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Supplementary Information 

S1. Description of the Integration Method 

S1.1. Noise Analysis 

The noise level (variance 𝛼2) and autocorrelation (length scale 𝜆) is determined from a sample of 

the input spectrum where no absorption band is observed and expected. Both parameters are 

estimated by fitting the autocovariance of the noise with an appropriate covariance function. The 

autocovariance of the noise 𝐱 is calculated for a specific lag (𝑘 discrete steps on the wavenumber 

grid) as follows: 

cov(𝑥𝑛, 𝑥𝑛+𝑘) =
1

𝑁
∑ 𝑥𝑖

𝑁−𝑘

𝑖=1

⋅ 𝑥𝑖+𝑘 (1) 

Our spectra are measured on an evenly spaced wavenumber grid, so the lag 𝑘 can be converted to 

a wavenumber difference �̃�𝑗 − �̃�𝑖 by multiplying with the grid spacing (approximately 0.5 cm−1). 

To fit the autocovariance and retrieve an approximate relationship for autocovariance versus lag 

(lag in units of cm−1), we choose the squared exponential covariance function: 

𝑘(�̃�𝑖 , �̃�𝑗) = 𝛼2exp (−
(�̃�𝑗 − �̃�𝑖)

2

2𝜆2
). (2) 

The parameter 𝛼 controls the noise amplitude (variance) and the parameters 𝜆 controls how fast 

the noise correlation of data points 𝑖 and 𝑗 decays with distance �̃�𝑗 − �̃�𝑖 (length scale). These 

parameters are used to generate random noise samples which have similar characteristics as the 

experimental noise. A plot of the estimated autocovariance of a sample spectrum and the associated 

fit is shown in Fig. S1. 

 

 

Fig. S1: Noise sample, autocovariance, and fit of squared exponential covariance function. 
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S1.2. Integration Window Width 

The width of the integration window is treated as uncertain and modelled as a random variable 𝑊 

which is sampled from a scaled and shifted (four parameter) Beta distribution1 with shape 

parameters 𝛼 = 2, 𝛽 = 2 and scaling and shifting parameters 𝑠 and 𝑚: 

𝑊 ∼ Beta (2,2, 𝑚 −
𝑠

2
, 𝑚 +

𝑠

2
) (3) 

The symmetric Beta (2, 2) distribution has non-zero probability density in the interval (0,1), peaks 

at 0.5 (mean value) and goes to zero at the interval bounds. Scaling by 𝑠 and shifting the mean by 

𝑚 moves this interval such that random samples fall in the range 𝑚 −
𝑠

2
< 𝑤 < 𝑚 +

𝑠

2
. 

The reason to choose a scaled and shifted Beta(2, 2) distribution over a normal distribution is that 

the tails of the normal distributions would occasionally lead to unreasonable integration boundaries 

far away from the actual band. A Beta(2, 2) distribution is similar to a normal distribution in that 

it peaks symmetrically around the mean value but it is missing the tails. A comparison of a scaled 

and shifted Beta(2, 2) and normal distribution is shown in Fig. S2. 

 

 

 

Fig. S2: Example of a probability density function from which random widths for the integration 

window are drawn (blue trace): A Beta (2,2) distribution scaled by a factor 

𝑠 = 0.2 and shifted by 𝑚 = 3.0. Random samples from this distribution fall in the interval  

(2.9, 3.1), have a mean of 3.0 and a standard deviation of 
𝛼𝛽𝑠2

(𝛼+𝛽)2(𝛼+𝛽+1)
= √

1

20
𝑠 ≈ 0.045. 
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S1.3. Random Spectra 

Spectra with modified noise are generated from a multivariate normal distribution (𝒩). The 

multivariate normal distribution is parametrized by a mean vector µ around which random samples 

will scatter, and a covariance matrix 𝚺 that determines the correlation of the generated sample 

points. In our case, the absorbance 𝐀input of the input spectrum servers as mean vector, such that 

data points in the generated spectra randomly scatter around the data points in the input spectrum. 

The elements 𝑣𝑖,𝑗 of the covariance matrix are calculated from the squared exponential covariance 

function (Eqn. 2). 

Random spectra are sampled from the resultant multivariate normal distribution: 

𝐀 ∼ 𝒩(𝐀input, 𝚺).  (5) 

After this data generation step we are left with a vector of integration window widths and an 

associated set of simulated spectra, which are integrated in the next data processing step. 

S1.4. Integration 

At this point, we introduce several assumptions about the band shape of our FTIR signals:  

1. We assume symmetric bands and integrate symmetrically around the band maximum, simply 

because there is no systematic evidence that suggests asymmetric bands. 

