0

i WPi , then �(wPi /P0) ≥ di
2 . Let [ϕ] be a cohomology class

in I ndG
P0

H0(SM0 , ˜Ww∗(λ)) represented by a cuspidal form φ. Let E(ϕ,�) be the Eisenstein
series in the complex variable �, defined formally in Section 6 of [17]. Then:

(a) If 〈�Pi
w , α∨〉 > 〈ρ|

a
Pi
P0

, α∨〉 for all α ∈ (P0,A
Pi
P0

) (i.e. if �
Pi
w − ρ|

a
Pi
P0

is in the posi-

tive Weyl chamber of the system of simple roots (P0,A
Pi
P0

)) then the Eisenstein series

E(ϕ,�) is holomorphic at � = �
Pi
w .

(b) If 〈�Pi
w , α∨〉 > 0 for all α ∈ (P0,A

Pi
P0

) (i.e. if �
Pi
w is in the positive Weyl chamber of

the system of simple roots (P0,A
Pi
P0

)) and the highest weight w
Pi∗ (λ) of Mi is regular,

then the Eisenstein series E(ϕ,�) is holomorphic at � = �
Pi
w .
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In both cases, E(ϕ,�
Pi
w ) defines a closed form representing a cohomology class [E(ϕ,�

Pi
w )]

in I ndG
Pi

H �(wPi /P0 )(SMi , ˜W(wPi )∗(λ)) ⊂ H �(w)(∂i , Ṽλ) and one has:

(1) If �(wPi /P0) >
di
2 then ri ([E(ϕ,�

Pi
w )]) = [ϕ].

(2) If �(wPi /P0) = di
2 then, let w′ be (siw

Pi /P0)wPi . One has

ri ([E(ϕ,�Pi
w )]) = [ϕ] + c(�Pi

w )[ϕ] ∈ I ndG
P0 H0(SM0 , ˜Ww∗(λ))

⊕I ndG
P0 H0(SM0 , ˜Ww′∗(λ)) ⊂ H �(w)(∂0, Ṽλ).

where c(�Pi
w ) : I ndG

P0
H0(SM0 , ˜Ww∗(λ)) → I ndG

P0
H0(SM0 , ˜Ww′∗(λ)) ⊂ H �(w)(∂0, Ṽλ) is

certain intertwining operator (that will not be used in this paper).

Proof For the case (a), when �
Pi
w − ρ|

a
Pi
P0

is in the positive Weyl chamber of the system of

simple roots (P0,A
Pi
P0

), this theorem is a combination of results of Section 6 in [17], in
particular Theorem 6.3, Theorem 6.4 and the proposition of that section. We observe that the
result enunciated is this theorem is true even for nonregular highest weight λ, because the fact
that �

Pi
w − ρ|

a
Pi
P0

is in the positive Weyl chamber of the system of simple roots (P0,A
Pi
P0

)

already implies that the Eisenstein series is holomorphic at �Pi
w and represents a closed form

in H �(w)(∂i , Ṽλ). Then we can use the same reasoning as in the proof of Theorem 6.4 of [17]
and Theorem 4.11 of [15] to get the description of ri ([E(ϕ,�

Pi
w )]).

For the item (1), in principle one has

ri ([E(ϕ,�Pi
w )]) = [ϕ] + c(�Pi

w )[ϕ] ∈ I ndG
P0 H0(SM0 , ˜Ww∗(λ)) ⊕ I ndG

P0 H0(SM0 , ˜W(si w)∗(λ))

On the other hand I ndG
P0

H0(SM0 , ˜Ww∗(λ)) ⊂ H �(w)(∂0, Ṽλ) and therefore [E(ϕ,�
Pi
w )] ∈

H �(w)(∂i , Ṽλ).

But�(siw
Pi /P0) < �(wPi /P0) and therefore�(siw) < �(w). Therefore H0(SM0 , ˜W(si w)∗(λ))

defines cohomology classes in degree �(siw). Hence c(�Pi
w )[ϕ] = 0.

For the case (b), when �
Pi
w is in the positive Weyl chamber and the highest weight wPi∗ (λ)

of Mi is regular, we still need to prove that the Eisenstein series E(ϕ,�) is holomorphic at
� = �

Pi
w . For this we observe the following fact. One knows that, for i ∈ {0, 1, 2} one has a

decomposition
Hq(∂i , ˜Vλ) =

⊕

w∈WPi

I ndG
Pi

Hq−�(w)(SMi , ˜Ww∗(λ)) .

