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Abstract
We consider a finitely generated group endowed with a word metric. The group acts on itself
by isometries, which induces an action on its horofunction boundary. The conjecture is that
nilpotent groups act trivially on their reduced boundary.We will show this for the Heisenberg
group. The main tool will be a discrete version of the isoperimetric inequality.
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1 Introduction

Every metric space embeds in the space of continuous functions on it, and its image there,
modulo the constant functions is precompact. The functions in the closure are denoted horo-
functions, the closure of the image is denoted the horofunction compactification and the
boundary is denoted the horofunction boundary or the horoboundary. This notion is due to
Gromov [3]. The horoboundary carries a natural equivalence relation. The corresponding
quotient space is called the reduced horoboundary.

Given a group with a specified set of generators, one obtains a metric space by considering
the corresponding word metric on the group, and thus one gets corresponding horoboundary
and reduced horoboundary. The group acts naturally on those spaces. Both of those spaces
might depend on the choice of generators, but in some cases topological and dynamical
properties of the action do not.

A well-known example is given by hyperbolic groups, for which the reduced horobound-
ary coincides with the Gromov boundary and, in particular, does not depend on choice of
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generators (while the horoboundary does). Hyperbolic groups indeed provide a rich class of
examples for groups with non-trivial actions on their reduced horoboundaries.

On the other extreme, the reduced horoboundary of a finitely generated abelian group
depends on a choice of generators, but the boundary behavior is rather simple, as seen in the
following theorem.

Theorem A Given a finitely generated abelian group endowed with any finite set of genera-
tors, the corresponding reduced horoboundary is finite and the group action on it is trivial.

More generally, we conjecture the following.

Conjecture Given a finitely generated nilpotent group endowed with any finite set of gener-
ators, the action of the group on its reduced horoboundary is trivial.

The purpose of this paper is to establish this conjecture for the first non-trivial case.

Theorem B Given any finite set of generators of the discrete Heisenberg group, the action of
the group on the corresponding reduced horoboundary is trivial.

The action of the Heisenberg group on its horoboundary was previously studied byWalsh
in [5], where he established the existence of finite orbits.

We will prove the theorem above by introducing a new property: property EH, which
implies the triviality of the action of a group on its reduced horoboundary. Establishing
property EH for the Heisenberg group will lead us to consider the norm function of the group
(see [1] for explicit description of this norm with standard generators) and, in particular, to
prove a discrete version of the planar isoperimetric inequality, which we believe carries some
independent interest.

Section 2 below will be devoted to setting our notation and framework, and in particular,
for discussing property EH and its relevance to Theorems A and B. We will discuss abelian
groups and prove Theorem A in Sect. 3. In Sect. 4 we will prove our discrete isoperimetric
inequality. In Sect. 5 we will discuss the norm function on the Heisenberg group and prove
Theorem B.

2 Reduced horoboundaries and property EH

Let (X , d) be a proper metric space. Endow C(X) by the Frechet structure of uniform
convergence on compact sets. We denote by C0(X) the quotient Frechet space obtained by
C(X) when moding up the one dimensional subspace of constant functions. We get a natural
map:

X ↪→ C(X) → C0(X), x �→ d(x, ·) �→ [d(x, ·)].
It is trivial to check that the composition map is injective (for this, it is enough to consider
two point sets), that it is a homeomorphism on the image (for X proper) and that the image is
precompact (by Arzela–Ascoli theorem). We denote the closure of the image of X in C0(X)

by (X , d) and, upon identifying X with its image, we set ∂(X , d) = (X , d) − X . These are
the horocompactification and the horoboundary of X .

Consider the space Cb(X) < C(X), consisting of all bounded continuous functions. Let
Cr (X) = C(X)/Cb(X) be the quotient space. The reduced horoboundary of X , denoted
by ∂r (X , d), is the image of ∂(X , d) in Cr (X).
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For a finitely generated group G with a finite symmetric set of generators S, we denote
the S-word metric on G by dS and the corresponding norm on G by | · |S . We denote ∂(G, S)

and ∂r (G, S) for ∂(G, dS) and ∂r (G, dS). When the set S is understood we simply denote
the norm by | · | and the boundaries by ∂G and ∂rG.

Definition 2.1 Given a group G, a finite symmetric set of generators S ⊂ G is said to satisfy
the property EH if there exists a constant (called the EH constant of S) D > 0 such that for
every g0 ∈ G ′ (the commutator group) there exists n ∈ N satisfying

for all y ∈ G, |y|S > n ⇒ ∣
∣|g0y|S − |y|S

∣
∣ ≤ D.

The groupG itself is said to satisfy EH if every finite symmetric set of generators of it satisfies
EH.

Proposition 2.2 Let G be a finitely generated group and let S ⊂ G be a finite symmetric
generating set satisfying EH. Then the action of G on ∂r (G, S) is trivial.