2. We assume the same band width for all bands because the complexes we study should have 

similar rotational constants and rotational temperatures in the jet expansion. Therefore, the mean 

value 𝑚 in Eqn. 3 for the width of the integration window is the same for all spectra we analysed, 

2.5 cm−1. We assume a 10 % uncertainty for the width of the integration window so that it varies 

within 0.25 cm−1 (𝑠 =  0.1 𝑚). Note that while the particular value used in each Monte Carlo 

iteration varies following the Beta distribution introduced above, two bands in the same random 

spectrum are integrated using exactly the same integration window width, which decreases the 

contribution of the integration window width uncertainty to the overall uncertainty of the band 

integral ratio. 

The numeric integration is performed using the trapezoidal integral approximation. The exact 

integration boundaries �̃�𝑎 and �̃�𝑏 (�̃�𝑎 < �̃�𝑏) generally fall somewhere in between the regular 

wavenumber grid �̃�𝑖 of our FTIR measurements. Therefore, we integrate the interval 

[�̃�1 > �̃�𝑎 , �̃�2 < �̃�𝑏] (�̃�1 and �̃�2 are points on the wavenumber grid neighboring �̃�𝑎 and �̃�𝑏) and use 

linear interpolation to estimate the absorbance at �̃�𝑎 and �̃�𝑏 to add the remaining two (more narrow) 

trapezoids. Furthermore, the absorbance at �̃�𝑎 and �̃�𝑏 is used to determine a slope that is subtracted 

to account for the local baseline. 

To illustrate the integration method, we show the input spectrum, 5 draws of random spectra, 

integration boundaries and local baselines for the system methanol-phenylacetylene in Fig. S3. 
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Fig. S3: Input spectrum (lower trace) and 5 random draws for the system methanol-

phenylacetylene. The integration boundaries and local baselines are indicated by black lines. 

S1.5. Integral Ratio and Confidence Interval 

The integration method yields either samples of one band integral or two associated integrals (both 

derived from integration using exactly the same width). The latter is the trivial case: We calculate 

the ratios of the associated integrals and can calculate the mean and standard deviation as well as 

95% confidence intervals from 2.5 % and 97.5 % quantiles from the sample of retrieved ratios. 

However, with the present dataset we have many spectra where only the band of the acetylene- or 

the phenyl-bound complex is observable. While this already establishes the energetic preferences 

of binding sites, we still wish to estimate a bound for the intensity ratio and finally the abundance 

ratio of the two species. To do so, we use the confidence interval of the integral of the observed 

band: For a signal to be viewed as a true absorption band and not a noise artefact, we demand that 

the 5.0 % quantile of the distribution over integral samples is > 0, i.e. that there is a 95% probability 

that the band integral is > 0. Given that the absorption bands of the two phenyl- and acetylene-

bound complexes are spectral "neighbours" and are perturbed by noise with identical 

characteristics, we can assume that the width of the distribution over integral samples should be 

similar for both bands. This was verified using our measurements where both bands are observable. 

Therefore, shifting the histogram of the observed bands’ integrals such that the 5 % quantile lands 

on zero yields an upper bound for how the distribution of the unobserved band may look like. The 

97.5 % quantile of this hypothetical distribution is equal to the quantile difference 𝑞97.5 − 𝑞5.0 of 

the observed bands’ distribution and it is an estimate of the upper bound of the integral of the 

unobserved band. 
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S2. Calculated and Experimental Results 

Ac Minima Ph Minima  Local Minima  

 
 

 

(et-p)Ac  (et-p)Ph   

 

 

 

(eg-p)Ac (eg-p) Ph  

  

 

(m-p)Ac  (m-p)Ph   

   

 (t-p)Ac (t-p)Ph  (t-p)Ac2 

  

 

(w-p)Ac  (w-p)Ph   

1.5 

(-16) 

0.0 

(-73) 

0.0 

(-67) 

1.4 

(-16) 

0.0 

(-62) 
1.3 

(-16) 

 0.6 

(-5) 
0.0 

(-54) 

0.8 

(-37) 

0.0 

(-64) 
0.9 

(-17) 
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Ac Minima Ph Minima  Local Minima  

    

(m-3mp) Ac  (m-3mp) Ph  (m-3mp)Ac2  

  

 

  (m-3mp) Ph2 

 
 

  

(md-3mp) Ac (md-3mp) Ph (md-3mp)Ac2 

  

 