If i is 1 or 2, then for w ∈ WPi , such that w = wPi /P0wPi with respect to the decomposition
WP0 = W0

i WPi , the restriction of ri to the summand

I ndG
Pi

Hq−�(w)(SMi , ˜W(wPi )∗(λ)) (6)

has image in
⊕

w̃∈W0
i

I ndG
P0 Hq−�(w)−�(w̃)(SM0 , ˜W(w̃wPi )∗(λ)) (7)

and (7) can be thought of as the boundary of the Borel–Serre compactification of (6). One
could therefore think about the construction of Eisenstein cohomology classes in

I ndG
Pi

Hq−�(w)(SMi , ˜W(wPi )∗(λ))
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from cohomology classes in the space I ndG
P0

Hq−�(w)(SM0 , ˜Ww∗(λ)) as in [15]. We remark

here that the parabolic induction I ndG
P1

appears after taking the inverse limit over the level
varieties. So, we can work on the level varieties and then, when taking the inverse limit,
obtain the same results for I ndG

Pi
Hq−�(w)(SMi , ˜W(wPi )∗(λ)) or we can use the exactness of

the parabolic induction.
In that case we would be thinking about the reductive group Mi and the Q-system of

positive roots �+
Mi

= �+(Mi,APi) defined by the (minimal)Q-parabolic subgroup P0 ∩Mi.
In this setting, one has the corresponding element ρMi = ∑

α∈�+
Mi

α. One can see that

ρMi

∣

∣

a
Pi
P0

= ρ|
a
Pi
P0

. In fact, remember that the evaluation point, as in Theorem 4.11 of [15], in

this case is given by

−wPi /P0((wPi )∗(λ) + ρMi)
∣

∣

a
Pi
P0

= −wPi /P0((wPi (λ + ρ) − ρ) + ρMi)
∣

∣

a
Pi
P0

= −w(λ + ρ)|
a
Pi
P0

Then, as it is already explained in the proof of Theorem 6.3 of [17], one has that if the
highest weight (wPi )∗(λ) for Mi is regular, the Eisenstein series E(ϕ,�) does not have a
pole at�Pi

w , otherwise the residue of that Eisenstein series would represent a square integrable
cohomology class in I ndG

Pi
Hq−�(w)(SMi , ˜W(wPi )∗(λ)) (see the comment before Proposition

in Section 6 of [17]). But in the regular case, the square integrable cohomology is equal to
the cuspidal cohomology (Corollary 2.3 in [17]). This would be a contradiction, since the
Eisenstein series could not represent cuspidal cohomology classes. ��

Let l be the rank of Gn , as defined in Sects. 3.1 and 3.2. In the case treated in this paper
one has that ρ is given by

ρ =
{∑�

k=1

(

l − k + 1
2

)

εk, if n is odd
∑�

k=1(l − k)εk, if n is even
.

6.3.1 The case i = 1

In this case, by using the results in Sect. 4 one has di = |i | − |0|, then

d1 = |1| − |0| =
{

1 + 2(l − 2), if n is odd
2(l − 2), if n is even

.

where |i | denotes the cardinality of the set i .


P1
P0

⊂ Q = {ε1 − ε2} and ǎP1P0 is the R-vector space generated by ε1 − ε2. On the other

hand, aP1P0 is generated by the character

r �→

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 r 0 0 0
0 0 I dn−2 0 0
0 0 0 r−1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

or equivalently, under the natural isomorphism, it is the real vector subspace of Lie(AP0)

generated by E2,2 − En+1,n+1 (where Ei, j denotes the (n + 2) × (n + 2) matrix with (i, j)
entry 1 and all other entries equal to 0).
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6.3.2 The case i = 2

In this case, one has d2 = |2| − |0| = 1.


P2
P0

⊂ Q = {ε2} and ǎP2P0 is the R-vector space generated by ε2. On the other hand, a
P2
P0

is generated by the character

r �→

⎡

⎢

⎢

⎢

⎢

⎣

r 0 0 0 0
0 r−1 0 0 0
0 0 I dn−2 0 0
0 0 0 r 0
0 0 0 0 r−1

⎤

⎥

⎥

⎥

⎥

⎦

or equivalently, under the natural isomorphism, it is the real vector subspace of Lie(AP0)

generated by E1,1 − E2,2 + En+1,n+1 − En+2,n+2.

Theorem 8 If w = wP2/P0wP2 ∈ WP0 = W0
2WP2 and (wP2)∗(λ) = n1ε1 + · · · + nlεl + cκ .