Proof Pickφ ∈ C(G) forwhich [φ] ∈ ∂G. Fix g ∈ G.We need to show that gφ−φ ∈ Cb(G).
We will show that for every x ∈ G,

|gφ(x) − φ(x)| ≤ D + |g|,
where D is theEHconstant of S. Fix x ∈ G. Consider the elements [x−1, g], [x−1, g−1] ∈ G ′.
Then there exists n ∈ N such that for every y ∈ G with |y| > n,

∣
∣|[x−1, g]y| − |y|∣∣ , ∣∣|[x−1, g−1]y| − |y|∣∣ ≤ D. (2.1)

Let w ∈ G be an element with |w| > n + 2|g| + |x | such that

|d(w, g−1x) − d(w, x)| = |φ(g−1x) − φ(x)|. (2.2)

Then

d(gw, x) = |x−1gw| = |[x−1, g]gx−1w|,
and since |gx−1w| > n + |g| ≥ n we get by substituting y = gx−1w in Eq. 2.1

d(gw, x) ≤ |gx−1w| + D ≤ |x−1w| + |g| + D = d(w, x) + |g| + D. (2.3)

On the other hand,

d(w, x) = |x−1w| = |[x−1, g−1]g−1x−1gw|,
and since |g−1x−1gw| > n we get by substituting y = g−1x−1gw in Eq. 2.1

d(w, x) ≤ |g−1x−1gw| + D ≤ |x−1gw| + |g| + D = d(gw, x) + |g| + D. (2.4)

Equations 2.3, 2.4 together with Eq. 2.2 give the desired inequality,

|gφ(x) − φ(x)| = |φ(g−1x) − φ(x)| = |d(gw, x) − d(w, x)| ≤ D + |g|.

�
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3 Abelian groups: Proof of Theorem A

In this section we consider finitely generated abelian groups and discuss their horoboundaries
and reduced horoboundaries. This question was studied by Rieffel [4] and Develin [2] in
different generality.

Observe that every finitely generated abelian group is trivially EH, hence the second part
of Theorem A follows immediately by Proposition 2.2. We are left to show that the reduced
horoboundary is finite. This is a consequence of the more general Proposition 3.3 below. To
motivate the statement we first consider a simple example.

Example 3.1 Let G = Z with the generating set S = {−1,+1}. The horoboundary consists
of (the classes of) the functions {x,−x}. The map to the reduced horoboundary is a bijection.

Consider now the generating set T = {±1,±10} for G. The reduced horoboundary still
consists of two points (the classes of the functions ± 1

10 x), but the horoboundary consists of
20 points and the map is 10 to 1. The horofunctions are limits of sequences of the distance
functions from the points

10n, 10n + 1, . . . , 10n + 9 and − 10n,−10n + 1, . . . ,−10n + 9.

Note that the fibers of the map ∂G → ∂rG are subsets of cosets of Cb(G), hence carry
natural metrics. In Example 3.1, both fibers of ∂(G, T ) → ∂r (G, T ) are isomorphic to the
metric space (Z/10Z, d{±1}). See [2] for more examples.

Definition 3.2 Let G be a finitely generated abelian group and S ⊂ G a finite symmetric
generating set. A nonempty subset F ⊂ S is called a face of S if the following property holds:
for every |S|-tuple and |F |-tuple of non-negative integers (αs)s∈S , and (β f ) f ∈F , satisfying

∑

s∈S
αs =

∑

f ∈F
β f and

∑

s∈S
αs · s =

∑

f ∈F
β f · f

we have αs = 0 for every s /∈ F .

The faces of T in Example 3.1 are the singletons {−10} and {+10}. Note that in case of
free abelian groups Zn , the faces of the generating set are the faces of the convex hull of the
generators embedded in R

n intersected with S.
Recall that every T0 finite topological space is nothing but a finite poset, upon setting for

points x and y,

x ≤ y ⇔ y ∈ {x}.
Proposition 3.3 Let G be a finitely generated abelian group and S a finite symmetric gener-
ating set. Then the set ∂r (G, S) is in one-to-one correspondence with the collection of faces
of S. In particular, ∂r (G, S) is a finite set. Moreover, under this correspondence we have the
following.

(1) For every face F ⊂ S, the corresponding fiber in ∂(G, S) is isometric to the Cayley
graph of (G/〈F〉, S〈F〉).

(2) The quotient topology on ∂r (G, S) is T0 and the correspondence with the set of faces is
order preserving, for the topology ordering on ∂r (G, S) and inclusion of faces.

(3) The simplicial complex of flags in the poset ∂r (G, S) is homeomorphic to a sphere. Its
dimension equals the rank of G minus one.
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Proof First we remark that points along a geodesic ray always converge to a horofunction
(see [3, Section 1.2] or [4, Theorem 4.7]).

