

Supplementary Figure 1 In the presence of cyclothiazide (CTZ), CKAMP44 increases τ_{deact} of AMPARs mediated currents.

 $τ_{deact}$ of AMPAR-mediated currents in retinogeniculate (a, n= 24 for relay neurons of wildtype and 24 for relay neurons of *CKAMP44*^{-/-} mice; b, n= 21 for relay neuron of wildtype and 24 for relay neurons of *CKAMP44*^{-/-} mice) or corticogeniculate synapses (c, n= 20 for relay neurons of wildtype and 20 for relay neurons of *CKAMP44*^{-/-} mice; d, n= 20 for relay neurons of wildtype and 24 for relay neurons of *CKAMP44*^{-/-} mice) is reduced in CKAMP44^{-/-} mice in the presence, but not in the absence of CTZ. (Box-and-whisker Tukey plots; Mann-Whitney test; except for $τ_{deac}$ in corticogeniculate synapses in the absence of CTZ= mean ± SEM and t-test). Example traces are shown on the top. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Supplementary Figure 2 Deletion of CKAMP44 increases PPRs of retinogeniculate synapses when using a K⁺-containing intracellular solution.

PPRs are significantly different between genotypes for inter-pulse intervals of 30, 100 and 300 ms (n= 25 for relay neurons of wildtype and 28 for relay neurons of *CKAMP44*^{-/-} mice). During these PPR recordings, a K⁺-containing intracellular solution was used in contrast to the Cs⁺- containing intracellular solution during PPR recordings shown in figure 2. Example traces are shown on the left. (mean ± SEM; PPR with 300ms and 1000ms inter-stimulus interval: Mann-Whitney test, PPR with 10, 30, 100, and 3000ms: t-test). * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Supplementary Figure 3 CKAMP44 reduces steady-state current amplitude of retinogenicluate synapses at continuous 1 and 3.3 Hz stimulation.

The graph shows the same data as in Figure 3(c), but with a 43 % reduced amplitude of the CKAMP44^{-/-} steady-state values. The graph was adjusted to get an estimate of the steady-state synaptic strength in CKAMP44^{-/-} mice when taking the reduction of AMPA/NMDA ratio into account. (i.e. the reduced synaptic strength due to reduced number of synaptic AMPARs). The graph suggests that the steady-state current amplitude is reduced in CKAMP44^{-/-} mice if RGCs fire with relatively low frequency (1 and 3.3 Hz), but is comparable between genotypes with continuous 10 Hz firing of RGCs. mean ± SEM. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Supplementary Figure 4 Deletion of CKAMP44 increases EPSC amplitudes during a 50 Hz stimulus train.

EPSC amplitudes were significantly bigger in relay neurons of CKAMP44^{-/-} than in those of wildtype mice (n= 25 for relay neurons of wildtype and 27 for relay neurons of *CKAMP44^{-/-}* mice). EPSCs were evoked by stimulating the optic tract with 10 stimuli at 50 Hz. The intracellular solution was the same K⁺-containing solution used for current-clamp experiments. EPSC amplitudes were normalized to the amplitude of the first EPSC. Example traces are shown on the left. (mean ± SEM; second, third, fourth and fifth normalized EPSC amplitude: t-test, other amplitudes: Mann-Whitney test). * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

a In the absence of NMDAR and GABAaR antagonists

In the presence of NMDAR and GABAaR antagonists

Supplementary Figure 5 Deletion of CKAMP44 increases EPSP amplitudes also in the presence of NMDAR- and GABA_AR-antagonists.

(a) The change in EPSP amplitudes shown in Figure 3(a) does not result from differences in 1st EPSP amplitude (n= 18 for relay neurons of wildtype and 22 for relay neurons of *CKAMP44^{-/-}* mice), τ_{decay} (n= 20 for relay neurons of wildtype and 21 for relay neurons of *CKAMP44^{-/-}* mice), τ_{decay} (n= 20 for relay neurons of wildtype and 22 for relay neurons of *CKAMP44^{-/-}* mice) or resting potential (n= 21 for relay neurons of wildtype and 19 for relay neurons of *CKAMP44^{-/-}* mice) of relay neurons. (Amplitude and τ_{decay} : mean ± SEM, rise time: Box-and-whisker Tukey plots; amplitude: t-test, τ_{decay} and rise time: Mann-Whitney test). (b) There is a significant difference in EPSP amplitudes in retinogeniculate synapses of wildtype and CKAMP44^{-/-} mice also in the presence of the NMDAR- and GABA_AR-antagonists APV and gabazine (n= 20 for relay neurons of wildtype and 20 for relay neurons of *CKAMP44^{-/-}* mice). Example traces are shown on the left. mean ± SEM. (c) Also in the presence of APV and gabazine, there was no difference between genotypes in 1st EPSP amplitude, rise time or τ_{decay} . Box-and-whisker Tukey plots; Mann-Whitney test). * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Supplementary Figure 6 Passive and active electrophysiological properties of dLGN neurons are similar in wildtype and CKAMP44^{-/-} mice.