Then, if wP2/P0 = w(1,2),1 (notation as in Sects. 4.1 and 4.2) and n1 > n2 then the space
I ndG

P0
H0(SM0 , ˜Ww∗(λ)) is contained in the image of r2 and does not contribute to ghost

classes.

Proof We know that d2 = 1, therefore, under the hypothesis of the theorem �(wP2/P0) > d2.
On the other hand, w∗(λ) = w

P2/P0∗ ((wPi )∗(λ)) = w(1,2),1((w
Pi )∗(λ) + ρ) − ρ. Therefore

if w∗(λ) = m1ε1 + · · · + mlεl + cκ one has m1 = n2 − 1 and m2 = n1 + 1. Moreover,
�

P2
w = −w(λ + ρ)|

a
Pi
P0

= −(w∗(λ) + ρ)|
a
Pi
P0

. Then the inequality in item (a) of Theorem 7

is given by −(m1 − m2) > 2, but this means 2 + (n1 − n2) > 2. Therefore, if n1 > n2 then
the hypothesis of items (a) and (1) of Theorem 7 are satisfied and the result is proved. This
theorem can also be proved by using Theorem 2 in [8] together with the exactness of the
parabolic induction. ��

7 Ghost classes For GO(2, 4)

In this section, we closely study each element w ∈ WP0 to determine when the associated
space I ndG

P0
H0(SM0 , ˜Ww∗(λ)) will have possible contribution to ghost classes. This is done

by using the discussion carried out in Sects. 4, 5 and the facts listed in Sect. 6. In this case
the set of Weyl representatives WP0 is the whole Weyl group W . In this particular case, the
description of the sets of Weyl representatives given in the Sect. 4.2 can be summarized as
follows:

• WP0 = W , this is the set of all 24 elements listed in Table 1 below.
• WP2 = {w1, w4, w6, w8, w9, w11, w13, w14, w15, w16, w17, w18} .

• WP1 = {w1, w2, w5, w19, w20, w23}.
• W0

1 = {w1, w4, w13, w16}.
• W0

2 = {w1, w2}.
We present a table with the elements inWP0 and where each column delivers specific infor-
mation described below.

In the first column of Table 1, we indicate the Weyl representatives determined by the
permutation σ ∈ S3 and the choice of signs f given in the second and third column respec-
tively. In the third column we describe f by giving the set f −1(−1) ⊂ {1, 2, 3}. The fourth
column collects the length of the corresponding Weyl representative and the fifth column
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Table 1 The set of Weyl representativesWP0 for G O(2, 4)

w σ f �(w) Weight + 2c W0
2WP2 W0

1WP1 n1 n2 n3

w1 e ∅ 0 −2a1 w1w1 w1w1 a1 a2 a3
w2 (1 2) ∅ 1 2 − 2a2 w2w1 w1w2 a2 − 1 a1 + 1 a3
w3 (1 3) ∅ 3 4 − 2a3 w2w6 w4w5 a3 − 2 a2 a1 + 2

w4 (2 3) ∅ 1 −2a1 w1w4 w4w1 a1 a3 − 1 a2 + 1

w5 (1 2 3) ∅ 2 4 − 2a3 w2w4 w1w5 a3 − 2 a1 + 1 a2 + 1

w6 (3 2 1) ∅ 2 2 − 2a2 w1w6 w4w2 a2 − 1 a3 − 1 a1 + 2

w7 e {1, 2} 6 8 + 2a1 w2w8 w13w19 −a1 − 4 −a2 − 2 a3
w8 (1 2) {1, 2} 5 6 + 2a2 w1w8 w13w20 −a2 − 3 −a1 − 3 a3
w9 (1 3) {1, 2} 3 4 + 2a3 w1w9 w4w23 −a3 − 2 −a2 − 2 a1 + 2

w10 (2 3) {1, 2} 5 8 + 2a1 w2w11 w4w19 −a1 − 4 −a3 − 1 a2 + 1

w11 (1 2 3) {1, 2} 4 4 + 2a3 w1w11 w13w23 −a3 − 2 −a1 − 3 a2 + 1

w12 (3 2 1) {1, 2} 4 6 + 2a2 w2w9 w4w20 −a2 − 3 −a3 − 1 a1 + 2

w13 e {2, 3} 2 −2a1 w1w13 w13w1 a1 −a2 − 2 −a3
w14 (1 2) {2, 3} 3 2 − 2a2 w1w14 w13w2 a2 − 1 −a1 − 3 −a3
w15 (1 3) {2, 3} 3 4 − 2a3 w1w15 w16w5 a3 − 2 −a2 − 2 −a1 − 2