The definition of the face implies that there exists M > 0 such that for any geodesic r
there is a face F ⊆ S such that number of letters in r which are not from F is bounded by
M , in other words, up to finite translation, all the geodesics rays are given by using infinitely
many letters from some face of S and finitely many from others. Because the group is abelian,
any two geodesic rays that use infinitely many letters from the same face and finitely many
from other faces are equivalent, in the sense that they converge to the same limit point in the
reduced horoboundary. Therefore, there are finitely many (up to this equivalence) geodesic
rays, and any unbounded sequence of elements in G lies, up to subsequence, on such a
geodesic ray.

Given a geodesic ray r one can find a minimal face (with respect to inclusion) which
contains all the letters which appear infinitely often in r . Conversely, given a face F ⊆ S
one can build a geodesic ray using only letters from F and using each one of them infinitely
many times. This defines a bijection between the faces of S and geodesic rays converging to
distinct points on the reduced horoboundary. To see that the latter is true, let r1(t), r2(t) be the
geodesic rays corresponding to two different faces F1, F2, φ1, φ2 the limiting horofunctions,
normalized such that φ1(0) = φ2(0) = 0, where we write 0 for the identity element of the
group.Without loss of generality there exists a ∈ F1\F2. Clearly,φ1(−na) = n for all n ∈ N.
To prove that φ1 − φ2 /∈ Cb(G), we argue that for any C ≥ 0 we have φ2(−na) ≤ n −C for
large enough values of n. This is easily verified after projecting to the torsion free part of G.
For the same reason, if F1 �⊂ F2, we have [φ2] /∈ {[φ1]}, implying that the quotient topology
is T0.

The fibers of a point in the reduced horoboundary corresponding to a face F are all
translations of a geodesic ray, which uses each element in F infinitely many times. These are
exactly the elements of G/〈F〉.

To see that the correspondence is order preserving, suppose F1 ⊂ F2. Let φ1, φ2 be the
corresponding horofunctions, where φ1 is obtained as a limit along the sequence n

∑

f ∈F1 f
and φ2 as a limit along the sequence n

∑

f ∈F2 f as n → ∞. We will show that there exists a
sequence of horofunctions ψ j ∈ ∂(G, S) such that ψ j − φ1 ∈ Cb(G) for all j and ψ j → φ2

as j → ∞. Indeed, one can takeψ j as a limit along j
∑

f ∈F2\F1 f +n
∑

f ∈F1 f as n → ∞.

The above properties are clearly satisfied, and hence [φ2] ∈ {[φ1]}.
LetG = Z

n×T , where T is the torsion part.Wewill show that the projectionπ : G → Z
n

defines an order preserving bijection of the faces, with respect to generating sets S and π(S).
If F ⊂ S is a face, suppose we have

∑

F α f π( f ) = ∑

S αsπ(s) and
∑

F α f = ∑

S αs .
Write preimages of thefirst equation. If there is no equality in the preimage, then the difference
between the sides is in the torsion part, hence by multiplying all the coefficients, one will
obtain equality in the preimage. Hence, we can assume that these equalities hold in the
preimage of π , thus αs = 0 for s /∈ F . We need to show that s /∈ F implies π(s) /∈ π(F)(this
will also imply injectivity). Suppose not, then for some f ∈ F , f = s + t where t is the
torsion part. Then for some α �= 0, αt = 0, hence αs = α f , but since s /∈ F , by definition of
face, we must have α = 0, contradiction. Thus, π maps faces to faces. Clearly, π preserves
inclusion.

To see that the topology is T0, note that we already showed that the closure of points
corresponding to a face contains all maximal faces in which this face is contained. We are
left to show that a singleton corresponding to a maximal face is closed. This would describe
all closures of points, which will be different for different points.
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Fig. 1 Geometric realization of P
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To show surjectivity of π let F̄ ⊂ π(S) be a face, i.e. for any combination
∑

F̄ α f π( f ) = ∑

π(S) αsπ(s) such that
∑

F̄ α f = ∑

π(S) αs , we have αs = 0 for

π(s) /∈ F̄ . Let F = π−1(F̄). Need to show that F ⊂ S is a face. For any combination
∑

F α f f = ∑

S αs(s) such that
∑

F α f = ∑

S αs the same holds after applying π , there-
fore, αs = 0 for π(s) /∈ F̄ . As we have already seen, that s /∈ F implies π(s) /∈ π(F), then
αs = 0 for s /∈ F , and therefore the preimage of F̄ is a face.

Hence, the simplicial complex of flags in the poset ∂r (G, S) is homeomorphic to one
obtained from ∂r (π(G), π(S)), where π is the map to the torsion free component. For free
abelian group Zn , the faces in our sense coincide with faces of convex hull of the generators
embedded in R

n , and the correspondence preserves the order, hence the flag complex is
homeomorphic to (n − 1)-sphere, where n is the rank of the group. 
�

4 An isoperimetric inequality for Z2

In this section we consider an elementary geometric problem, a discrete planar isoperimetric
inequality, which might be of an independent interest of the rest of the paper. We start by
defining notions needed to state the discrete isoperimetric inequality.