(a, b) Sample traces of the responses of dLGN neurons of wildtype (a) and CKAMP44^{-/-} (b) mice to hyperpolarizing and depolarizing current injections. There is no significant difference in input resistance (mean ± SEM, t-test), resting potential (Box-and-whisker Tukey plots, Mann-Whitney test), sag amplitude (mean ± SEM, t-test), threshold potential (mean ± SEM, t-test), action potential amplitude (Box-and-whisker Tukey plots, Mann-Whitney test), action potential amplitude (Box-and-whisker Tukey plots, Mann-Whitney test), action potential half amplitude duration (mean ± SEM, t-test), after hyperpolarization (AHP) amplitude (mean ± SEM, t-test), max firing frequency (mean ± SEM, t-test), early adaptation (Box-and-whisker Tukey plots, Mann-Whitney test) and, late adaptation (Box-and-whisker Tukey plots, Mann-Whitney test). (n= 21 for relay neurons of wildtype and 19 for relay neurons of *CKAMP44*^{-/-} mice). * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

1.0 1.0 1.0 WT CKAMP44^{-/-} SopA 10ms 0 0

Paired-pulse ratio of retinogeniculate synapses in P60 mice

**

Supplementary Figure 7 CKAMP44 influences AMPAR-mediated currents also in adult mice. There is a significant increase in the paired pulse ratio in retinogeniculate synapses of P60 CKAMP44^{-/-} mice that is comparable to the change observed in younger mice (see Figure 2, n= 12 for relay neurons of wildtype and 9 for relay neurons of *CKAMP44^{-/-}* mice; Box-and-whisker Tukey plots; Mann-Whitney test). Example traces are shown on the left. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

neurons in response to ON- and OFF-stimuli.

Quantifications of firing rates and rate increases from figure 5c shown here as mean ± SEM (ON-response, n= 542 dLGN neurons in 6 wildtype and 430 dLGN neurons in 6 *CKAMP44*^{-/-} mice; OFF-response, n= 309 dLGN neurons in 6 wildtype and 285 dLGN neurons in 6 *CKAMP44*^{-/-} mice). * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Supplementary Figure 9 AMPAR-mediated mEPSCs of RGCs and retina responses are unaltered in CKAMP44^{-/-} mice.

(a) mEPSC amplitude and frequency is not changed in RGCs of CKAMP44^{-/-} mice (n= 24 for RGCs of wildtype and 29 for RGCs of *CKAMP44^{-/-}* mice; box-and-whisker Tukey plots; Mann-Whitney test). (b and c) Retina responses to flash (b) and drifting pattern (c) stimulation are not significantly changed in CKAMP44^{-/-} mice as evidenced by unaltered a- and b-wave amplitude and latency (b, n= 12 eyes in 6 wildtype mice and 12 eyes in 6 *CKAMP44^{-/-}* mice) and PERG amplitude (c, n= 6 for wildtype and 6 for *CKAMP44^{-/-}* mice) in electroretinogram (ERG) recordings. Drifting pattern ERG was analyzed with spatial frequencies of 0.025 cpd, 0.05 cpd, 0.1 cpd and 0.2 cpd. (a-wave amplitude, latency and b-wave amplitude: mean ± SEM, t-test; b-wave latency and pERG

amplitude: box-and-whisker Tukey plots, Mann-Whitney test). * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

	WT	Ν	CKAMP44 ^{-/-}	Ν
Retinogeniculate synapses (median ± IQR, MWW)	4.81 [3.31-8.44]	19	2.75 [1.99-4.04] ^{**}	19
Corticogeniculate synapses (median ± IQR, MWW)	3.95 [3.02-5.06]	15	1.93 [1.46-2.53] ^{**}	18

Supplementary Table 1 AMPA/NMDA ratios (see Fig.1c and d)

MWW = Mann-Whitney-Wilcoxon Test

Supplementary Table 2. τ_{decay} in retinogeniculate (RG) and corticogeniculate (CG) synapses (see Supplementary Fig. 1)