w16 (2 3) {2, 3} 1 −2a1 w1w16 w16w1 a1 −a3 − 1 −a2 − 1

w17 (1 2 3) {2, 3} 4 4 − 2a3 w1w17 w13w5 a3 − 2 −a1 − 3 −a2 − 1

w18 (3 2 1) {2, 3} 2 2 − 2a2 w1w18 w16w2 a2 − 1 −a3 − 1 −a1 − 2

w19 e {1, 3} 4 8 + 2a1 w2w14 w1w19 −a1 − 4 a2 −a3
w20 (1 2) {1, 3} 3 6 + 2a2 w2w13 w1w20 −a2 − 3 a1 + 1 −a3
w21 (1 3) {1, 3} 3 4 + 2a3 w2w18 w16w23 −a3 − 2 a2 −a1 − 2

w22 (2 3) {1, 3} 5 8 + 2a1 w2w17 w16w19 −a1 − 4 a3 − 1 −a2 − 1

w23 (1 2 3) {1, 3} 2 4 + 2a3 w2w16 w1w23 −a3 − 2 a1 + 1 −a2 − 1

w24 (3 2 1) {1, 3} 4 6 + 2a2 w2w15 w16w20 −a2 − 3 a3 − 1 −a1 − 2

indicates the weights in the mixed Hodge structure of I ndG
P0

H0(SM0 , ˜Ww∗(λ)) plus 2c (this
is just −2n1, by Sect. 5.3). The sixth and seventh column indicates the components of w

with respect to the decomposition W0
2WP2 and W0

1WP1 of WP0 . In the last three columns
we write the coefficients n1, n2, n3 from the expression w∗(λ) = n1ε1 + n2ε2 + n3ε3 + cκ .
We now prove the following

Theorem 9 Let Vλ be the finite dimensional irreducible representation of GO(2, 4) with
highest weight λ = a1ε1 + a2ε2 + a3ε3 + cκ . One has:

(1) If a2 �= 0, then there are no ghost classes in the cohomology space H•(∂S, ˜Vλ).
(2) If a2 = 0 (which implies a3 = 0 and therefore, in terms of fundamental weights,

λ = a1
1 + cκ), then the only possible weights in the space of ghost classes are the
middle weight and the middle weight plus one.

Proof We begin by using the facts from Sect. 6.2 to eliminate certain possible contributions
of the spaces I ndG

P0
H0(SM0 , ˜Ww∗(λ)) to ghost classes for w ∈ WP0 . Following Lemma 6,

one can see by comparing the entries of fourth and fifth columns of Table 1 that for the Weyl
representatives

w ∈ {w1, w4, w6, w13, w14, w16, w18}
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the space I ndG
P0

H0(SM0 , ˜Ww∗(λ)) has weight less than the middle weight of H �(w)+1

(S, ˜Vλ) and therefore this space cannot contribute to ghost classes. In addition, we note
the following

(i) For w = w2, the space I ndG
P0

H0(SM0 , ˜Ww∗(λ)) could only contribute to ghost classes
if a2 = 0.

(ii) For w ∈ {w3, w5, w15}, the space I ndG
P0

H0(SM0 , ˜Ww∗(λ)) could only contribute to
ghost classes if a3 ≤ 0.

(iii) For w ∈ {w9, w21, w23}, the space I ndG
P0

H0(SM0 , ˜Ww∗(λ)) could only contribute to
ghost classes if a3 ≥ 0.

Following Theorem 8, we study the image of the morphism

r2 : H•(∂2, ˜Vλ) → H•(∂0, ˜Vλ).

For w ∈ WP0 we write by w = wP2/P0wP2 ∈ W0
2WP2 its decomposition described in the

sixth column of Table 1. We see that for

w ∈ {w5, w10, w19, w20, w22, w23} .

the component inW0
2 isw2 and the component inWP2 is, respectively,w4, w11, w14, w13, w17

and w16. For each of these wP2 , we can see, following the values of n1 and n2 in the expres-
sion (wP2)∗(λ) = n1ε1 +· · ·+nlεl + cκ encoded in the last two columns of the Table 1, that
n1 > n2. By Theorem 8, this implies that the associated space I ndG

P0
H0(SM0 , ˜Ww∗(λ)) will

be entirely contained in the image of r2 and therefore this space cannot contribute to ghost
classes.

Using the same argument for the casesw2 andw7, the corresponding space can contribute
to ghost classes onlywhen a1 = a2. Forw3 andw12, the corresponding space could contribute
to ghost classes only when a2 = a3 and the cases w21 and w24 could contribute to ghost
classes only when a2 = −a3.

