Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting information on: Strained hydrogen bonding in imidazole trimer: A combined infrared, Raman, and theory study

Thomas Forsting, Julia Zischang, Martin A. Suhm^{*}, Marco Eckhoff, Benjamin Schröder, Ricardo A. Mata^{*}

Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany. E-mail: msuhm@gwdg.de, rmata@gwdg.de

List of Tables

S1	Experimental anharmonic constants and relative band inten- sities for the imidazole monomer from Raman spectra based	
	on comparison with B3LYP-D3(BJ)/VTZ – VPT2 calcula-	
	tions	2
S2	Anharmonic shifts and diagonal contributions to them for im- idazole monomer XH stretching fundamentals and their dimer acceptor and donor counterparts ν_i^a and ν_i^d from the har- monic value based on comparison with B3LYP-D3(BJ)/VTZ	
	– VPT2 calculations	2
S3	Vibrational transitions for imidazole and its clusters observed	
	in Raman and FTIR jet spectra	3
S4	Calculated harmonic wavenumbers and results of the normal mode 1D scans for the NH stretch fundamentals in the im- idazole monomer, dimer, and trimer (based on the B3LYP-	
	D3(BJ)/def2-TZVP structures)	4
S5	Calculated harmonic wavenumbers and results of the nor- mal mode 1D scans for the NH stretch fundamentals in the imidazole monomer, dimer, and trimer (based on the SCS-	
	MP2/def2-TZVP structures)	5
S6	Calculated harmonic wavenumbers and results of the normal mode 1D scans for the NH stretch fundamentals in the imida- zole monomer, dimer, and trimer (based on the B2PLYP/def2-	
	QZVP structures)	6
S7	Cartesian coordinates for the imidazole monomer (M) from	
	B3LYP-D3(BJ)/def2-TZVP geometry optimization	7
S8	Cartesian coordinates for the imidazole monomer (M) from B3LYP/def2-TZVP geometry optimization	7
$\mathbf{S9}$	Cartesian coordinates for the imidazole dimer (D) from B3LYP-	
	D3(BJ)/def2-TZVP geometry optimization	8

S10	Cartesian coordinates for the imidazole dimer (D) from $B3LYP/c$	lef2-
	TZVP geometry optimization	9
S11	Cartesian coordinates for the cyclic imidazole trimer (T_{cyclic})	
	from B3LYP-D3(BJ)/def2-TZVP geometry optimization	10
S12	Cartesian coordinates for the cyclic imidazole trimer (T_{cyclic})	
	from B3LYP/def2-TZVP geometry optimization	11
S13	Cartesian coordinates for the linear imidazole trimer (T_{linear})	
	from B3LYP-D3(BJ)/def2-TZVP geometry optimization	12
S14	Cartesian coordinates for the linear imidazole trimer (T_{linear})	
	from B3LYP/def2-TZVP geometry optimization	13
S15	Comparison of the internal coordinates of the imidazole monomen	ſ
	as optimized by different levels of theory	14
S16	Calculated corrections for the vibrational wavenumbers for	
	the NH stretch fundamentals in the imidazole dimer and trimer	
	in dependence of excluded off-diagonal terms	15

Table S1: Experimental anharmonic constants $x_{1,k}$ and $x_{2,k}$ and relative band intensities I_k/I_i for the imidazole monomer from Raman spectra (Figures 1,2) based on comparison with VPT2 calculations (B3LYP-D3(BJ)/VTZ). The deviations from the def2-TZVP results are quite small.

-		<u> </u>			
i	k	$\tilde{\nu}_k^{\rm VPT2}/{\rm cm}^{-1}$	$x_{i,k}^{\rm VPT2}/{\rm cm}^{-1}$	$x_{i,k}^{\rm exp}/{\rm cm}^{-1}$	I_k/I_i
1	12	1070	-8	-9	$0.01^{\rm a}$
1	21	521	-20	-21	$0.14^{\rm a}$
1	2×21	1053	-40	-39	0.01^{a}
2	13	1056	-7	-6	>0.005b
2	16	862	-5	-6	≥ 0.005
2	18	724	-13	-11	$\geq 0.01^{\mathrm{b}}$

^a: from Raman spectrum in Figure 1; ^b: lower bounds from spectrum (a) in Figure 2 due to overlap.