	In the absence of CTZ					In the presence of CTZ			
	WТ	Ν	CKAMP44 ^{-/-}	N		WT	N	CKAMP44 ^{-/-}	Ν
RG T _{decay} (ms) (median ± IQR, MWW)	2.87 [2.19-3.81]	24	2.72 [2.38-3.22]	24	RG T _{decay} (ms) (median ± IQR, MWW)	6.04 [5.34-16.77]	21	4.36 [3.55- 4.99] ^{***}	24
CG τ _{decay} (ms) (mean ± SEM, STT)	3.63 ± 0.26	20	3.86 ± 0.27	20	CG τ _{decay} (ms) (median ± IQR, MWW)	9.13 [8.33-12.22]	20	7.3 [6.12- 8.77] ^{***}	24

	WT	N	CKAMP44 ^{-/-}	N
Current amplitude (pA) (median ± IQR, MWW)	31.48 [22.15-45.51]	18	16.03 [11.82-36.68] [*]	21
10-90% rise time (ms) (median ± IQR, MWW)	0.71 [0.62-0.73]	18	0.77 [0.68-0.93]	21
τ _{deact} (ms) (median ± IQR, MWW)	1.34 [0.97-1.9]	18	1.08 [0.87-1.28]	21
τ _{des} (ms) (mean ± SEM, STT)	2.07 ± 0.199	20	2.08 ± 0.179	17
SS current amplitude (% of peak current) (median ± IQR, MWW)	0.41 [0.17-0.71]	20	0.94 [0.41-1.66] [*]	17
2 nd EPSC amplitude (% of 1 st EPSC amplitude) (mean ± SEM, STT)	35.33 ± 3.41	20	72.28 ± 4.1 ^{***}	17
τ _{recovery} (ms) (median ± IQR, MWW)	322.85 [195.28-443.78]	20	65.71 [43.5-104.83] ^{***}	17

Supplementary Table 3 Extrasynaptic AMPAR-mediated currents (see Fig.1 f and g)

STT= Student's t-test; MWW = Mann-Whitney-Wilcoxon Test

Supplementary Table 4. Paired pulse ratios RG synapses (Cs⁺-containing intracellular solution) (see Fig.2a and b)

	Retin	Retinogeniculate synapses				Corticogeniculate synapses			
	WT	N	CKAMP44 ^{-/-}	Ν		WT	Ν	CKAMP44 ^{-/-}	N
PPR (30ms) (mean ± SEM, MWW)	0.51 ± 0.047	20	0.89 ± 0.085 ^{***}	18	PPR (30ms) (mean ± SEM, MWW)	1.91 ± 0.143	25	2.21 ± 0.189	22
PPR (100ms) (mean ± SEM, MWW)	0.59 ± 0.031	20	0.93 ± 0.071 ^{***}	18	PPR (100ms) (mean ± SEM, MWW)	1.71 ± 0.106	25	1.82 ± 0.125	22
PPR (300ms) (mean ± SEM, STT)	0.69 ± 0.026	20	0.92 ± 0.032 ^{***}	18	PPR (300ms) (mean ± SEM, STT)	1.24 ± 0.053	25	1.37 ± 0.056	22
PPR (1000ms) (mean ± SEM, MWW)	0.82 ± 0.017	20	0.99 ± 0.056 ^{**}	18	PPR (1000ms) (mean ± SEM, MWW)	1.05 ± 0.026	25	1.06 ± 0.018	22
PPR (3000ms) (mean ± SEM, MWW)	0.99 ± 0.032	20	1.03 ± 0.027	18	PPR (30000ms) (mean ± SEM, STT)	1 ± 0.019	25	0.98 ± 0.017	22

Supplementary Table 5. Paired pulse ratios of RG synapses (K⁺-containing intracellular solution) (see Supplementary Fig. 2)

	Retinog	enicu	late synapses	
	WT	N	CKAMP44 ^{-/-}	N
PPR (30ms inter-stimulus interval) (mean ± SEM, STT)	0.78 ± 0.047	25	1.15 ± 0.059 ^{***}	28
PPR (100ms inter-stimulus interval) (mean ± SEM, STT)	0.85 ± 0.032	25	1.06 ± 0.033 ^{***}	28
PPR (300ms inter-stimulus interval) (mean ± SEM, MWW)	0.85 ± 0.023	25	0.97 ± 0.032 ^{**}	28
PPR (1000ms inter-stimulus interval) (mean ± SEM, MWW)	0.891± 0.03	25	0.93 ± 0.015	28
PPR (3000ms inter-stimulus interval) (mean ± SEM, STT)	1.02 ± 0.013	25	1.01 ± 0.015	28

STT= Student's t-test; MWW = Mann-Whitney-Wilcoxon Test

Supplementary Table 6. Steady state EPSC amplitudes (see Fig. 2c)