Note that the case w = w7 could only contribute to ghost classes in degree 7. As the
dimension of the symmetric space associated to G is 8, then by Corollary 11.4.3 in [2] one
can rule out the possibility of contribution to ghost classes.

Now, we continue analyzing further the possible contribution of the space I ndG
P0

H0

(SM0 , ˜Ww∗(λ)) for the remaining Weyl representatives, i.e. for

w ∈ {w2, w3, w8, w9, w11, w12, w15, w17, w21, w24}, (8)

by studying the image of the restriction of the map r1 : H•(∂P1 , ˜Vλ) → H•(∂P0 , ˜Vλ) follow-
ing the discussion of Sect. 6.3.

One has s1 = w13, w∗(λ) = n1ε1 + n2ε2 + n3ε3 + cκ , ρ = 2ε1 + ε2, A
P1
P0

= {ε2}, d1 = 2

and −w(λ + ρ) = −(w∗(λ) + ρ). Then, in this case, �P1
w = −(n2 + 1) and the inequality

in item (a) of Theorem 7 is given by −n2 > 2.
We see that forw ∈ {w8, w11, w17}, its component inWP1/P0 with respect to the decompo-

sitionWP0 = WP1/P0WP1 is w13 (�(w13) = 2 > d1
2 ) and w satisfies the condition −n2 > 2.

Thus, a direct application of item (1) of Theorem 7 gives that I ndG
P0

H0(SM0 , ˜Ww∗(λ)) is
contained in I m(r1) and therefore it does not contribute to ghost classes.

Again, in the setting of Theorem 7,w = w9 = w4w23 ∈ WP1/P0WP1 , one has �(w4) = d1
2

and�
P1
w = a2 +1 and the inequality of item (a) is given by a2 +1 > 1. Therefore, if a2 > 0,

all the hypothesis of item (a) of the aforementioned theorem are satisfied. Thus, for every
form [ϕ] ∈ I ndG

P0
H0(SM0 , ˜Ww∗(λ)), the projection to the first coordinate of
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r1([E(ϕ,�Pi
w )]) = [ϕ] + c(�Pi

w )[ϕ] ∈ I ndG
P0 H0(SM0 , ˜Ww∗(λ))

⊕I ndG
P0 H0(SM0 , ˜W(w21)∗(λ)) ⊂ H �(w)(∂0, Ṽλ)

is again [ϕ]. This together with the fact that, for a2 > 0, I ndG
P0

H0(SM0 , ˜W(w21)∗(λ)) is in

the image of r2 implies that I ndG
P0

H0(SM0 , ˜Ww∗(λ)) is contained in I m(r1) + I m(r2). In
conclusion, w9 could contribute to ghost classes only if a2 = 0. By the same procedure and
using the already proved fact that w15 can only contribute to ghost classes if a3 ≤ 0, one can
show that w15 can contribute to ghost classes only if a2 = 0.

Finally, wemake use of item (b) in Theorem 7. Forw ∈ WP1 , the highest weightw∗(λ) =
n1ε1 + n2ε2 + n3ε3 + cκ is regular for M1 if n2 > |n3| > 0.

For w = w12 = w4w20 ∈ WP1/P0WP1 , we checked before that w12 could contribute to
ghost classes only if a3 = a2. Suppose a2 = a3 > 0. One has �(w4) = d1

2 and �
P1
w = a3 + 1

and the inequality of item (a) is given by a3+1 > 2. On the other hand, (w20)∗(λ) is regular.
Therefore, if a2 = a3 > 0, all the hypothesis of item (b) of the aforementioned theorem
are satisfied. Thus, for every form [ϕ] ∈ I ndG

P0
H0(SM0 , ˜Ww∗(λ)), the projection to the first

coordinate of

r1([E(ϕ,�Pi
w )]) = [ϕ] + c(�Pi

w )[ϕ] ∈ I ndG
P0 H0(SM0 , ˜Ww∗(λ))

⊕I ndG
P0 H0(SM0 , ˜W(w24)∗(λ)) ⊂ H �(w)(∂0, Ṽλ).

is again [ϕ]. This together with the fact that, for a3 > 0, I ndG
P0

H0(SM0 , ˜W(w24)∗(λ)) is

in the image of r2 implies that I ndG
P0

H0(SM0 , ˜Ww∗(λ)) is contained in I m(r1) + I m(r2). In
conclusion,w12 could contribute to ghost classes only if a2 = a3 = 0. By the same procedure
and using the already proved fact that w24 can only contribute to ghost classes if a3 = −a2,
one can show that w24 could contribute to ghost classes only if a2 = 0.