Fix a finite collection of vectors V ⊂ R
2. Assume that V = −V . A V -polygon (or simply,

a polygon when V is clear) is a word in the kernel of the natural map FV → R
2 where FV

is the free group generated by V . Put in another way, it is a word in V which represents
the trivial element in R

2. We denote by P(V ) (or P when V is clear) the collection of all
V -polygons.

For a polygon P = (u1 . . . un), ui ∈ V , (and
∑

ui = 0), set l(P) = n and
a(P) = 1

2

∑

i< j det(ui , u j ). The geometric realization of P is the polygon inR2 obtained by
concatenating the vectors ui in this order. The quantities l(P) and a(P) are the (combinato-
rial) perimeter and the signed (Euclidean) area, respectively, of the geometric realization of
P . Indeed, for fixed 1 ≤ j ≤ n, the signed area of	 j in Fig. 1 is given by 1

2

∑

i< j det(ui , u j ).
For the area of P , we sum over j , i.e. a(P) = ∑

j a(	 j ).
We also set

γ (P) := a(P)/l(P)2 and γV := sup{γ (P) | P ∈ P(V )}.
The constant γV is called the isoperimetric constant of V .

We define special families of polygons which will be useful in the proofs. A polygon of
the form P = (u1, . . . , un,−u1, . . . ,−un) is said to be symmetric. If P is a symmetric
polygon, denote by
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u1

-u1

un

-un 1
2
P

u2

-u2

u1

-un

un

-u1

u2

-u2

Fig. 2 Symmetric unordered (left) and ordered (right) polygons

1

2
P := (u1, . . . , un,−u1 − u2 − · · · − un).

Note that for symmetric polygon P of length 2n the area is

a(P) = 2a

(
1

2
P

)

=
∑

i< j≤n

det(ui , u j ) (4.1)

We endow the set V with the order ≺ induced from the order on the arguments of vectors
in R

2, where the arguments are seen as an interval [0, 2π). A symmetric polygon P =
(u1, . . . , un,−u1, . . . ,−un) is said to be ordered if up to cyclic permutation for all i ≤ j ≤ n
we have ui ≺ u j . A polygon P is ordered if and only if the geometric realization of 1

2 P is
convex and the signed area a(P) is non-negative. Note that in our definition the geometric
realization of an ordered polygon P is not necessarily convex itself, as the angle between un
and −u1 can be larger than π . We denote the set of all symmetric ordered polygons by Pso.

Figure 2 suggests that given edges from a set V , the best isoperimetric ratio might be
achieved by symmetric ordered polygons. This will be confirmed in Theorem 4.1 below.

Lastly, we introduce rescaling of polygons. For P = (u1, u2, . . . un−1, un) we set 2P =
(u1, u1, u2, u2, . . . , un−1, un−1, un, un). Similarly we define the polygon kP for every k ∈
N. We will write kui and −kui in the sequence for k consecutive appearances of ui and,
respectively,−ui . Rescaling preserves the setPso. Observe that l(kP) = kl(P) and a(kP) =
k2a(P). In particular γ (kP) = γ (P).

Theorem 4.1 Given a finite collection of vectors V ⊂ Z
d with V = −V , there exists P ∈

Pso(V ) such that γV = γ (P).

Lemma 4.2 Let K < R be a subfield, and d ∈ N. Let Q ∈ Mr×r (K ) be a symmetric matrix
with positive coefficients, and denote by q the corresponding quadratic form. Let

	 =
{

x ∈ R
r | ∀i, xi ≥ 0,

∑

xi = 1
}

,

and	q ⊂ 	 the maximum set of q. Then there exists a finite collection K -rational subspaces
V1, . . . , Vn < R

r such that 	q = ∪i (	 ∩ Vi ).

Proof of the lemma Denote the boundary of 	 in its affine span by ∂	 and let (∂	)q =
∂	 ∩ 	q . Denote 1 = (1, 1, . . . , 1). Observe that by Lagrange multiplier theorem, for
x ∈ 	q − (∂	)q there exists some λ �= 0 such that Q(x) = λ1 (λ = 0 can occur only for
Q = 0, then the lemma is trivial, so we assume this is not the case). We consider three cases.

(1) Q is invertible. In that case, if there exists x ∈ 	q − (∂	)q then x is the unique
solution of Q(x) = λ1 in the affine span of 	, thus 	q = {x} and x spans the same line as
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u1

u2

u3

u4

u1

u2

u3

u4

-u2

−u1

−u4

−u3

P = (u1, u2, u3, u4) P+ P−

Fig. 3 Constructing symmetric P+ and P− from P

Q−1(1), which is K -rational. Otherwise, 	q ⊂ ∂	 and the lemma follows by induction on
d .

