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Abstract

Objectives

Angiogenesis and anti-angiogenetic medications play an important role in progression and

therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier

and tumor vascularization may be important for individual prognosis and therapy

optimization.

Methods

We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of

tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at

7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal

recovery derived from DSC data over a time period of up to 35 days after tumor cell

injections.

Results

In all rats tumor progression was accompanied by temporal and spatial changes in CBV and

capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement)

was observed as soon as the tumor became detectable on T2-weighted images. Interest-

ingly, areas of strong capillary permeability (fast signal enhancement) were predominantly

localized in the center of the tumor. In contrast, the tumor rim was dominated by an

increased CBV and showed the highest vessel density compared to the tumor center and

the contralateral hemisphere as confirmed by histology.
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Conclusion

Substantial regional differences in the tumor highlight the importance of parameter maps in

contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI

including contrast-enhanced and DSC-MRI may contribute to a better understanding of

tumor development.

Introduction

Glioblastoma multiforme (GM) is one of the most malignant and frequent primary brain

tumors [1]. Current therapies combine surgery, chemotherapy and radiation, but the mean

survival time of GM is only 14.6 months [2]. The characterization of tumor microvasculature

including cerebral blood volume and vascular permeability is essential in glioblastoma diag-

nostics, in monitoring of the therapeutic response, and in therapeutic research particularly of

anti-angiogenic medications [3, 4]. Dynamic susceptibility contrast-enhanced (DSC) MRI is

commonly used to measure cerebral blood volume (CBV) and several DSC-MRI studies have

shown a correlation of higher CBV values with higher glioma grades [5, 6].

Tumor-driven angiogenesis and inflammation are often accompanied by increased capil-

lary permeability. This is detected by contrast agents such as Gd-DTPA passing into the extra-

vascular space. Compared to the initial intravascular bolus, however, the concentration of the

extravascular contrast agent is significantly lower and increases slowly over time leading to a

signal enhancement on T1-weighted images. This effect is utilized by dynamic contrast-

enhanced (DCE) MRI [7, 8].

In clinical diagnostics of humans, capillary permeability imaging has often been limited to

the analysis of a short time period after contrast agent injection or even only the first pass of

the contrast agent. In particular, the percentage of signal recovery (PSR) has been widely used.

PSR is the difference between the signal intensity at a defined time point (usually 60 s after

bolus arrival in humans) and the minimum of the signal intensity curve (peak of the bolus)

divided by the difference of the signal intensities at pre-contrast baseline and minimum (Fig

1). This method strongly depends on the applied MR-parameters repetition time (TR), echo

time (TE), flip angle, and magnetic field strength (Fig 1), but PSR may carry valuable diagnos-

tic information [9]. For instance, primary central nervous system (CNS) lymphomas often

exceeded the baseline (PSR > 100%) whereas high-grade astrocytomas did not [10–12]. PSR

may thus help differentiating between glioblastoma, metastases and primary CNS lymphoma

[13, 14], showing highest PSR for lymphoma and lowest values for metastases. Moreover, PSR

may differentiate between low and high grade gliomas [15].

C6-cell-glioma in rats mimics several features of human glioblastoma including high

mitotic index, focal tumor necrosis, parenchymal invasion and neoangiogenesis [16–18]. So

far, however, only few in vivo studies have evaluated the time course of perfusion properties in

this model [19, 20].

Here, we optimized a DSC-MRI protocol for application at 7 T and small rodents. Maps of

relative CBV and PSR were repeatedly obtained during tumor development in rats after intra-

cranial inoculation of different numbers of C6 cells. In addition, a simple and robust map

reflecting the signal intensity relative to baseline shortly after the first pass of the contrast agent

is introduced and is referred to as signal recovery (SR) map in this presentation (Fig 1).

Being aware of the parameter dependency and limitations of PSR, the intention of this

study was not to propose an entirely new approach to perfusion measurement but rather to
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characterize the perfusion properties of this brain tumor model using an MRI approach most

similar to the methods commonly used in medical practice.

Materials and Methods

Rats

All studies were performed in accordance with German animal protection laws with the spe-

cific approval of the responsible governmental authority (Ministerium für Landwirtschaft,

Umwelt u. ländliche Räume des Landes Schleswig-Holstein, V 312–72241.121–17 (36-3/12).