Table S2: Anharmonic shifts $\Delta(\nu_i)/\text{cm}^{-1}$ and diagonal contributions $2x_{i,i}/\text{cm}^{-1}$ to them for imidazole monomer XH stretching fundamentals ν_i and their dimer acceptor and donor counterparts ν_i^a and ν_i^d from the harmonic value based on comparison with VPT2 calculations (B3LYP-D3(BJ)/VTZ). The deviations from the def2-TZVP results are quite small.

mode	i	$2x_{i,i}$	$\Delta(\nu_i)$	$2x^a_{i,i}$	$\Delta(\nu^a_i)$	$2x_{i,i}^d$	$\Delta(\nu_i^d)$
NH	1	-141	-166	-140	-165	-242	-151
CH_s	2	-91	-131	-98	-131	-92	-134
CH_a	3	-52	-132	-56	-132	-74	-134
CH_a	4	-54	-133	-74	-131	-86	-134

Table S3: Vibr	ational transit	tions in cm ⁻¹ fc	or imidazole ε	and its clusters observed in Raman and FTIR jet spectra with monomer
hot band inten	sities relative	to their respec	tive X–H str	etch fundamental (in parentheses) ^a . Results from earlier Argon matrix
and Helium n ^ε	<u>uno droplets e</u>	xperiments as	well as band	assignments are also included.
Raman jet	FTIR jet^1	Ar $matrix^2$	He nano ³	Assignment
3518(1)	3518 (1)	3500^{b}	3518	monomer: N–H stretch (ν_1)
3516		I	3516	dimer acceptor: N–H (ν_1^a + monomer hot band: ($\nu_1 + \nu_{20}$) – ν_{20}
				(shoulder of N–H stretch monomer)
$3509\ (0.01)$	1	I		monomer hot band: $(\nu_1 + \nu_{12}) - \nu_{12}$
$3497\ (0.14)$	$3497\ (0.11)$	I		monomer hot band: $(\nu_1 + \nu_{21}) - \nu_{21}$
$3479\ (0.01)$		I	I	monomer hot band: $(\nu_1 + 2\nu_{21}) - 2\nu_{21}$
3381	3381	I	I	cyclic trimer: N–H (ν'_1)
3322	3322	I	I	cyclic trimer: N-H (ν''_1)
3214	3214	I	3200	dimer donor: N–H (upper Fermi) + cyclic trimer: N–H ($\nu_1^{\prime\prime\prime}$)
3206	3206	I	3195	dimer donor: N-H (shoulder)
3164	1	I		dimer: C–H stretch (ν_2^a)
$3159\ (1)$	3160	I	I	monomer: C–H stretch (ν_2)
$3153\ (0.005)$	1	I		monomer hot bands: $(\nu_2 + \nu_{16}) - \nu_{16}$ and $(\nu_2 + \nu_{13}) - \nu_{13}$
3151	I	I	I	dimer: C–H stretch (ν_2^d)
$3148\ (0.01)$	I	I	I	monomer hot band: $(\nu_2 + \nu_{18}) - \nu_{18}$
3133	3133/3127	$3114^{\rm c}$		monomer: C–H stretch (ν_3)
3054			I	dimer donor: N–H stretch (lower Fermi)
3044				monomer overtone: $2\nu_5$
^a NH and CH	hot band inte	nsities from sp	ectrum in F	ig. 1 and spectrum (b) in Fig. 2, respectively. The ν_2/ν_1 band

intensity ratio is 2.1 from integration of a survey spectrum. ^b 3400 cm⁻¹ in an earlier Ar matrix study (Ref.⁴). ^c marked with "?" in the reference without further explanation.