  (md-3mp) Ph2 

   
(t-3mp) Ac (t-3mp) Ph (t-3mp)Ac2  

0.0 

(-76) 
0.5 

(-27) 
0.7 

(-75) 

0.0 

(-16) 

0.6 

(-64) 
1.7 

(-63) 

2.4 

(-30) 

0.0 

(-57) 

0.7 

(-21) 
0.7 

(-56) 

2.7 

(-23) 
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(m-pp)Ac  (m-pp)Ph   

   

(t-pp)Ac  (t-pp)Ph (t-pp)Ph2 

Fig. S4: Optimized structures of phenyl bound (Ph) and acetylenic bound (Ac) complexes of various donor 

molecules (et and eg represent ethanol in trans and gauche-conformation respectively, m: methanol, md: 

methanol-d1, t: tert-butyl alcohol, w: H2O) with phenylacetylene (p), 3-methylphenylacetylene (3mp) and 1-phenyl-

1-propyne (pp) are given at B3LYP-D3/def2-TZVP level. The upper number in each block represent the relative 

ZPVE corrected energies in kJ mol-1. The number in parenthesis indicates the scaled computed wavenumber 

downshift (cm-1) in the OH stretching fundamental of the donor molecule on complex formation.  

 

0.0 

(-100) 

0.0 

(-67) 
3.6 

(-13) 
4.0 

(-33) 

2.5 

(-21) 
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Fig. S5: FTIR spectra of supersonic jet expansions of methanol (m) or tert-butyl alcohol (t) with 1-phenyl-

1-propyne (pp) in the OH stretching region of the alcohol. (a) Co-expansion of m with pp. (b) Co-expansion 

of t with pp. Ac indicates the acetylenic bound binary complex. Bands of monomers and homodimer 

complexes are marked as m, (m)2 and t, (t)2, respectively. 
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Fig. S6: FTIR spectra of supersonic jet expansions of methanol (m) with phenylacetylene (p) in 

the ≡CH stretching region of p. (a) Spectrum of p. (b) Co-expansion of m with p. The ≡CH stretch 

of monomer is marked as p and occurs at 3339 cm-1 together with a Fermi resonance component 

at 3324 cm-1 which is reported to be due to coupling between ≡C-H stretch and the combination 

band arising out of one quantum of C≡C stretch and two quanta of C≡C-H out-of-plane bend. The 

shoulder at 3316 cm-1 is due to higher order coupling.2 
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Fig. S7: FTIR spectra of supersonic jet expansions of methanol (m) with 3-methylphenylacetylene (3mp) 

in the OH stretching region of m. (a) Spectrum of m. (b) Co-expansion of m with 3mp. Ac indicates the 

acetylenic bound and Ph indicates the phenyl bound binary complex. Bands of monomers and homodimer 

complexes are marked as m and (m)2, respectively. 

 

 



11 
 

 

 

  

 

Fig. S8: FTIR spectra of supersonic jet expansions of water (w) with phenylacetylene (p) in the OH 

stretching region of w. (a) Co-expansion of w with p. (b) Spectrum of D2O (wd). The OD stretch region of 

wd is scaled to the OH stretch region of w by using a scaling factor of 1.368 (3657/2672). (c) Co-expansion 

of wd with p. Ac indicates the acetylenic bound binary complex. Bands of monomers and homodimer 

complexes are marked as w, wd and (w)2, (wd)2, respectively. 
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Fig. S9: Optimized structures of phenyl bound (Ph) and acetylenic bound (Ac) complexes of H2S with 

phenylacetylene (p) are given at B3LYP-D3/def2-TZVP and M06-2X/ def2-TZVP level.  
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Table S1. Calculated harmonic, experimentally scaled wavenumbers ωf
OH in cm-1 of donor monomers, scaled 

wavenumber shifts ∆ωf
OH in cm-1, integrated band strengths (σOH) in the double harmonic approximation in km mol-1 

and ZPVE corrected binding energies E0 in kJ mol-1 of phenyl bound (Ph) and acetylenic bound (Ac) complexes are 

given at B3LYP-D3/def2-TZVP level. Experimental anharmonic wavenumber shifts based on the assignments 

proposed here are added in parentheses behind the calculated harmonic shifts, showing a systematic underestimation 

of the calculated shift magnitude for Ph binding and a slight systematic overestimation for Ac binding. For the two e 

isomers, similar complexation shifts are predicted, but because eg is experimentally 16 cm-1 lower, an et assignment of 

the observed band is more consistent with other alcohols. 

 

* The OD stretch of the donor is considered in these deuterated variants. 