(2) There exists z ∈ Ker(Q) with 〈z, 1〉 �= 0. Then 	q ⊂ ∂	 and the lemma follows by
induction on r . Indeed, if there exists x ∈ 	q − (∂	)q then Q(x) = λ1 for some λ �= 0,
thus we get a contradiction 0 �= 〈Q(x), z〉 = 〈x, Q(z)〉 = 0.

(3) Q is not invertible and Ker(Q) ⊥ 1. Then 	q = 	 ∩ (Ker(Q) + (∂	)q), and the
lemma follows again by an induction on r . 
�
Proof of the theorem Throughout we fix the set V and assume, as we may, that 0 /∈ V . We set
γ = γV . First, we show that it is enough to consider the supremum over symmetric ordered
polygons.

Since γ is invariant under rescaling of polygons, it is enough to consider supremum only
over the polygons of even perimeter. Let Po = (u1, . . . , u2n) be a polygon of even perimeter.
We associate with P two symmetric polygons (see Fig. 3):

P+ = (u1, . . . , un,−u1, . . . ,−un) and P− = (−un+1, . . . ,−u2n, un+1, . . . , u2n).

Observe that l(P) = l(P+) = l(P−) and a(P) = a
( 1
2 P−

) + a
( 1
2 P+

)

(by the fact that
u1 + · · · + un = un+1 + · · · + u2n). Hence, γ (P) = 1

2 (γ (P−) + γ (P+)).
We get for every P ∈ P ,

γ (P) = γ (2P) ≤ max{γ ((2P)−), γ ((2P)+)}.
Clearly, one can associate with any symmetric polygon P = (u1 . . . u2n) a symmetric

ordered one Po. This is done by rearranging the vectors ui , for 1 ≤ i ≤ n, in increasing order
(with respect to ≺) and by doing a similar rearrangement of ui , for n + 1 ≤ i ≤ 2n, to keep
the polygon symmetric. In this case l(Po) = l(P) and a(Po) ≥ a(P). From geometric point
of view, this means that a polygon of largest area with given sides is the convex one (recall,
that for symmetric polygons, it is enough to consider the area of 1

2 P , which is convex when
P is ordered). In particular, we get that for every symmetric P ∈ P(V ), γ (Po) ≥ γ (P).

The area a(P) does not depend on the cyclic permutation of vectors in the polygon, hence
we can restrict our attention to

Pm
so := {P = (u1, . . . , un,−u1, . . . ,−un) ∈ Pso | u1 ≺ ui , for all 1 ≤ i ≤ n}

Therefore,

γ = sup{γ (P) | P ∈ Pm
so}.
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{k v

t v1

(n− t )v2k P0
v1

v2
v

conv (V )

Fig. 4 Replacing k′v by t ′v1 and (n − t ′)v2 in k′P0 increases the area

We proceed to show that this supremum is attained. Let

V = {v1, . . . , vr ,−v1, . . . ,−vr }.
With a symmetric ordered polygon P ∈ Pm

so we associate (ci ) ∈ Z
2r+ , where for each

1 ≤ i ≤ 2r , ci counts the number of appearances of vi ∈ V in the first half of the edges
of P (mind, that the remaining half are just the inverses, hence are completely determined)
. Since (ci ) completely determines P , the set Pm

so is in a bijection with Z
2r+ . Note that a is

a quadratic form on R
2r , defined by the symmetric and rational matrix Q = (

det(vi , v j )
)

(see Eq. 4.1). We apply Lemma 4.2. Since any maximum of a on the simplex 	 is obtained
at a rational vector, we deduce by rescaling that γ attains maximum in Z

2r+ . The bijection
described above produces the polygon P ∈ Pso satisfying the theorem. 
�
Remark 4.3 In fact it is an easy consequence of the 2-dimensionalBrunn–Minkowski theorem
that the polygon achieving the maximum for γ is unique up to a homothety (and cyclic
permutation).

Next, we describe further polygons given by Theorem 4.1, which achieves the maximal
isoperimetric constant, by specifying which vectors are used in them. This will be crucial for
studying the norm on the Heisenberg group in Sect. 5.

Proposition 4.4 Let V ⊂ Z
2 be a finite set of vectors, V = −V . Let P0 be a symmetric

ordered polygon satisfying Theorem 4.1, denote by V ′ the vectors used in P0, then V ′ =
ext(conv(V )).