Table S4: Calculated harmonic wavenumbers ω and results of the normal mode 1D scans for the NH stretch fundamentals in the imidazole monomer, dimer, and trimer (in cm⁻¹). Optimisations and harmonic frequency calculations have been performed using B3LYP-D3(BJ)/def2-TZVP. The normal mode 1D scans based on the B3LYP-D3(BJ)/def2-TZVP structures and normal modes are performed using the different methods listed in the table. The harmonic wavenumbers $\omega_{\rm fit}$ are derived from octic polynomial fits to the 1D scans. The single-mode contributions to the anharmonic shift $\Delta_{1\rm M(d)}$ are obtained by comparing the anharmonic wavenumber $\tilde{\nu}_{\rm fit}$ to the harmonic wavenumber ω . All calculations were carried out with the Orca program package. The B3LYP functional used is the one defined in the original publication,⁵ while the Gaussian calculations use a different exchange kernel.

method		monomer	dimer		trimer		
		$ u_1 $	$ u_1^{\mathrm{a}}$	$ u_1^{ m d}$	$ u_1'$	$ u_1''$	$ u_1^{\prime\prime\prime}$
B3LYP-D3(BJ)	ω	3646	3645	3303	3525	3460	3355
B3LYP-D3(BJ)/	$\omega_{ m fit}$	3646	3646	3302	3526	3461	3357
def2-TZVP	$\tilde{ u}_{ m fit}$	3508	3509	3092	3375	3292	3172
	$\Delta_{1M(d)}$	-138	-137	-210	-152	-169	-184
	$\omega + \Delta_{1M(d)}$	3508	3509	3093	3374	3292	3171
M06-2X/	$\omega_{ m fit}$	3710	3702	3401	3600	3549	3454
def2-TZVP	$ ilde{ u}_{ m fit}$	3581	3574	3172	3458	3390	3270
	$\Delta_{1M(d)}$	-129	-128	-229	-142	-159	-184
	$\omega + \Delta_{1M(d)}$	3517	3517	3074	3384	3301	3171
SCS-MP2/	$\omega_{ m fit}$	3668	3660	3365	3560	3503	3408
def2-TZVP	$ ilde{ u}_{ m fit}$	3536	3528	3163	3418	3346	3235
	$\Delta_{1M(d)}$	-132	-131	-202	-143	-157	-174
	$\omega + \Delta_{1M(d)}$	3514	3514	3101	3383	3303	3181
B2PLYP/	$\omega_{ m fit}$	3718	3714	3397	3587	3526	3444
def2-QZVP	$ ilde{ u}_{ m fit}$	3577	3574	3182	3433	3356	3257
	$\Delta_{1M(d)}$	-142	-140	-215	-154	-170	-187
	$\omega + \Delta_{1M(d)}$	3504	3505	3087	3371	3290	3168
DLPNO-	$\omega_{ m fit}$	3743	3735	3523	3637	3595	3530
CCSD(T)/	$ ilde{ u}_{ m fit}$	3601	3594	3312	3492	3436	3357
cc- $pVTZ$	$\Delta_{1M(d)}$	-142	-141	-211	-145	-159	-174
	$\omega + \Delta_{1M(d)}$	3504	3505	3092	3380	3301	3182

Table S5: Calculated harmonic wavenumbers ω and results of the normal mode 1D scans for the NH stretch fundamentals in the imidazole monomer, dimer, and trimer (in cm⁻¹). Optimisations and harmonic frequency calculations have been performed using SCS-MP2/def2-TZVP. The normal mode 1D scans based on the SCS-MP2/def2-TZVP structures and normal modes are performed using the different methods listed in the table. The harmonic wavenumbers $\omega_{\rm fit}$ are derived from octic polynomial fits to the 1D scans. The single-mode contributions to the anharmonic shift $\Delta_{1\rm M(d)}$ are obtained by comparing the anharmonic wavenumber $\tilde{\nu}_{\rm fit}$ to the harmonic wavenumber ω . All calculations were carried out with the Orca program package. The B3LYP functional used is the one defined in the original publication,⁵ while the Gaussian calculations use a different exchange kernel.