	WT	Ν	CKAMP44 ^{-/-}	N
steady state EPSC [nor.] (1 Hz) (mean ± SEM, MWW)	0.78 ± 0.028	25	0.83 ± 0.027	22
steady state EPSC [nor.] (3.3 Hz) (mean ± SEM, STT)	0.6 ± 0.023	31	0.73 ± 0.027 ^{***}	24
steady state EPSC [nor.] (10 Hz) (mean ± SEM, STT)	0.33 ± 0.022	33	0.57 ± 0.03 ^{***}	27

	In the absence of NMDAR and GABA _A R antagonists	nd		In the pro GABA _A R a	esen anta	ce of NMDAR a gonists	and		
	WT	Ν	CKAMP44 ^{-/-}	N		WT	Ν	CKAMP44 ^{-/-}	Ν
EPSP 1 (mV) (mean ± SEM, STT)	2.64 ± 0.3	18	2.5 ± 0.28	22	EPSP 1 (mV) (mean ± SEM, STT)	2.51 ±0.25	20	2.31 ± 0.22	20
EPSP 2 (mV) (mean ± SEM, STT)	1.53 ± 0.23	18	2.6± 0.3**	22	EPSP 2 (mV) (mean ± SEM, STT)	1.3 ±0.17	20	2.71 ± 0.26	20
EPSP 3 (mV) (mean ± SEM, MWW)	1.14 ± 0.18	18	2.63 ± 0.33 ^{***}	22	EPSP 3 (mV) (mean ± SEM, MWW)	1.17 ±0.16	20	2.86 ± 0.33 [*]	20
EPSP 4 (mV) (mean ± SEM, MWW)	1.04 ± 0.21	18	2.85 ± 0.38 ^{***}	22	EPSP 4 (mV) (mean ± SEM, MWW)	0.86 ±0.14	20	3.08 ±0.4**	20
EPSP 5 (mV) (mean ± SEM, MWW)	0.94 ± 0.18	18	2.79 ± 0.41 ^{***}	22	EPSP 5 (mV) (mean ± SEM, MWW)	0.81 ±0.12	20	3.06 ±0.44***	20
EPSP 6 (mV) (mean ± SEM, MWW)	0.79 ± 0.16	18	2.9 ± 0.44 ^{****}	22	EPSP 6 (mV) (mean ± SEM, MWW)	0.72 ±0.09	20	3.14 ±0.48 ^{***}	20
EPSP 7 (mV) (mean ± SEM, MWW)	0.72 ± 0.14	18	2.93 ± 0.46 ^{***}	22	EPSP 7 (mV) (mean ± SEM, MWW)	0.77 ±0.11	20	3.06 ±0.5***	20
EPSP 8 (mV) (mean ± SEM, MWW)	0.79 ± 0.16	18	2.85 ± 0.49 ^{***}	22	EPSP 8 (mV) (mean ± SEM, MWW)	0.74 ±0.11	20	3.17 ±0.55 ^{***}	20
EPSP 9 (mV) (mean ± SEM, MWW)	0.7 ± 0.13	18	2.82 ± 0.51 ^{***}	22	EPSP 9 (mV) (mean ± SEM, MWW)	0.65 ±0.1	20	3.15 ±0.53***	20
EPSP 10 (mV) (mean ± SEM, MWW)	0.72 ± 0.14	18	3.05 ± 0.54 ^{***}	22	EPSP 10 (mV) (mean ± SEM, MWW)	0.68 ±0.09	20	3.15 ±0.51 ^{***}	20

Supplementary Table 7. EPSP amplitudes during 50 Hz train stimulation (see Fig.	Supplementary	y Table 7. EPSP	amplitudes	during 50	Hz train	stimulation	(see	Fig. :	3a
---	---------------	-----------------	------------	-----------	----------	-------------	------	--------	----

	wт	N	CKAMP44 ^{-/-}	Ν
EPSC1 (mean ± SEM, MWW)	1 ± 0	25	1 ± 0	27
EPSC 2 (mean ± SEM, STT)	0.77 ± 0.05	25	1.01± 0.05***	27
EPSC 3 (mean ± SEM, STT)	0.68 ± 0.07	25	1.08 ± 0.06 ^{***}	27
EPSC4 (mean ± SEM, STT)	0.64 ± 0.08	25	1.03 ± 0.06 ^{***}	27
EPSC 5 (mean ± SEM, STT)	0.59 ± 0.08	25	$1 \pm 0.06^{***}$	27
EPSC 6 (mean ± SEM, MWW)	0.58 ± 0.08	25	0.99 ± 0.06 ^{***}	27
EPSC 7 (mean ± SEM, MWW)	0.55 ± 0.09	25	0.96 ± 0.06 ^{***}	27
EPSC 8 (mean ± SEM, MWW)	0.54 ± 0.09	25	0.94 ± 0.06 ^{***}	27
EPSC 9 (mean ± SEM, MWW)	0.55 ± 0.09	25	0.91 ± 0.07 ^{***}	27
EPSC 10 (mean ± SEM, MWW)	0.53 ± 0.09	25	0.94 ± 0.09 ^{***}	27