Male Wistar rats (age 6–10 weeks, n = 5) were anesthetized by intraperitoneal injection of

medetomidine (0.4 mg/kg) and ketamine (70 mg/kg). 5 μl of C6 cells with different cell counts

(Table 1) were stereotactically injected into the basal ganglia (3 mm left of the bregma, 4.5 mm

deep into the brain). The positioning of the injection was verified by T2-weighted MRI. To

prevent postoperative pain 50 mg/kg metamizol was injected once subcutaneously. After

tumor cell injections, rats underwent daily visual inspections using a comprehensive scoring

system and stop criteria predefined and approved by the responsible governmental authority.

MRI

On days 5, 9, 14, 21 (for lower cell counts also on days 27 and 35) after tumor cell injection the

rats were anaesthetized by intraperitoneal injection of medetomidine and ketamine, subse-

quently intubated and maintained under anesthesia with isoflurane (0.5–1.5% in ambient air)

using active ventilation. All MRI data sets were obtained at a field strength of 7 T (ClinScan™,

Bruker BioSpin, Ettlingen, Germany) including anatomical T2-weighted images (2D FSE,

three orthogonal directions, TR/TE = 3150/41 ms, 7 echoes, 125 x 125 x 500 μm3, field of view

(FOV) = 40.0 x 32.5 mm2, 20 slices) and T1-weighted images (3D FLASH, TR/TE = 10/0.9 ms,

flip angle 15, 170 x 170 x 170 μm3, FOV = 32.6 x 29.5 x 32.6 mm3). The latter were obtained

Fig 1. Simulated signal-intensity time curve after administration of the contrast agent. Left: schematic illustration of signal recovery (SR) and

percentage of signal recovery (PSR). SR is defined as the difference between the signal intensity immediately after the first pass of the contrast agent

(Spost at tpost, in humans usually 60 s after bolus arrival) and the pre-contrast (Spre) signal intensity, while PSR is given by the difference of the signal

intensity at tpost to the minimum of the signal intensity-curve (Smin) divided by the difference between pre-contrast (Spre) and minimum (Smin) signal

intensity. Right: Influence of TR and TE on the signal-intensity time curve. The stronger the T1-weighting (reduction of TR) and the weaker the T2*-

weighting (reduction of TE) the higher Smin and Spost for the identical time curve of the contrast agent concentration (solid line: TR/TE = 1500/50 ms,

dashed line: TR/TE = 1200/50 ms, dotted line: TR/TE = 1500/40 ms assuming T1/T2 = 1000/100 ms and r1/r2 = 4/5 l mmol-1 s-1).

doi:10.1371/journal.pone.0168174.g001
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before and 10 min after bolus injection of 0.2 mmol/kg Gd-DTPA (Magnograph1) via a tail

vein catheter followed by 0.4 ml isotonic NaCl. DSC-MRI (2D EPI, TR/TE = 400/7.3 ms, flip

angle 90˚, 312.5 x 312.5 x 1000 μm3, FOV = 40 x 40 mm2, temporal resolution 400 ms/4 axially

oriented slices, 400 repetitions) was continuously performed before, during and up to 150 s

after injection of the contrast agent. The DSC-MRI parameter in combination with the con-

centration of the contrast agent were chosen in a way that, on average, the signal-intensity in

healthy brain tissue (excluding larger veins) did not exceed the baseline and went back to base-

line during the time of DSC-MRI data acquisition. For all measurements a 4-channel phased

array coil was used for signal detection in combination with a quadrature birdcage coil for

excitation (Bruker BioSpin, Ettlingen, Germany).

Data analysis

Before analyzing the time course of DSC-MRI the data have been filtered by a Gauss filter (3 x

3, sigma = 0.5) along the spatial axes (in-plane) followed by a median filter (width: 5 data

points) along the time axis. The concentration-time curve of the contrast agent was deter-

mined from the signal-time curve as described earlier [21]. To diminish effects of blood recir-

culation, a gamma-variate function was fitted to the concentration-time curve [22, 23] and the

cerebral blood volume (CBV) was calculated pixel wise [21, 24, 25]. Percentage of signal recov-

ery (PSR) and signal recovery (SR) were calculated from mean signal intensity at baseline

Table 1. Points in time at which a difference was observed (marked by + in a grey box) between the hemisphere of tumor cell injection and the con-

tralateral hemisphere, shown separately for each MR parameter analyzed.