We now summarize the above discussion to point out the possible contribution of the
spaces I ndG

P0
H0(SM0 , ˜Ww∗(λ)) to the ghost classes, as follows:

(1) If a1 = a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w2)∗(λ)) could contribute to ghost

classes in degree 2 and would have weight equal to the middle weight of H2(S, ˜Vλ).

(2) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w3)∗(λ)) could contribute to ghost

classes in degree 4 and would have weight equal to the middle weight of H4(S, ˜Vλ).

(3) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w9)∗(λ)) could contribute to ghost

classes in degree 4 and would have weight equal to the middle weight of H4(S, ˜Vλ).

(4) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w12)∗(λ)) could contribute to ghost

classes in degree 5 and would have weight equal to the middle weight of H5(S, ˜Vλ) plus
one.

(5) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w15)∗(λ)) could contribute to ghost

classes in degree 4 and would have weight equal to the middle weight of H4(S, ˜Vλ).

(6) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w21)∗(λ)) could contribute to ghost

classes in degree 4 and would have weight equal to the middle weight of H4(S, ˜Vλ).

(7) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w24)∗(λ)) could contribute to ghost

classes in degree 5 and would have weight equal to the middle weight of H5(S, ˜Vλ) plus
one.

Hence, we have proved the theorem. ��
We conclude the discussion with the following
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Corollary 10 Let Vλ be the finite dimensional irreducible representation of GO(2, 4) with
highest weight λ = n1
1 + n2
2 + n3
3 + cκ . Then ghost classes can exist only if
n2 = n3 = 0, and in that case one has

(1) If n1 �= 0 then ghost classes can exist only in degree 4 with middle weight and in degree
5 with middle weight plus one.

(2) If n1 = 0 then ghost classes can exist only in degrees 2 and 4 with middle weight and in
degree 5 with middle weight plus one.

8 Ghost classes For GO(2, 5)

In this last section, we will study each element w ∈ WP0 to determine when the associated
space I ndG

P0
H0(SM0 , ˜Ww∗(λ)) will have possible contribution to ghost classes. Note that in

this case the Weyl group of P0 is not the whole Weyl group of the underlying group. In this
case WP0 has 4l(l − 1) = 4 · 3 · 2 = 24 elements. We proceed in a similar fashion as in
Sect. 7 by using the results discussed in Sects. 4, 5 and the facts listed in Sect. 6.

In this particular case, the description of the sets of Weyl representatives given in the
Sect. 4.1 can be summarized as follows:

• WP0 ⊂ W , and all elements of WP0 are listed in the first column of the Table 2 below.
• WP2 = {w1, w4, w6, w13, w14, w15, w16, w17, w18, w20, w21, w23} .

• WP1 = {w1, w2, w5, w7, w8, w11}.
• W0

1 = {w1, w4, w13, w16}.
• W0

2 = {w1, w2}.
We present a similar table as provided in Sect. 7, with the elements in WP0 and where

each column delivers same type of information.

Theorem 11 Let Vλ be the finite dimensional irreducible representation of GO(2, 5) with
highest weight λ = a1ε1 + a2ε2 + a3ε3 + cκ . One has:

(1) If a2 �= 0 then there are no ghost classes in the cohomology space H•(∂S, ˜Vλ).
(2) If a2 = 0 (which implies a3 = 0 and therefore in terms of fundamental weights one has

λ = a1
1 + cκ), then the only possible weights in the mixed Hodge structure of the
space of ghost classes are the middle weight and the middle weight plus one.

Proof By Lemma 6 and the information in the Table 2 one can see that the spaces
I ndG

P0
H0(SM0 , ˜Ww∗(λ)) will not contribute to ghost classes for

w ∈ {w1, w4, w6, w13, w14, w15, w16, w17, w18} .

On the other hand,w2 could contribute to ghost classes only if a2 = 0 (which clearly implies
a3 = 0). w3 and w5 could contribute to ghost classes only if a3 = 0.