Supplementary Table 8. Normalized EPSC amplitudes with 50 Hz stimulation (K⁺-containing intracellular solution) (see Supplementary Fig. 4)

STT= Student's t-test; MWW = Mann-Whitney-Wilcoxon Test

Supplementary	/ Table 9. EPSP ris	e time and τ_{decay}	(see Fig.3a and	Supplementar	y Fig. 5)
---------------	---------------------	---------------------------	-----------------	--------------	-----------

	In the absence of NMDAR and GABA _A R antagonists				In the presence of NMDAR and GABA _A R antagonists				
	WT	N	CKAMP44 ^{-/-}	Ν		WT	Ν	CKAMP44 ^{-/-}	Ν
10-90% rise time (ms) (median ± IQR, MWW)	1.52 [0.64- 2.17]	22	1.2 [0.83-2.47]	21	10-90% rise time (ms) (median ± IQR, MWW)	0.98 [0.57- 1.36]	20	0.75 [0.51-1.08]	20
τ _{decay} (ms) (mean ± SEM, STT)	19.9 ± 1.92	20	19.24 ± 1.68	22	τ _{decay} (ms) (median ± IQR, MWW)	17.36 [13.01- 26.09]	20	15.54 [12.95- 21.59]	20

	wт	N	CKAMP44 ^{-/-}	Ν
Input resistance (MΩ) (mean ± SEM, STT)	142 ± 7.93	21	126.11 ± 6.38	19
Resting potential (mV) (median ± IQR, MWW)	-70 [(-72) -(-68.5)]	21	-70 [(-70) -(-69)]	19
AP threshold (mV) (mean ± SEM, STT)	-41 ± 1.04	21	-41.67 ± 1.36	19
AP amplitude (mV) (median ± IQR, MWW)	74.8 [71.5-78.7]	21	77.72 [75.55-80.45]	19
AP half amplitude duration (ms) (median ± IQR, MWW)	0.92 [0.78-1.12]	21	0.82 [0.74-0.98]	19
AHP (mV) (mean ± SEM, STT)	6.6 ± 0.76	21	6.14 ± 0.71	19
Sag amplitude (mV) (mean ± SEM, STT)	3.41 ± 0.35	21	3.45 ± 0.42	19
Max frequency (Hz) (mean ± SEM, STT)	44.7 ± 1.75	21	49.16 ± 1.34	19
Early adaptation (%) (median ± IQR, MWW)	238 [127-275]	21	215.39 [101.18-262.67]	19
Late adaptation (%) (median ± IQR, MWW)	11 [7.34-17.9]	21	13.75 [10.02-18.01]	19

Supplementary Table 10. Passive and active electrophysiological properties of relay neurons (see Supplementary Fig. 6)