Number of tumor cells injected Parameter Day 5 Day 9 Day 14 Day 21 Day 27 Day 35

1,000 T2w + + +

Gd-T1w + + +

SR + +

PSR invalid invalid

CBV invalid invalid

10,000 T2w + + + + dead dead

Gd-T1w + + + +

SR + +

PSR + +

CBV + +

50,000 T2w + + + + dead

Gd-T1w + + + +

SR + +

PSR + +

CBV + +

100,000 T2w + + + + dead dead

Gd-T1w + + + +

SR + +

PSR + +

CBV + +

500,000 T2w + + + + dead dead

Gd-T1w + + + +

SR + + +

PSR + + +

CBV + +

doi:10.1371/journal.pone.0168174.t001
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(Spre) and the signal average of 5 consecutive data points obtained 25 s after the mean arrival

time of the bolus in the brain (Spost) as shown in Fig 1. This time point was chosen reflecting

the common practice in humans where this measurement is usually performed immediately

after the first recirculation of the contrast agent which is about 60 s. With a mean blood vol-

ume of 62 ml/kg, rats used in this study had a total blood volume of about 22 ml. With a mean

cardiac output of 50 ml/min this results in a corresponding circulation time of about 25 s.

The calculated parameter maps were independently analyzed by two experienced radiolo-

gists. For each parameter the time point at which a difference between the two hemispheres

was noticed was recorded.

Histology and immunohistochemistry

Finally, after an overdose of ketamine and medetomidine, rats were transcardially perfused

with 4% paraformaldehyde in PBS. Brains were removed, postfixed in 4% paraformaldehyde

in PBS overnight, dissected and embedded into paraffin. 2–3 μm sections were cut on a sliding

microtome and processed as described previously [26]. Immunohistochemistry using rabbit

anti-Von Willebrand factor antibody (Abcam, Cambridge, England) at a dilution of 1:200 was

applied to visualize neoangiogenesis. Sections were counterstained with hematoxylin to visual-

ize cell nuclei and to determine the tumor center and tumor rim.

Results

Tumor detection and tumor growth over time

The time point of first tumor detection was mainly determined by the number of injected C6

cells with the earliest in vivo imaging detection of a tumor on day 5 after tumor cell injection

(Table 1). In all cases, tumors were firstly detectable on T2-weighted images as hyperintense

regions. Similarly early a signal enhancement on T1-weighted images 10 min after Gd-DTPA

was observed (Table 1). The size of the tumor on T2-weighted images increased steadily until

the end of the experiment and the leakage of the blood-brain barrier also persisted from first

detection until the animal was sacrificed (Fig 2).

Perfusion and permeability of blood-brain barrier

Changes in tissue blood perfusion and rapid signal enhancement after Gd-DTPA administra-

tion were the first time detected 4 to 9 days after the appearance of the tumor on T2-weighted

images (Table 1, Fig 2). The tumor volumes at these respective time points ranged between 3

mm3 and 53 mm3.

Regions in which the signal intensity exceeded the baseline already 25 s after the mean

arrival time of the Gd-DTPA bolus were predominantly located in the tumor center and grew

continuously with tumor size. In contrast, increase in cerebral blood volume was mainly lim-

ited to the tumor rim.

Fig 3 shows an overlay of CBV and SR maps obtained 21 days after tumor cell injection.

While the permeability of the blood-brain barrier was increased in the central regions, CBV

was particularly enhanced at the tumor rim. Histology confirmed a higher blood vessel density

at the tumor rim as compared to the tumor center (Fig 4).

Comparison of PSR and SR maps

PSR and SR reflect the signal intensity 25 s after the mean arrival time of the Gd-DTPA bolus.

This intensity was expressed relative to the signal intensity at baseline. A restoring of signal

intensity at baseline corresponds to a value of 100% on the PSR and to 0% on the SR map
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(Fig 5). PSR and SR showed a similar time course and spatial distribution of increased capillary

permeability (Table 1, Figs 2 and 5).

Beside increased PSR and SR values in the center of the tumor, values above the baseline

were also observed at the choroid plexus, while larger veins were featured by low PSR and SR

values. Moreover, low PSR and SR were mostly accompanied by high CBV values.