method		monomer	dimer		trimer		
		$ u_1 $	$ u_1^{\mathrm{a}}$	$ u_1^{ m d}$	$ u_1'$	$ u_1''$	$\nu_1^{\prime\prime\prime}$
SCS-MP2	ω	3656	3651	3350	3547	3492	3392
SCS-MP2/	$\omega_{ m fit}$	3656	3652	3350	3549	3495	3394
def2-TZVP	$ ilde{ u}_{ m fit}$	3525	3522	3150	3410	3343	3224
	$\Delta_{1M(d)}$	-131	-131	-201	-139	-153	-169
	$\omega + \Delta_{1M(d)}$	3525	3520	3150	3408	3340	3223
M06-2X/	$\omega_{ m fit}$	3698	3693	3395	3589	3537	3440
def2-TZVP	$ ilde{ u}_{ m fit}$	3570	3566	3167	3450	3385	3262
	$\Delta_{1M(d)}$	-128	-127	-228	-139	-153	-177
	$\omega + \Delta_{1M(d)}$	3528	3523	3122	3408	3340	3214
B3LYP-D3(BJ)/	$\omega_{ m fit}$	3635	3638	3287	3519	3457	3344
def2-TZVP	$ ilde{ u}_{ m fit}$	3498	3502	3077	3370	3293	3165
	$\Delta_{1M(d)}$	-137	-136	-210	-148	-164	-180
	$\omega + \Delta_{1M(d)}$	3519	3515	3141	3399	3329	3212
B2PLYP/	$\omega_{ m fit}$	3707	3707	3374	3578	3519	3429
def2-QZVP	$ ilde{ u}_{ m fit}$	3566	3567	3160	3427	3354	3247
	$\Delta_{1M(d)}$	-141	-140	-214	-151	-165	-183
	$\omega + \Delta_{1M(d)}$	3515	3511	3136	3396	3327	3209
DLPNO-	$\omega_{ m fit}$	3729	3723	3492	3612	3646	3512
$\operatorname{CCSD}(T)/$	$ ilde{ u}_{ m fit}$	3589	3585	3287	3475	3460	3343
cc- $pVTZ$	$\Delta_{1M(d)}$	-140	-138	-205	-137	-186	-169
	$\omega + \Delta_{1M(d)}$	3516	3513	3145	3410	3306	3223

Table S6: Calculated harmonic wavenumbers ω and results of the normal mode 1D scans for the NH stretch fundamentals in the imidazole monomer, dimer, and trimer (in cm⁻¹). Optimisations and harmonic frequency calculations have been performed using B2PLYP/def2-QZVP. The normal mode 1D scans based on the B2PLYP/def2-QZVP structures and normal modes are performed using the different methods listed in the table. The harmonic wavenumbers $\omega_{\rm fit}$ are derived from octic polynomial fits to the 1D scans. The single-mode contributions to the anharmonic shift $\Delta_{1\rm M(d)}$ are obtained by comparing the anharmonic wavenumber $\tilde{\nu}_{\rm fit}$ to the harmonic wavenumber ω . All calculations were carried out with the Orca program package. The B3LYP functional used is the one defined in the original publication,⁵ while the Gaussian calculations use a different exchange kernel.