** In case of w and wd the shift is calculated from the symmetric OH and OD monomer stretch, respectively. 

 

  

 

Donor 

Monomer 

Complex 

Coordination 

Ph Ac 

ωf
OH/ 

cm-1 

σOH/ 

km  

mol-1 

f 

Scaling 

Factor 

E0/ 
kJ mol-1 

∆ωf
OH/ 

cm-1 
σOH/ 

km mol-1 

E0/ 
kJ mol-1 

∆ωf
OH/ 

cm-1 
σOH/ 

km mol-1 

et 3676 23 0.9646 et-p -18.76 -16 122 -20.25 -67 (-62) 178 
eg 3660 18 0.9644 eg-p -19.50 -17 98 -20.42 -64 (-46) 163 

m 3686 25 0.9667 m-p -18.23 -16 115 -19.60 -73 (-64) 191 

t 3642 12 0.9615 t-p -20.03 -16 124 -21.35 -62 (-55) 192 

wd* 2672 4 0.9795 wd-p** -15.19 -2 20 -16.33 -34 (-30) 57 

md* 2718 18 0.9791 md-3mp -20.18 -21 (-33) 79 -20.92 -57 (-47) 110 

w 3657 4 0.9695 w-p** -14.49 -5 32 -15.11 -54 (-44) 122 
m 3686 25 0.9667 m-3mp -19.96 -27 (-47) 132 -20.45 -76 (-66) 186 

td* 2687 9 0.9746 td-3mp -23.30 -12 (-28) 73 -22.96 -47 106 

t 3642 12 0.9615 t-3mp -23.17 -16 (-41) 124 -22.58 -64 186 
m 3686 25 0.9667 m-pp -19.43 -21 21 -21.91 -100 (-88) 103 

t 3642 12 0.9615 t-pp -21.86 -13 14 -25.41 -67 (-69) 70 
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Table S2. Calculated harmonic experimentally scaled wavenumbers ωf
OH in cm-1 of donor monomers, scaled 

wavenumber shifts ∆ωf
OH in cm-1, relative band strengths (σOH) in the double harmonic approximation in km mol-1 

and ZPVE corrected binding energies E0 in kJ mol-1 of phenyl bound (Ph) and acetylenic bound (Ac) complexes are 

given at M06-2X/def2-TZVP level. Experimental anharmonic wavenumber shifts based on the assignments 

proposed here are added in parentheses behind the calculated harmonic shifts, showing a systematic underestimation 

of the calculated shift magnitude for Ph binding and Ac binding. Therefore, in some cases Ac binding may be 

predicted to be closer to experimental Ph binding in terms of shift and experimental Ac binding would remain 

unexplained in terms of shift. For the two e isomers, similar complexation shifts are predicted. Taking into account 

that isolated eg is experimentally 16 cm-1 lower, both assignments are reasonably consistent with other alcohols. 

Therefore, a spectral assignment based on M06-2X remains ambiguous. 

 

*The OD stretch of the donor is considered in these deuterated variants. 

** In case of w and wd the shift is calculated from the symmetric OH and OD monomer stretch, respectively. 

 

 

Donor 

 

Complex 

Coordination 

Ph Ac 

ωf
OH/ 

cm-1 

σOH/ 

km 

mol-1 

f 

Scaling 

Factor 

E0/ 
kJ mol-1 

∆ωf
OH/ 

cm-1 

σOH/ 

km 

mol-1 

E0/ 
kJ mol-1 

∆ωf
OH/ 

cm-1 
σOH/ 

km mol-1 

et 3676 37 0.9445 et-p -18.39 -27 127 -18.34 -46 (-62) 126 

eg 3660 30 0.9450 eg-p -19.65 -27 97 -18.99 -41 (-46) 111 

m 3686 41 0.9466 m-p -17.64 -28 118 -17.77 -45 (-64) 134 

t 3642 22 0.9438 t-p -19.19 -18 121 -19.24 -51 (-55) 173 

wd* 2672 8 0.9594 wd-p** -15.49 -12 27 -14.88 -27 (-30) 54 

md* 2718 28 0.9587 md-3mp -19.93 -23 (-33) 75 -19.02 -37 (-47) 81 

w 3657 12 0.9464 w-p** -14.62 -17 43 -13.80 -42 (-44) 115 

m 3686 41 0.9466 m-3mp -19.78 -29 (-47) 124 -18.57 -48 (-66) 134 

td* 2687 14 0.9566 td-3mp -21.55 -14 (-28) 72 -20.64 -37 99 

t 3642 22 0.9438 t-3mp -21.47 -18 (-41) 121 -20.25 -51 173 

 