Fig 2. Time course of tumor development after intracerebral injection of 10,000 C6-glioma cells. T2-weighted images (T2w) revealed an

increase in tumor mass over time which was accompanied by an increasing area of contrast enhancement (G1-T1w). At day 9 maps of percentage of

signal recovery (PSR) and signal recovery (SR) indicated a higher capillary permeability in the tumor center (white ring) extending over time. Higher

PSR and SR values were also seen in the region of the choroid plexus (open arrow). Higher cerebral blood volume (CBV) was mainly found at the

tumor rim (white arrow and ring).

doi:10.1371/journal.pone.0168174.g002
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In general, PSR maps appeared noisier. In contrast to SR, PSR relies on a precise determina-

tion of the signal minimum at contrast agent bolus (Fig 1). At 2 of 23 time points no meaning-

ful PSR map could be calculated due to an alteration of the bolus peak, whereas the SR map

provided exploitable results at all time points (Fig 6).

Fig 3. Spatial heterogeneity of cerebral blood volume (CBV) and signal recovery (SR). Maps of SR (purple) were overlaid on maps of CBV

(green) obtained on day 21 after injection of 100,000 C6 cells. Areas of increased CBV were mostly found at the tumor rim whereas signal recovery

exceeding the baseline was mainly seen in the tumor center excluding regions which were most likely necrotic (dark on T2 weighted images).

Coronally and axially oriented T2-weighted images (T2w) are shown as reference.

doi:10.1371/journal.pone.0168174.g003

Fig 4. Cerebral blood volume (CBV) and vessel density. The highest CBV was found at the rim of the tumor which also showed the highest

vessel density (bar graph) as revealed by immunohistochemistry for von Willebrand factor (vWF, lower row): (left) overview showing the position

of the magnified view of the tumor rim (orange box) and tumor center (green box), upper row, left: the corresponding axially oriented T2-weighted

image.

doi:10.1371/journal.pone.0168174.g004
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Discussion

Understanding the time course of tumor development is important for our understanding

of tumor progression, for therapy planning and for the development of novel, possibly

Fig 5. Maps of signal recovery (SR), percentage of signal recovery (PSR) and cerebral blood volume (CBV) in comparison. Recovery of

signal intensity at baseline level corresponds to a value of 0% on the SR map and 100% on the PSR map (black arrow). For better comparison the

maps were scaled in a way that these two values marked the end of the first third of the entire value range of the respective map. Thus, with the used

color coding, regions with a signal increase above baseline appeared yellow to red while those in which the signal intensity did not recover to baseline

appeared blue on both maps. The signal-intensity time curve of selected regions of interest (ROI) is shown on the right, lower row. PSR and SR

revealed a similar spatial distribution of regions with an increased capillary permeability, with highest level in the tumor center (blue ROI). Low PSR

and SR were mostly accompanied by high CBV values (red ROI), whereas the signal intensity on the contralateral side went back to baseline (yellow

ROI) within the observation time.

doi:10.1371/journal.pone.0168174.g005

Fig 6. Robustness of signal recovery (SR) and percentage of signal recovery (PSR) maps. In case of

alteration of the bolus peak PSR maps became unusable, while SR still provided exploitable results. On the

right the corresponding axially oriented T2-weighted image.

doi:10.1371/journal.pone.0168174.g006
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individualized, cancer treatments. Here, C6 gliomas were initially detectable as regions of sig-

nal enhancement on T2-weighted images and similarly early after Gd-DTPA administration

on T1-weighted images. Maps of cerebral blood volume (CBV), signal recovery (SR), and per-

centage of signal recovery (PSR) revealed significant regional differences in blood volume and

vascular permeability between tumor center and tumor rim over time.

Onset of glioblastoma development was characterized by a mild leakage of the blood-brain

barrier (slow passage of Gd-DTPA within 10 min) without significant neoangiogenesis

(unchanged CBV). This type of leakage which was also described in GL261 gliomas [27] might

deserve further investigation since it might offer an entrance for targeted drug therapeutics

into the brain tumor.