method		monomer	dimer		trimer		
		$ u_1 $	$ u_1^{\mathrm{a}}$	$ u_1^{ m d}$	$ u_1'$	$ u_1''$	$\nu_1^{\prime\prime\prime}$
B2PLYP	ω	3683	3680	3343	3559	3494	3384
B2PLYP/	$\omega_{ m fit}$	3684	3682	3344	3560	3494	3390
def2-QZVP	$ ilde{ u}_{ m fit}$	3545	3544	3126	3408	3326	3205
	$\Delta_{1M(d)}$	-139	-138	-218	-152	-168	-185
	$\omega + \Delta_{1M(d)}$	3544	3543	3125	3407	3326	3199
M06-2X/	$\omega_{ m fit}$	3675	3672	3350	3572	3517	3399
def2-TZVP	$ ilde{ u}_{ m fit}$	3549	3549	3119	3433	3360	3216
	$\Delta_{1M(d)}$	-126	-123	-231	-139	-157	-183
	$\omega + \Delta_{1M(d)}$	3557	3557	3112	3420	3337	3200
B3LYP-D3(BJ)/	$\omega_{ m fit}$	3612	3613	3254	3499	3429	3301
def2-TZVP	$ ilde{ u}_{ m fit}$	3477	3480	3041	3350	3263	3120
	$\Delta_{1M(d)}$	-135	-133	-212	-149	-166	-182
	$\omega + \Delta_{1M(d)}$	3548	3547	3130	3410	3328	3202
SCS-MP2/	$\omega_{ m fit}$	3634	3628	3320	3532	3472	3353
def2-TZVP	$ ilde{ u}_{ m fit}$	3505	3500	3115	3393	3317	3182
	$\Delta_{1M(d)}$	-130	-128	-204	-140	-155	-171
	$\omega + \Delta_{1M(d)}$	3554	3553	3138	3419	3339	3212
DLPNO-	$\omega_{ m fit}$	3706	3698	3478	3612	3577	3495
$\rm CCSD(T)/$	$ ilde{ u}_{ m fit}$	3568	3564	3263	3469	3414	3314
cc- $pVTZ$	$\Delta_{1M(d)}$	-138	-134	-215	-144	-163	-181
	$\omega + \Delta_{1M(d)}$	3545	3547	3128	3415	3331	3203

		1 (
Atom	Х	Υ	Z
N	-0.101147	-1.223180	-0.000018
С	1.001488	-0.515096	-0.000003
Ν	0.733974	0.821197	0.000016
С	-0.634870	0.965589	-0.000015
\mathbf{C}	-1.129080	-0.309745	0.000017
Η	2.006519	-0.904856	-0.000006
Η	1.409198	1.565784	0.000028
Η	-1.110701	1.929973	-0.000025
Н	-2.160039	-0.621509	0.000026

Table S7: Cartesian coordinates for the imidazole monomer (M) from B3LYP/def2-TZVP geometry optimization with D3(BJ) dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. $(E = -226.3188127 \cdot E_{\rm h})$

Table S8: Cartesian coordinates for the imidazole monomer (M) from B3LYP/def2-TZVP geometry optimization without dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. ($E = -226.307477 E_{\rm h}$)

Atom	X	Y	Z
N	0.113358	-1.222470	0.000000
\mathbf{C}	-0.994881	-0.524325	0.000001
Ν	-0.741910	0.814189	-0.000001
\mathbf{C}	0.624815	0.971522	0.000001
\mathbf{C}	1.130713	-0.298855	0.000000
Η	-1.996337	-0.924165	0.000001
Η	-1.425207	1.551684	-0.000002
Η	1.092318	1.940318	0.000001
Н	2.165208	-0.599921	-0.000001

Table S9: Cartesian coordinates for the imidazole dimer (D) from B3LYP/def2-TZVP geometry optimization with D3(BJ) dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. $(E = -452.6540828 E_{\rm h})$

Atom	Х	Y	Z
N	3.595290	-0.457388	-0.617746
\mathbf{C}	2.322283	-0.541256	-0.937975
Ν	1.528101	0.093090	-0.036883
\mathbf{C}	2.355669	0.616977	0.925250
\mathbf{C}	3.626465	0.267353	0.549281
Η	1.923623	-1.043773	-1.804659
Η	0.506470	0.156938	-0.063214
Η	1.976400	1.175408	1.762931
Η	4.554373	0.494956	1.047619
Ν	-1.414828	0.117026	-0.043781
\mathbf{C}	-2.087698	-0.866234	0.508401
Ν	-3.424700	-0.669996	0.379087
\mathbf{C}	-3.610051	0.513829	-0.298892
\mathbf{C}	-2.353200	0.985392	-0.551629
Η	-1.663717	-1.724344	1.003184
Η	-4.149367	-1.279779	0.716906
Н	-4.587491	0.896796	-0.530443
Н	-2.068137	1.888318	-1.063673

Table S10: Cartesian coordinates for the imidazole dimer (D) from B3LYP/def2-TZVP geometry optimization without dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. ($E = -452.6284851 E_{\rm h}$)