Following Theorem 8 and similar steps as the ones taken in Theorem 9, we continue
with analyzing the image of r2 : H•(∂2, ˜Vλ) → H•(∂0, ˜Vλ). If w ∈ WP0 is written as
w = wP2/P0wP2 with respect to the decomposition WP0 = W0

2WP2 , then for

w ∈ {w5, w7, w8, w9, w10, w11, w12, w22}
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Table 2 The set of Weyl representativesWP0 for GO(2, 5)

w σ f �(w) Weight + 2c W0
2WP2 W0

1WP1 n1 n2 n3

w1 e ∅ 0 −2a1 w1w1 w1w1 a1 a2 a3
w2 (1 2) ∅ 1 2 − 2a2 w2w1 w1w2 a2 − 1 a1 + 1 a3
w3 (1 3) ∅ 3 4 − 2a3 w2w6 w4w5 a3 − 2 a2 a1 + 2

w4 (2 3) ∅ 1 −2a1 w1w4 w4w1 a1 a3 − 1 a2 + 1

w5 (1 2 3) ∅ 2 4 − 2a3 w2w4 w1w5 a3 − 2 a1 + 1 a2 + 1

w6 (3 2 1) ∅ 2 2 − 2a2 w1w6 w4w2 a2 − 1 a3 − 1 a2 + 1

w7 e {1} 5 10 + 2a1 w2w14 w1w7 −a1 − 5 a2 a3
w8 (1 2) {1} 4 8 + 2a2 w2w13 w1w8 −a2 − 4 a1 + 1 a3
w9 (1 3) {1} 4 6 + 2a3 w2w18 w4w11 −a3 − 3 a2 a1 + 2

w10 (2 3) {1} 6 10 + 2a1 w2w17 w4w7 −a1 − 5 a3 − 1 a2 + 1

w11 (1 2 3) {1} 3 6 + 2a3 w2w16 w1w11 −a3 − 3 a1 + 1 a2 + 1

w12 (3 2 1) {1} 5 8 + 2a2 w2w15 w4w8 −a2 − 4 a3 − 1 a1 + 2

w13 e {2} 3 −2a1 w1w13 w13w1 a1 −a2 − 3 a3
w14 (1 2) {2} 4 2 − 2a2 w1w14 w13w2 a2 − 1 −a1 − 4 a3
w15 (1 3) {2} 4 4 − 2a3 w1w15 w16w5 a3 − 2 −a2 − 3 a1 + 2

w16 (2 3) {2} 2 −2a1 w1w16 w16w1 a1 −a3 − 2 a2 + 1

w17 (1 2 3) {2} 5 4 − 2a3 w1w17 w13w5 a3 − 2 −a1 − 4 a2 + 1

w18 (3 2 1) {2} 3 2 − 2a2 w1w18 w16w2 a2 − 1 −a3 − 2 a1 + 2

w19 e {1, 2} 8 10 + 2a1 w2w20 w13w7 −a1 − 5 −a2 − 3 a3
w20 (1 2) {1, 2} 7 8 + 2a2 w1w20 w13w8 −a2 − 4 −a1 − 4 a3
w21 (1 3) {1, 2} 5 6 + 2a3 w1w21 w16w11 −a3 − 3 −a2 − 3 a1 + 2

w22 (2 3) {1, 2} 7 10 + 2a1 w2w23 w16w7 −a1 − 5 −a3 − 2 a2 + 1

w23 (1 2 3) {1, 2} 6 6 + 2a3 w1w23 w13w11 −a3 − 3 −a1 − 4 a2 + 1

w24 (3 2 1) {1, 2} 6 8 + 2a2 w2w21 w16w8 −a2 − 4 −a3 − 2 a1 + 2

onehas,wP2/P0 = w2 �= e, and its component inWP2 is, respectively,w4, w14, w13, w18, w17,

w16, w15 and w23. For each of these wP2 , we can see, following the values of n1 and
n2 in the expression (wP2)∗(λ) = n1ε1 + n2ε2 + n3ε3 + cκ encoded in the last three
columns of the Table 2, that n1 > n2. By Theorem 8, this implies that the associated space
I ndG

P0
H0(SM0 , ˜Ww∗(λ)) will be entirely contained in the image of r2 and therefore this space

cannot contribute to ghost classes. However, for w2, w3, w19, w24, we made the following
observation. For w2 and w19, the corresponding space is not entirely contained in the image
of r2 only when a1 = a2 whereas for w3 and w24 this will happen only when a2 = a3.

In the case w19, one has that the space I ndG
P0

H0(SM0 , ˜W(w19)∗(λ)) could contribute to
ghost classes in degree 9. On the other hand, the symmetric space associated to G has
dimension 10 and byCorollary 11.4.3 in [2], H9(S, ˜Vλ) = 0.As a conclusion H9(SK , ˜Vλ) →
H9(∂SK , ˜Vλ) is the zero morphism and there are no ghost classes in degree 9 cohomology.
Therefore, w19 does not contribute to ghost classes.