Proof First we show that V ′ ⊂ ext(conv(V )). Recall that P0 is a V -polygon maximizing
the ratio γ (P0) between the enclosed area and the square of its combinatorial length. If
v ∈ V ′, v /∈ ext(conv(V )) we will show that it does not appear in P0. Suppose it does. Then
there exists k ≥ 1 such that kv ∈ ∂conv(V ) and kv = tv1 + (1 − t)v2 for some v1, v2 ∈
ext(conv(V )) and 0 ≤ t ≤ 1. Since V ⊂ Z

2, we have k, t ∈ Q. Write k = k′/n, t = t ′/n,
where k′, t ′, n ∈ N. By assumption, in k′P0 there is an appearance of k′v. Let P1 be the
polygon obtained from k′P0 by replacing ±k′v with ±t ′v1 and ±(n − t ′)v2 in such a way,
so that P1 is a symmetric ordered polygon.

Note that l(P1) ≤ l(P0), since k′ ≥ n. However, a(P1) > a(k′P0) (see Fig. 4). Hence
γ (P1) > γ (k′P0) = γ (P0), contradicting that γ attains its maximum at P0.

For other inclusion, let v ∈ ext(conv(V )) and suppose that v /∈ V ′. We use the order ≺
on V defined in the beginning of this section. When restricted to ext(conv(V )) this order is
a strict total order.
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(m1 − t)v1

(m2 − n + t)v2

tv1

(n− t)v2
nv

Fig. 5 Replacing tv1 and (n − t)v2 by nv gains more area than it loses

Let v1 = max{vi ∈ V ′ | v1 ≺ v} and v2 = min{vi ∈ V ′ | v2 � v}. Similarly to the previous
paragraph, there exist integers k, t, n > 0, such that k, t < n and tv1 + (n − t)v2 = kv. Let
m > n be large (specified later). Construct a symmetric ordered polygon P1 by replacing
±tv1 and ±(n − t)v2 in mP0 with ±nv in the appropriate places. Note that l(P0) = l(P1).
We are left to argue that a(P1) > a(P0), which will contradict that P0 attains the maximum
of γ .

Up to cyclic permutation we write

mP0 = (m1v1,m2v2, . . .mr ′vr ′ ,−m1v1,−m2v2, . . . ,−mr ′vr ′),

with mi ≥ m for each i . Then,

P1 = ((m1 − t)v1, nv, (m2 − n + t)v2, . . .mr ′vr ′ ,−(m1 − t)v1,−nv, . . . ,−mr ′vr ′)).

We compare the areas:

a(P1) − a(P0) =
∑

3≤ j≤r ′
(n det(v, v j ) − t det(v1, v j ) − (n − t) det(v2, v j ))

+n(m1 − t) det(v1, v) + n(m2 − n + t) det(v, v2)

+(m1 − t)(m2 − n + t) det(v1, v2) − m1m2 det(v1, v2).

We have k det(v,w) = t det(v1, w) + (n − t) det(v2, w) for any w ∈ R
2, because kv =

tv1 + (n − t)v2. Also, n ≥ k and det(v, v j ) ≥ 0 for all 3 ≤ j ≤ r ′, therefore, all the
summands inside the sum in the last equation are non-negative. Finally, we claim that the
sum of the remaining terms is positive if m and, hence, m1,m2 are large enough. Indeed,
it represents the difference between the areas of the quadrilateral and the triangle in Fig. 5.
Clearly, the area of the quadrilateral (grows linearly in m2) is bigger than the area of the
triangle (fixed) when m is large enough, which finishes the proof. 
�

5 The Heisenberg group: Proof of Theorem B

In this section G denotes the discrete Heisenberg group H3(Z), that is G is in bijection with
Z
3 as a set and the multiplication in G is given by

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2).
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Observe that the center Z < G consists of the elements of the form (0, 0, z) and that
G/Z is naturally isomorphic to Z

2. In particular G ′ = Z . Denote the abelianization map
π : G → Z

2. For a given generating set S ⊂ G we denote S̄ = π(S). This is a generating
set for Z2. We denote by | · |S the group norm on G and by | · |S̄ the corresponding group
norm on Z2.

Proposition 5.1 Let S ⊂ G be a finite symmetric generating set for G = H3(Z). Then there
exist constants L,C ≥ 0 such that for every (x, y, z) ∈ G,

|z| ≥ L max
{

x4, y4
} ⇒

∣
∣
∣|(x, y, z)|S −

(√

|z|
γ

− |(x, y)|S̄
)

∣
∣
∣ ≤ C,

where γ = γS̄ is the isoperimetric constant given in Theorem 4.1.

Corollary 5.2 The discrete Heisenberg group satisfies EH.

In particular, Corollary 5.2 implies Theorem B via Proposition 2.2.
Proof of Proposition 5.1 ⇒ Corollary 5.2

Proof of the theorem Let S ⊂ G be a finite symmetric generating set. We will show that S
satisfies EH. Let L,C and γ be as in Proposition 5.1. Let Mx = max{x | (x, y, z) ∈ S} and
My = max{y | (x, y, z) ∈ S}, and let R = max{|(0, 0, z)| ∣

∣ |z| ≤ max{Mx , My}}. We set

D = max

{
1

2
√

γ Lz0
+ 2C, R + 2|(0, 1, 0)|, R + 2|(1, 0, 0)|

}

.