	No stimulation before high frequency stimulus			IS	40 stim (1 Hz) before high frequency stimulus			40 stim. (3.3 Hz) before high frequency stimulus			40 stim. (10 Hz) before high frequency stimulus					
	WT	Ν	СК44	Ν	WT	N	СК44	Ν	WT	N	CK44	N	WT	N	СК44	N
1st stim.	0 ± 0	11	0 ± 0	10	0.004 ±0.004	27	0 ± 0	33	0 ± 0	20	0.01 ±0.01	32	0 ± 0	21	0 ± 0	27
2nd stim.	0.29 ±0.17	11	0.33 ±0.24	10	0.03 ±0.02	27	0.06 ±0.03	33	0.01 ±0.01	20	0.05 ±0.03	32	0 ± 0	21	0.01 ±0.01	27
3rd stim.	0.24 ±0.1	11	0.55 ±0.16	10	0.07 ±0.03	27	0.27 ±0.08	33	0.02 ±0.02	20	0.14 ±0.05	32	0 ± 0	21	0.02 ±0.02 [*]	27
4th stim.	0.08 ±0.05	11	0.44 ±0.13 ^{**}	10	0.07 ±0.04	27	0.29 ±0.08 [*]	33	0.07 ±0.04	20	0.23 ±0.07	32	0 ± 0	21	0.05 ±0.03 ^{**}	27
5th stim.	0 ±0	11	0.27 ±0.11 ^{**}	10	0.02 ±0.01	27	0.27 ±0.07 ^{****}	33	0.13 ±0.1	20	0.28 ±0.07	32	0.01 ±0.01	21	0.09 ±0.04 [*]	27
6th stim.	0 ±0	11	0.32 ±0.18 **	10	0.02 ±0.01	27	0.17 ±0.06 **	33	0.04±0.04	20	0.20 ±0.05 [*]	32	0.02 ±0.02	21	0.08 ±0.04 [*]	27
7th stim.	0 ±0	11	0.36 ±0.20 [*]	10	0.01 ±0.01	27	0.14 ±0.05 **	33	0.01 ±0.01	20	0.11 ±0.03 [*]	32	0.05±0.04	21	0.05 ± 0.02	27
8th stim.	0 ±0	11	0.4 ±0.21 ^{**}	10	0.01 ±0.01	27	0.13 ±0.05 ^{**}	33	0.01 ±0.01	20	0.08 ±0.03	32	0.02 ±0.02	21	0.03 ±0.0 [*]	27
9th stim.	0 ±0	11	0.37 ±0.23 [*]	10	0.004 ±0.004	27	0.1 ±0.05 [*]	33	0 ± 0	20	0.05 ±0.03	32	0.02 ±0.02	21	0.03 ±0.02	27
10th stim.	0 ±0	11	0.51 ±0.24 ^{**}	10	0.01 ±0.01	27	0.12 ±0.05 [*]	33	0 ± 0	20	0.05 ±0.02 [*]	32	0 ± 0	21	0.03 ±0.02 [*]	27

Supplementary Table 11. Spike probability during 50 Hz stimulation (see Fig. 3b-e)

For all: mean \pm SEM; CK44 = CKAMP44^{-/-}; all with Mann-Whitney-Wilcoxon Test except the first, second and third stimulation data from" **No stimulation before high frequency stimulus**" with Student's t-test.

Supplementary Table 12. Firing rate during 50 Hz stimulatio	n (see	Fig. 3b-e	e right panel)
---	--------	-----------	----------------

	No stimulation before high frequency stimulus			40 stim (1 Hz) before high frequency stimulus			40 stim. (3.3 Hz) before high frequency stimulus			40 stim. (10 Hz) before high frequency stimulus						
	WT	Ν	СК44	N	WT	N	CK44	Ν	WT	N	CK44	N	WТ	N	CK44	N
Firing rate (Hz)	3.05 ±1.45	11	17.68 ±7.95	11	1.22 ±0.44	27	7.72 ±2 ^{**}	33	1.3 ±0.77	20	6.02 ±1.81 [*]	32	0.56 ±0.54	21	03.35 ±0.95 [*]	27

For all: mean ± SEM; Mann-Whitney-Wilcoxon Test, CK44 = CKAMP44^{-/-}

	WT	Ν	CKAMP44 ^{-/-}	Ν
1 st EPSP without prior stimulation (mV)	14.36 ± 1.49	11	7.44 ± 0.58 ^{***}	10
1 st EPSP with 1 Hz prior stimulation (mV)	13.94 ± 1.21	27	7.54 ± 0.53 ^{***}	33
1 st EPSP with 3.3 Hz prior stimulation (mV)	13.52 ± 0.93	20	7.59 ± 0.53 ^{***}	32
1 st EPSP with 10 Hz prior stimulation (mV)	13.69 ± 1.24	22	7.89 ± 0.55 ^{***}	40

Supplementary Table 13. Amplitude of 1st EPSP during low frequency stimulation (see Fig. 3b-e)

For all: mean ± SEM; Mann-Whitney-Wilcoxon Test

Supplementary Table 14. EPSP amplitude reduction during low frequency stimulation (see Fig. 3b-e)

	WТ	Ν	CKAMP44 ^{-/-}	Ν
EPSP reduction (%) (1 Hz)	29.11 ± 1.9	27	14.62 ± 4.47 ^{***}	33
EPSP reduction (%) (3.3 Hz)	44.83 ± 1.96	20	28.2 ± 2.27 ^{***}	32
EPSP reduction (%) (10 Hz)	63.1 ± 1.92	22	$20.38 \pm 6.33^{***}$	40

For all: mean ± SEM; Mann-Whitney-Wilcoxon Test

Supplementary Table 15. Firing rate with different number of stimuli at 25 Hz (see Fig. 4)