Atom	Х	Y	Ζ
Ν	3.633568	-0.380198	-0.661059
\mathbf{C}	2.359378	-0.493208	-0.962854
Ν	1.557899	0.042902	-0.006382
\mathbf{C}	2.383757	0.532153	0.974825
С	3.658518	0.261680	0.552336
Η	1.964027	-0.950577	-1.856058
Η	0.535536	0.071064	-0.013155
Η	2.001449	1.015044	1.857226
Н	4.586454	0.492074	1.050043
Ν	-1.439886	0.050889	-0.006506
\mathbf{C}	-2.189919	-0.916389	0.467990
Ν	-3.507811	-0.632567	0.312627
\mathbf{C}	-3.599369	0.595411	-0.300891
\mathbf{C}	-2.309086	1.000771	-0.489535
Η	-1.836274	-1.826134	0.925129
Н	-4.277753	-1.215065	0.594429
Н	-4.543701	1.051539	-0.538627
Н	-1.955801	1.912366	-0.940976

Atom	Х	Y	Ζ
Ν	2.727846	-0.635425	0.960458
С	1.588470	-1.293720	1.046565
Ν	1.304938	-1.960428	-0.096566
\mathbf{C}	2.324288	-1.704363	-0.980129
\mathbf{C}	3.200324	-0.893406	-0.308496
Н	0.925633	-1.301532	1.896016
Н	0.389317	-2.364823	-0.306013
Н	2.336891	-2.114965	-1.973957
Н	4.135988	-0.487989	-0.655587
Ν	-1.555089	-1.841596	-0.413579
\mathbf{C}	-1.423600	-0.532808	-0.499503
Ν	-2.545286	0.103662	-0.094494
\mathbf{C}	-3.454657	-0.856816	0.280040
\mathbf{C}	-2.826900	-2.055330	0.070935
Н	-0.550222	-0.002121	-0.838130
Н	-2.603017	1.109697	0.012049
Н	-4.433232	-0.610208	0.650891
Н	-3.209309	-3.047677	0.239133
Ν	-0.967455	2.639244	0.252538
С	-0.109724	2.074472	1.078777
Ν	1.089306	1.861957	0.483854
С	0.989759	2.309438	-0.810413
\mathbf{C}	-0.284680	2.796102	-0.933304
Н	-0.310856	1.788593	2.097936
Н	1.857011	1.314666	0.864171
Н	1.809571	2.239017	-1.502235
Н	-0.747277	3.244038	-1.796576

Table S11: Cartesian coordinates for the cyclic imidazole trimer (T_{cyclic}) from B3LYP/def2-TZVP geometry optimization with D3(BJ) dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. ($E = -678.9984288 E_{\rm h}$)

Atom	Х	Y	Z
Ν	2.745767	-0.609123	0.911817
С	1.596722	-1.244842	1.007495
Ν	1.363282	-2.035980	-0.065959
С	2.435373	-1.894178	-0.911762
\mathbf{C}	3.282379	-1.017714	-0.288636
Η	0.893954	-1.160130	1.820280
Η	0.462022	-2.465721	-0.271950
Η	2.499769	-2.416727	-1.849787
Η	4.241952	-0.664115	-0.628054
Ν	-1.590119	-1.928527	-0.446094
\mathbf{C}	-1.486416	-0.622462	-0.576236
Ν	-2.593882	0.013995	-0.132592
\mathbf{C}	-3.467214	-0.947572	0.314905
С	-2.832058	-2.141776	0.107912
Η	-0.638598	-0.089359	-0.973268
Η	-2.665338	1.020490	-0.044310
Η	-4.430406	-0.704996	0.727352
Η	-3.192804	-3.133495	0.323805
Ν	-1.017202	2.681348	0.263170
\mathbf{C}	-0.133869	2.097339	1.045026
Ν	1.089048	2.034058	0.463898
С	0.978724	2.611379	-0.776935
\mathbf{C}	-0.325557	3.013180	-0.879511
Η	-0.329484	1.697811	2.026858
Η	1.881654	1.501785	0.809300
Η	1.812918	2.683005	-1.451972
Η	-0.802386	3.520934	-1.701474