Let g0 ∈ G ′. G ′ = Z so g0 = (0, 0, z0) for some z0. We will assume z0 > 0, as S is
symmetric. Consider the set

B = {(x, y, z) ∣
∣ |x |, |y| < z0, |z| < Lz40 + z0}.

This is a finite set, so there exists an n such that

for all w ∈ G, |w|S > n ⇒ w /∈ B.

We will be done by showing

for all w ∈ G, w /∈ B ⇒ ∣
∣|g0w|S − |w|S

∣
∣ ≤ D.

Fix w = (x, y, z) /∈ B. Assume |z| ≥ Lz40 + z0. Then, both w and g0w have last coordinate
≥ Lz40 and by Proposition 5.1,

∣
∣|g0w| − |w|∣∣ = ∣

∣|(x, y, z + z0)| − |(x, y, z)|∣∣

≤
∣
∣
∣

(√ |z|+z0
γ

− |(x, y)|S̄
)

−
(√ |z|

γ
− |(x, y)|S̄

)∣
∣
∣ + 2C

=
∣
∣
∣

√ |z|+z0
γ

−
√ |z|

γ

∣
∣
∣ + 2C ≤

∣
∣
∣

z0√
γ (

√|z|+z0+√|z|)
∣
∣
∣ + 2C

≤
∣
∣
∣
∣
∣
∣

z0
√

γ

(

2
√

Lz40

)

∣
∣
∣
∣
∣
∣

+ 2C = 1
2
√

γ Lz0
+ 2C ≤ D.

Otherwise, z < Lz40 + z0 and since (x, y, z) /∈ B we must have |x | ≥ z0 or |y| ≥ z0.
Assume |x | ≥ z0. By considering an S-geodesic from e to w, we can find words w1 =

123



124 Geometriae Dedicata (2020) 208:113–127

(x1, y1, z1) and w2 = (x2, y2, z2) such that w = w1w2, |w| = |w1|+ |w2| and
∣
∣z0 −|x1|

∣
∣ ≤

Mx . Check that

(0,±1, 0)(x1, y1, z1)(0,∓1, 0) = (x1, y1, z1 ± x1).

Then we have

g0w =
{

(0, 0, z0 − x1)(0,+1, 0)w1(0,−1, 0)w2 for x1 ≥ z0
(0, 0, z0 + x1)(0,−1, 0)w1(0,+1, 0)w2 for − x1 ≥ z0

and in any case
∣
∣|g0w| − |w|∣∣ ≤ |(0, 0, |z0 − |x1||)| + 2|(0, 1, 0)| ≤ R + 2|(0, 1, 0)| ≤ D.

The case |y| ≥ z0 is similar, and completes the proof. 
�
The rest of the section is devoted to the proof of Proposition 5.1.

Lemma 5.3 Let S be a finite symmetric set of generators for G = H3(Z). Let w be a word
of length n in the free group generated by S which has image (0, 0, z) ∈ G. There exists
K = K (S), such that if we a(w) denotes the signed Euclidean area of the corresponding
polygon obtained in Z2, then

|a(w) − z| ≤ Kn.

Proof Let w = (s1s2 · · · sn), si = (xi , yi , zi ) ∈ S. Then we have

a(w) = 1

2

∑

i< j

(xi y j − x j yi ) and z =
∑

i< j

xi y j +
∑

i

zi .

We consider the word w−1 = (s−1
n · · · s−1

1 ) and compute its z-coordinate. Using s−1
i =

(−xi ,−yi , xi yi − zi ) we get

−z =
∑

i> j

(−xi )(−y j ) +
∑

i

(xi yi − zi ).

Thus we get

z = 1

2
(z − (−z)) = 1

2

∑

i< j

(xi y j − x j yi ) +
∑

i

(zi − xi yi )

and

z − a(w) =
∑

i

zi − xi yi .

The lemma follows by setting K = max{|z − xy| : (x, y, z) ∈ S}. 
�
Proposition 5.4 Let S ⊂ G be a finite symmetric generating set for G = H3(Z). Then there
exists a constant C ≥ 0 such that for every (0, 0, z) ∈ G,

∣
∣
∣
∣
|(0, 0, z)| −

√
z

γ

∣
∣
∣
∣
≤ C

where γ = γS̄ is the isoperimetric constant given in Theorem 4.1.
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Proof Assume without loss of generality that z ≥ 0. For any w that represents (0, 0, z) we
have l(w)2γ ≥ |a(w)| ≥ z − Kl(w) (with K from Lemma 5.3), hence

(l(w) + K/2)2 ≥ z/γ and l(w) ≥ √

z/γ − K/2.