First signs of neoangiogenesis were mainly restricted to the tumor rim, but also with tumor

growth higher CBV values were limited to the most peripheral tumor regions. The decrease of

the relative blood volume in the former rim may be caused by a considerable increase in

tumor cell density, but we cannot fully exclude that this decreasing CBV might be a methodical

artifact. Fast extravasation of the contrast agent (within the time scale of bolus arrival) can

attenuate the effect of signal reduction by intravascular shortening of T2� and enhance the

effect of signal increase by extravascular T1-shortening, both leading to an underestimation of

CBV [28]. Given the fact that the vessel density in the tumor center was lower than at the

tumor rim, but higher than in the control region, both effects may play a role here. Several

human studies showed a correlation between CBV values of the tumor and histologic grading

of gliomas [5, 6, 29] with increasing CBV in higher grades. In human glioblastoma high CBV

values also dominate the tumor rim, but were in some cases surrounded by hypoperfused

areas [30]. Glioblastoma is a highly vascularized neoplasm in which angiogenesis is supposed

to be triggered by the expression of the hypoxia-inducible factor (HIF-1) and by vascular endo-

thelial growth factor (VEGF) secreted by the tumor cells [31] and the effects are further

enhanced by a variety of pro-angiogenic cytokines. In part, these processes are, however, coun-

tered by multiple anti-angiogenic cytokines of the tumor-microenvironment inhibiting neo-

vascularization [32]. Finally, regions of an increased CBV may therefore indicate successful

invasion of the tumor cells. However, to answer the question whether and how the spatial

changes in CBV may predict tumor cell invasion and the direction of tumor dissemination fur-

ther studies are required.

Four to 9 days after tumor detection the capillary permeability significantly increased in the

tumor center as observed by a fast signal enhancement already 25 s after Gd-DTPA bolus (PSR

>100%, SR>0%). This increase in capillary permeability most likely reflects the beginning of

necrosis within the tumor center, which is a hallmark of glioblastoma [33]. The leakage of

blood brain barrier in the neo-angiogenic rim, however, was significantly less pronounced.

This suggests that the newly formed microvasculature in the rim may lack mature tight junc-

tions but still ensured sufficient oxygen and nutrients supply for the growing tumor.

Moreover, the strong leakage of the blood brain barrier in the tumor center but only mild

opening in the tumor rim may be of particular importance for any type of drug therapy

because it might indicate lower extravascular drug availability in the relevant region of tumor

progression at the rim.

PSR larger 100% is not frequently seen in human glioblastoma [10–12, 34]. In fact, it has

been proposed that high PSR may indicate primary CNS lymphoma whereas low PSR may

indicate glioma [10–12, 34]. This may partially be explained by differences between the animal

model and the human disease. In addition, differences in MR-parameters and magnetic field

strengths may hamper a direct comparison. However, it is a common practice in human diag-

nostics to focus on regions of interest located particularly in areas of high CBV [12, 35]. In

view of the significant heterogeneity described here, this approach may bear the risk of
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overlooking regional differences. In fact, also in this study regions with high CBV did not

show fast signal enhancement (increased brain capillary permeability).

When comparing results of animal study with observations in human patients, also other

confounders may in addition play a role. Particularly therapeutic interventions including sur-

gery, radiation therapy, and chemotherapy [3] can influence brain perfusion and capillary per-

meability. Its sensitivity to therapy makes MRI perfusion measurement, however, a very

valuable diagnostic tool. It has been shown that DSC-MRI can distinguish between progres-

sion and pseudo progression [36] and therefore adds valuable information to the RANO-crite-

ria [37] being the standard criteria currently used to measure the response to glioma

treatment.

PSR and SR strongly depend on the applied MR-parameters and in addition, particularly

SR may be affected by strong changes in CBV, and DCE-MRI may be superior to DSC-MRI

when assessing capillary permeability [7]. However, PSR and SR maps can be rapidly acquired

and are technically very easy to realize. SR even does not require determination of the bolus

peak, which makes it a robust and easy to obtain parameter. PSR and SR maps provided very

similar results but SR maps were less sensitive to motion or sharpness of the contrast agent

bolus. Moreover, SR maps provide information about the spatial distribution of early signal

enhancement and may replace the ROI analysis of the signal intensity time curve commonly

used clinical diagnostic.

Conclusions

Tumor progression in C6 glioblastoma was characterized by temporal and spatial changes in

CBV and capillary permeability. Particularly CBV and the signal enhancement immediately

after the first recirculation of the contrast agent showed substantial regional differences within

the tumor mass emphasizing the value of parameter maps in contrast (or in addition to)

region-of-interest analyses. Since DSC-perfusion is a fast imaging procedure, which already is

part of MRI-protocols for glioblastoma, the proposed SR maps may ad valuable diagnostic

information without requiring additional measurements. However, further studies may be

needed to evaluate the value of SR maps in human patients.
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