	WT	Ν	CKAMP44 ^{-/-}	Ν
Firing rate for 1 stimulus (Hz)	0 ± 0	50	0 ± 0	67
Firing rate for 2 stimuli (Hz)	3.61 ± 0.77	50	2.37 ± 0.66	67
Firing rate for 3 stimuli (Hz)	3.26 ± 0.66	50	4.03 ± 0.81	67
Firing rate for 4 stimuli (Hz)	2.59 ± 0.55	50	5.01 ± 0.88	67
Firing rate for 5 stimuli (Hz)	2.31 ± 0.49	50	6.24 ± 0.95 [*]	67

For all: mean ± SEM; Mann-Whitney-Wilcoxon Test, CK44 = CKAMP44^{-/-}

	WT	Ν	CKAMP44 ^{-/-}	N
Firing rate for 1 stimulus (Hz)	0 ± 0	49	0 ± 0	28
Firing rate for 2 stimuli (Hz)	6.86 ± 1.62	49	3.89 ± 1.37	28
Firing rate for 3 stimuli (Hz)	7.95 ± 1.64	49	6.52 ± 1.9	28
Firing rate for 4 stimuli (Hz)	6.58 ± 1.28	49	8.95 ± 2.06	28
Firing rate for 5 stimuli (Hz)	5.57 ± 1.05	49	10.86 ± 2 [*]	28
Firing rate for 6 stimuli (Hz)	5.1 ± 0.98	49	12.29 ± 2.03 ^{***}	28
Firing rate for 7 stimuli (Hz)	4.81 ± 0.98	49	13.96 ± 2.02 ^{***}	28

Supplementary Table 16. Firing rate with different number of stimuli at 37.5 Hz (see Fig. 4)

For all: mean ± SEM; Mann-Whitney-Wilcoxon Test, CK44 = CKAMP44^{-/-}

Supplementary Table 17. Firing rate with different number of stimuli at 50 Hz (see Fig. 4)

	WT	Ν	CKAMP44 ^{-/-}	Ν
Firing rate for 1 stimulus (Hz)	0 ± 0	45	0 ± 0	55
Firing rate for 2 stimuli (Hz)	11.82 ± 2.46	45	7.2± 2.1	55
Firing rate for 3 stimuli (Hz)	16.05 ± 2.84	45	13.64 ± 2.57	55
Firing rate for 4 stimuli (Hz)	13.39 ± 2.41	45	16.56 ± 2.4	55
Firing rate for 5 stimuli (Hz)	11.25 ± 2.11	45	17.96 ± 2.34 [*]	55
Firing rate for 6 stimuli (Hz)	9.9 ± 1.98	45	19.65 ± 2.3 ^{***}	55
Firing rate for 7 stimuli (Hz)	9.1 ± 1.91	45	21.65 ± 2.3 ^{***}	55
Firing rate for 8 stimuli (Hz)	8.76 ± 1.9	45	24 ± 2.3 ^{***}	55
Firing rate for 9 stimuli (Hz)	8.63 ± 1.94	45	26.66 ± 2.35 ^{***}	55
Firing rate for 10 stimuli (Hz)	8.7 ± 2	45	29.83 ± 2.43 ^{***}	55

For all: mean ± SEM; Mann-Whitney-Wilcoxon Test, CK44 = CKAMP44^{-/-}

	WT	N	CKAMP44 ^{-/-}	N
Firing rate for 1 stimulus (Hz) (mean ± SEM, STT)	51.61 ±4.46	31	50.91± 8.42	11
Firing rate for 2 stimuli (Hz) (mean ± SEM, STT)	44.52 ± 3.44	31	47.73 ± 4.91	11
Firing rate for 3 stimuli (Hz) (mean ± SEM, MWW)	38.39 ± 3.14	31	46.52± 3.87	11
Firing rate for 4 stimuli (Hz) (mean ± SEM, MWW	32.86 ± 2.95	31	45.34 ± 3.64 [*]	11
Firing rate for 5 stimuli (Hz) (mean ± SEM, MWW)	28.93 ± 2.93	31	45.09 ± 3.45 ^{**}	11
Firing rate for 6 stimuli (Hz) (mean ± SEM, STT)	25.96 ± 2.94	31	44.09 ± 3.38 ^{***}	11
Firing rate for 7 stimuli (Hz) (mean ± SEM, STT)	23.88 ± 2.99	31	43.7 ± 3.44 ^{***}	11
Firing rate for 8 stimuli (Hz) (mean ± SEM, STT)	22.26 ± 3.04	31	43.75 ± 3.66 ^{***}	11
Firing rate for 9 stimuli (Hz) (mean ± SEM, STT)	21.25 ± 3.15	31	43.74 ± 3.9 ^{***}	11
Firing rate for 10 stimuli (Hz) (mean ± SEM, STT)	20.2 ± 3.22	31	43.91 ± 4.29 ^{***}	11