By Theorem 4.1 we know that there exists a polygon P0 such that for every k ∈ N,
a(kP0)/l(kP0)2 = γ . Denote z0 = l(P0). We fix z0 − 1 words w1, . . . , wz0 representing the
elements (0, 0, 1), . . . , (0, 0, z0) correspondingly, and set M = max{l(wr ) | r = 1, . . . , z0}.
We write z = kz0 +r for some k ∈ N and 1 ≤ r ≤ z0. We consider the word w′ representing
the polygon kP0. Then

l(w′)2 = a(w′)/γ ≤ (kz0 + Kl(w′))/γ.

Thus

(l(w′) − K/2γ )2 ≤ kz0/γ + (K/2γ )2.

Since kz0 < z we get

l(w′) ≤ √

z/γ + K/γ,

and, since w = w′wr ,

l(w) ≤ l(w′) + M ≤ √

z/γ + M + K/γ.


�

Proposition 5.5 There exists E > 0, such that for any word w, we have |h(w)| ≤ El(w)2.

Proof Let w be a word to (x, y, h(w)). If (x, y) = (0, 0) then by definition of γ we have

|h(w)| ≤ l(w)2/
√

γ ,

and we are done.
If (x, y) �= (0, 0), let w′ = (−x, 0, 0)(0,−y, 0). The length of w′ is bounded by

l(w′) ≤ |x | · |(1, 0, 0)| + |y| · |(0, 1, 0)|
≤ 2max{|x |, |y|}max{|(0, 1, 0)|, |(1, 0, 0)|}.

Let mx = max{|x |, (x, y, z) ∈ S},my = max{|y|, (x, y, z) ∈ S}.

l(w) ≥ max{|x |, |y|}
max{mx ,my} .

Therefore, for D = 2max{mx ,my}max{|(0, 1, 0)|, |(1, 0, 0)|} we have
l(w′) ≤ Dl(w).

Note that ww′ is a word representing (0, 0, h(w)), hence

|h(w)| = |h(ww′)| ≤ (D + 1)2l(w)2/
√

γ ,

and we are done. 
�

Now we are ready to prove Proposition 5.1.
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Proof Let (x, y, z) ∈ G as in the proposition. Let w̄ be a geodesic word inZ2 from the origin
to (−x,−y) in the generators S′ = ext(conv(S̄)). We can assume (x, y) ∈ span{S′}, i.e.
the geodesic word is of form (−x,−y) = ai s̄i + a j s̄ j , where s̄i , s̄ j ∈ S′ are two adjacent
generators, i.e. they share a face in conv(S̄). Clearly, |(−x,−y)|S̄ = ai + a j .

Let w = saii s
a j
j be a lift of w̄ to the Heisenberg group. The word w represents

(−x,−y, h(w)) and |(−x,−y, h(w))|S = |(−x,−y)|S̄ . The length l(w) = ai + a j ≤
2max{|x |, |y|}. From Proposition 5.5 there exists E ≥ 0 such that h(w) ≤ El(w)2 ≤
2E max{x2, y2}.

By the triangle inequality

|(x, y, z)| + |(−x,−y, h(w))| ≥ |(0, 0, z − xy + h(w))|.
For L ≥ 4E2 + 4E + 1 we get

(h(w) − xy)2 ≤ h(w)2 + 2xyh(w) + x2y2

≤ 4E2 max{x4, y4} + 4E max{x4, y4} + max{x4, y4} ≤ z.

hence
∣
∣
∣

√

z − xy + h(w) − √
z
∣
∣
∣ ≤ 1.

Therefore, by Proposition 5.4 we obtain

|(x, y, z)| ≥ √

z/γ − |(x, y)|S̄ + C + 1.

For the other direction in the last inequality, we will construct a word to (x, y, z) of the
needed length. Let w = saii s

a j
j be, as before, a word to (−x,−y, h(w)). Let w′ be a word

to (0, 0, z − h(w)) obtained as in Proposition 5.4, namely it is given by a multiple of P0
multiplied by some bounded commuting factor wr .

From the argument as before we have
∣
∣ |(0, 0, z − h(w)| − |(0, 0, z)| ∣

∣ ≤ 1.
For L ≥ 2a(P0) we get

z

a(P0)
≥ 2max{|x |4, |y|4} ≥ max 2{ai , a j }.

By Proposition 4.4 all elements from S′ appear in P0 and, hence, their lifts appear in w′.
Moreover, since s̄i and s̄ j are adjacent in P0 and by the last inequality we know that a subword
w = saii s

a j
j appears in w′. Since h(w′) doesn’t depend on cyclic permutation of letters, we

can assume that w appears as suffix in w′. Therefore, w′w−1 has cancellation and is a word
to (x, y, h(w) + h(w′)) = (x, y, z) of length ≤ √

z/γ − |(x, y)|S̄ + C + 1. 
�
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