Table S12: Cartesian coordinates for the cyclic imidazole trimer (T_{cyclic}) from B3LYP/def2-TZVP geometry optimization without dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. ($E = -678.9491016 E_{\rm h}$)

Atom	Х	Y	Z
Ν	-1.175819	0.995056	-0.023480
\mathbf{C}	-0.107693	0.227134	0.065864
Ν	1.031306	0.950993	-0.019595
\mathbf{C}	0.666808	2.265884	-0.173826
С	-0.701881	2.276590	-0.174096
Η	-0.113955	-0.843067	0.191933
Η	1.990177	0.579222	0.016337
Η	1.393164	3.053525	-0.266041
Η	-1.367421	3.117377	-0.272188
С	-4.626915	-0.386997	1.128351
Ν	-3.839589	-0.160667	0.027629
\mathbf{C}	-4.499434	-0.676258	-1.040553
Η	-4.333093	-0.072784	2.114488
Η	-2.918871	0.298688	0.015203
Η	-4.098909	-0.632219	-2.040691
Ν	3.711507	-0.158234	0.038878
\mathbf{C}	4.357455	-0.644511	-0.996781
Ν	5.566665	-1.133538	-0.624299
\mathbf{C}	5.695398	-0.945892	0.733264
\mathbf{C}	4.535948	-0.340439	1.125633
Η	4.001247	-0.666375	-2.013292
Η	6.246539	-1.558851	-1.231191
Η	6.571740	-1.251511	1.275616
Н	4.245593	-0.027894	2.113898
Ν	-5.651372	-1.214086	-0.698786
\mathbf{C}	-5.740023	-1.037023	0.660913
Н	-6.593076	-1.383719	1.220881

Table S13: Cartesian coordinates for the linear imidazole trimer (T_{linear}) from B3LYP/def2-TZVP geometry optimization with D3(BJ) dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. ($E = -678.992639 E_{\rm h}$)

Atom	Х	Y	Z
N	-1.165564	0.872785	-0.020968
С	-0.078985	0.131208	0.054456
Ν	1.043670	0.881071	-0.023123
С	0.647639	2.188432	-0.157125
С	-0.720114	2.165810	-0.153870
Η	-0.058476	-0.940869	0.165084
Н	2.009714	0.532613	0.006631
Η	1.353714	2.995730	-0.239676
Η	-1.403912	2.993852	-0.238253
С	-4.716840	-0.381411	1.129726
Ν	-3.922768	-0.189301	0.027666
С	-4.628498	-0.630299	-1.044450
Η	-4.394696	-0.112794	2.120767
Η	-2.974205	0.205042	0.016267
Η	-4.234018	-0.593759	-2.047641
Ν	3.803259	-0.161437	0.029622
\mathbf{C}	4.488283	-0.595441	-1.003676
Ν	5.713056	-1.036637	-0.624119
\mathbf{C}	5.812244	-0.872563	0.737976
\mathbf{C}	4.620365	-0.329760	1.123409
Η	4.150091	-0.612095	-2.026837
Η	6.420408	-1.416800	-1.229907
Η	6.693285	-1.148846	1.289016
Н	4.303259	-0.052670	2.114447
Ν	-5.813737	-1.088810	-0.705221
С	-5.877599	-0.936237	0.657641
Н	-6.749543	-1.231532	1.218586

Table S14: Cartesian coordinates for the linear imidazole trimer (T_{linear}) from B3LYP/def2-TZVP geometry optimization without dispersion correction. Calculations were carried out in Gaussian 09 Rev. E.01⁶ under the conditions mentioned in the main publication. ($E = -678.9525142 E_{\rm h}$)

Table S15: Comparison of the internal coordinates of the imidazole monomer as optimized by different levels of theory. Bond distances r are provided in Å, angles \angle in degrees. The CCSD(T)-F12C values are taken from Ref.⁷. The numbering of the atoms follows the nomenclature of the latter publication. The B3LYP and B2PLYP values were computed with the def2-TZVP basis set, as mentioned in the main manuscript.