Supplementary Table 18. Firing rate with different number of stimuli at suprathreshold stimulation **strength** (see Fig. 4)

STT= Student's t-test; MWW = Mann-Whitney-Wilcoxon Test

Supplementary Table 19 PPR (30 ms inter-stimulus interval) in RG synapses of 2-month old mice (see Supplementary Fig. 7)

	WT	Ν	CKAMP44 ^{-/-}	Ν
PPR (median ± IQR, MWW)	0.4 [0.24-0.48]	12	0.77 [0.7-0.83] **	9

MWW = Mann-Whitney-Wilcoxon Test

Supplementary Table 20. ON- and OFF-responding neurons of in vivo recording (see Fig. 5)

	WТ	N	CKAMP44 ^{-/-}	Ν
Number of recorded neurons per mouse	203.5	6	154.5	6
(median ± IQR, MWW)	[164-279]		[134.2-231.8]	
The proportion of ON-responding cells (mean ± SEM, STT)	0.40 ± 0.049	6	0.39 ± 0.046	6
The proportion of OFF-responding cells (mean ± SEM, STT)	0.22 ± 0.031	6	0.26 ± 0.039	6

MWW = Mann-Whitney-Wilcoxon Test; STT= Student's t-test

	٦	Median ± IQR					Mean ± SEM				
	WT	N	CKAMP44 ^{-/-}	N	WТ	N	CKAMP44 ^{-/-}	N			
Peak firing rate of ON response (Hz)	14.42 [2.2- 33.62]	542	15.89 [8.45- 34.86] [*]	430	29.67 ±1.27	542	32.71 ±2.28	430			
Peak firing rate of OFF-response (Hz)	11.23 [6.45- 27.91]	309	15.08 [7.8- 36.6] [*]	285	25.05 ±2.1	309	32.2 ±2.64	285			
Rate increase of ON response (%)	319.6 [172.8- 693.4]	542	370.4 [196.4- 948.1] ^{**}	430	750.2 ±86.67	542	1039 ±120.5	430			
Rate increase of OFF-response (%)	260 [163.5- 731.5]	309	386.9 [190- 957.1] ^{**}	285	731.5 ±114	309	957.1 ±95.48	285			

Supplementary Table 21 Peak firing rate and rate increase of ON- and OFF-responses (*in vivo***)** (see Fig. 5 and Supplementary Fig. 8)

Supplementary Table 22. mEPSCs of RGCs (see Supplementary Fig. 9)

	WT	N	CKAMP44 ^{-/-}	Ν
RGC mEPSC frequency (Hz)	0.46 [0.19-1.71]	24	0.46 [0.23-1.53]	29
RGC mEPSC amplitude (Hz)	11.02 [8.61-13.5]	24	10.26 [8.5-11.33]	29

For all: median ± IQR; Mann-Whitney-Wilcoxon Test

	WT	N	CKAMP44 ^{-/-}	N
fERG a-wave amplitude (μV) (mean ± SEM, STT)	28.17 ± 2.44	12	23.22 ± 3.08	12
fERG a-wave latency (ms) (mean ± SEM, STT)	16.67 ± 0.59	12	18.33 ± 0.81	12
fERG b-wave amplitude (μV) (mean ± SEM, STT)	122.78 ± 8.69	12	113.01 ± 13.35	12
fERG b-wave latency(ms) (median ± IQR, MMW)	24 [24-26]	12	26 [24-28.5]	12
pERG amplitude noise (μV) (median ± IQR, MMW)	2.37 [2.17-2.47]	6	2.3 [2.18-5]	6
pERG amplitude 0.2 cpd (μV) (median ± IQR, MMW)	8.51 [7.81-13.1]	6	8.9 [3.8-18.45]	6
pERG amplitude 0.1 cpd (μV) (median ± IQR, MMW)	4.17 [3.66-5.11]	6	5.29 [4.33-6.62]	6
PERG amplitude 0.05 cpd (μV) (median ± IQR, MMW)	3.93 [2.34-4.01]	6	5 [3-10.26]	6
pERG amplitude 0.025 cpd (μV) (median ± IQR, MMW)	5.4 [2.72-11.52]	6	5.03 [3.51-7.28]	6

Supplementary	Table 23, FRG	recordings (see Supplementa	ry Fig 9h and c)
Supplemental		Tecorumgs (see Supplementa	