Therefore the only possible contributions to ghost classes come from the following six
Weyl representatives

w ∈ {w2, w3, w20, w21, w23, w24} .
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We will study now each one of these cases to determine whether they could actually
contribute to ghost classes and in that case what the possible weights in the corresponding
mixed Hodge structure are. We do this by studying the image of r1 : H•(∂P1 , ˜Vλ) →
H•(∂P0 , ˜Vλ) following the discussion of Sect. 6.3.

One has s1 = w13,w∗(λ) = n1ε1 +n2ε2 +n3ε3 +cκ , ρ = 5
2ε1 + 3

2ε2 + 1
2ε3, A

P1
P0

= {ε2},
d1 = 3 and −w(λ + ρ) = −(w∗(λ) + ρ). Then, in this case, �

P1
w = −(n2 + 3

2 ) and the
inequality in item (a) of Theorem 7 is given by −n2 > 3.

We see that for w = w20, its component in WP1/P0 with respect to the decomposition
WP0 = WP1/P0WP1 is w13 (�(w13) = 3 > d1

2 ) and w satisfies the condition −n2 > 3. Thus,
a direct application of item (1) of Theorem 7 gives that I ndG

P0
H0(SM0 , ˜Ww∗(λ)) is contained

in I m(r1) and therefore it does not contribute to ghost classes. By the same procedure, but for
w = w23, one can see that I ndG

P0
H0(SM0 , ˜W(w23)∗(λ)) is contained in I m(r1) and therefore

it does not contribute to ghost classes. On the other hand, the same calculations for w21

show that this element could only contribute to ghost classes if a2 = 0 (because in that case
−n2 = a2 + 3).

Finally, wemake use of item (b) in Theorem 7. Forw ∈ WP1 , the highest weightw∗(λ) =
n1ε1 + n2ε2 + n3ε3 + cκ is regular for M1 if n2 > n3 > 0.

Assume a1 > a2. For w = w21 = w16w11 ∈ WP1/P0WP1 , one has �(w16) > d1
2 and

�
P1
w = a2 + 3

2 . We will assume a2 = 0, since we already proved that this element could
only contribute to ghost classes in that case. On the other hand, under these assumptions,
(w11)∗(λ) is regular. Therefore, if a1 > a2 = 0, all the hypothesis of item (b) of the
aforementioned theorem are satisfied. Thus, for every form [ϕ] ∈ I ndG

P0
H0(SM0 , ˜Ww∗(λ)),

one has r1([E(ϕ,�
Pi
w )]) = [ϕ]. This implies that I ndG

P0
H0(SM0 , ˜Ww∗(λ)) is contained in

I m(r1). In conclusion, w21 could contribute to ghost classes only if a1 = 0. By the same
procedure and using the already proved fact that w24 can contribute to ghost classes only if
a2 = a3, one can show that w24 can contribute to ghost classes only if a2 = 0.

We now summarize the above discussion to point out the possible contribution of the
space I ndG

P0
H0(SM0 , ˜Ww∗(λ)) for w ∈ WP0 to the ghost classes, as follows:

(1) Ifa1 = a2 = a3 = 0 (i.e.Vλ is onedimensional) then the space I ndG
P0

H0(SM0 , ˜W(w2)∗(λ))

could contribute to ghost classes in degree 2 and would have weight equal to the middle
weight of H2(S, ˜Vλ).

(2) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w3)∗(λ)) could contribute to ghost

classes in degree 4 and would have weight equal to the middle weight of H4(S, ˜Vλ).

(3) If a1 = a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w21)∗(λ)) could contribute to ghost

classes in degree 6 and would have weight equal to the middle weight of H6(S, ˜Vλ).

(4) If a2 = a3 = 0 then the space I ndG
P0

H0(SM0 , ˜W(w24)∗(λ)) could contribute to ghost

classes in degree 7 and would have weight equal to the middle weight of H7(S, ˜Vλ) plus
one.

This completes the proof. ��
We conclude this section with the following corollary that follows from the proof of

Theorem 11.

Corollary 12 Let Vλ be the finite dimensional irreducible representation of G O(2, 5) with
highest weight λ = n1
1 + n2
2 + n3
3 + cκ . Then ghost classes can exist only if
n2 = n3 = 0, and in that case one has:
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(1) If n1 �= 0 then ghost classes can exist only in degree 4 with middle weight and in degree
7 with middle weight plus one.

(2) If n1 = 0 then ghost classes can exist only in degrees 2, 4 and 6 with middle weight and
in degree 7 with middle weight plus one.
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