	CCSD(T)-F12C	B3LYP	B2PLYP
r(72)	1.075	1.075	1.072
$r(2\ 1)$	1.369	1.368	1.367
$r(\ 1\ 6)$	1.077	1.077	1.074
$r(\ 1\ 3)$	1.380	1.375	1.374
$r(\ 3\ 5)$	1.313	1.310	1.311
r(58)	1.077	1.078	1.074
r(5 4)	1.362	1.363	1.360
$r(4\ 9)$	1.003	1.005	1.003
$r(\ 4\ 2)$	1.377	1.376	1.374
$\angle(4\ 2\ 1)$	105.1	105.2	105.2
$\angle(2\ 1\ 3)$	110.7	110.4	110.5
$\angle(1\ 3\ 5)$	105.1	105.7	105.5
$\angle(354)$	111.9	111.4	111.5
$\angle(5\ 4\ 2)$	107.2	107.3	107.4
$\angle(4\ 2\ 7)$	122.3	122.3	122.3
$\angle(7\ 2\ 1)$	132.6	132.6	132.6
$\angle(2\ 1\ 6)$	127.9	128.0	128.0
$\angle(6\ 1\ 3)$	121.4	121.5	121.5
$\angle(\ 3\ 5\ 8)$	125.8	126.1	126.0
$\angle(854)$	122.3	122.5	122.5
$\angle(5\ 4\ 9)$	126.3	126.5	126.4

Table S16: Calculated corrections for the vibrational wavenumbers (in cm^{-1}) for the NH stretch fundamentals in the imidazole dimer and trimer in dependence of excluded off-diagonal terms. These values give a rough estimate of the dependence of the latter on the computed low frequency intermolecular modes (which are hard to calculate on the basis of VPT2 theory). The 'full' results are those computed as detailed in the main manuscript and featured in Table 4 at the B3LYP-D3(BJ)/def2-TZVP level of theory. The 'no inter x_{ij} ' values are computed excluding the off-diagonal coupling constants resulting from the intermolecular modes. The 'no inter' values result from the removal of all intermolecular off-diagonal terms. The latter affect also the diagonal correction as shown in Eq. (3). The different terms contributing to the anharmonic shift are discussed in detail in the text. The main effect of the neglect of the intermolecular modes is, as expected, on the off-diagonal correction. The corrections are otherwise stable, particularly the Fermi $\Delta_{\rm F}$ term. The main differences are observed in the trimer case, whereby the different contributions accumulate resulting in large deviations.

	approach	$\Delta_{1M(d)}$	$\Delta_{\rm MM(d)}$	Δ_{off}	$\Delta_{\rm F}$
dimer $\nu_1^{\rm a}$					
	full	-138	-1	-19	
	no inter x_{ij}	-138	-1	-24	
	no inter	-138	-1	-25	
dimer	ν_1^{d}				
	full	-201	-37	+51	+31
	no inter x_{ij}	-201	-37	+36	+35
	no inter	-201	-13	+19	+34
trimer	$ u_1'$				
	full	-152	-32	-6	
	no inter x_{ij}	-152	-32	-11	
	no inter	-152	-11	-21	
trimer ν_1''					
	full	-166	-36	+12	
	no inter x_{ij}	-166	-36	+1	
	no inter	-166	-16	-7	
trimer $\nu_1^{\prime\prime\prime}$					
	full	-180	-86	+59	
	no inter x_{ij}	-180	-86	+40	
	no inter	-180	-34	+5	

References

- [1] J. Zischang, PhD thesis, Georg-August Universität, Göttingen, 2014.
- [2] M. K. Van Bael, J. Smets, K. Schoone, L. Houben, W. McCarthy, L. Adamowicz, M. J. Nowak and G. Maes, J. Phys. Chem. A, 1997, 101, 2397–2413.
- [3] M. Y. Choi and R. E. Miller, J. Phys. Chem. A, 2006, 110, 9344–9351.
- [4] S. T. King, J. Phys. Chem., 1970, 74, 2133–2138.
- [5] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Montgomery, J. A., Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, 2009.
- [7] J. C. Mullaney, D. P. Zaleski, D. P. Tew, N. R. Walker and A. C. Legon, *ChemPhysChem*, 2016, 17, 1154–1158.