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ABSTRACT

Context. Rotational shear in Sun-like stars is thought to be an important ingredient in models of stellar dynamos. Thanks to helioseis-
mology, rotation in the Sun is characterized well, but the interior rotation profiles of other Sun-like stars are not so well constrained.
Until recently, measurements of rotation in Sun-like stars have focused on the mean rotation, but little progress has been made on
measuring or even placing limits on differential rotation.
Aims. Using asteroseismic measurements of rotation we aim to constrain the radial shear in five Sun-like stars observed by the NASA
Kepler mission: KIC 004914923, KIC 005184732, KIC 006116048, KIC 006933899, and KIC 010963065.
Methods. We used stellar structure models for these five stars from previous works. These models provide the mass density, mode
eigenfunctions, and the convection zone depth, which we used to compute the sensitivity kernels for the rotational frequency splitting
of the modes. We used these kernels as weights in a parametric model of the stellar rotation profile of each star, where we allowed
different rotation rates for the radiative interior and the convective envelope. This parametric model was incorporated into a fit to the
oscillation power spectrum of each of the five Kepler stars. This fit included a prior on the rotation of the envelope, estimated from
the rotation of surface magnetic activity measured from the photometric variability.
Results. The asteroseismic measurements without the application of priors are unable to place meaningful limits on the radial shear.
Using a prior on the envelope rotation enables us to constrain the interior rotation rate and thus the radial shear. In the five cases
that we studied, the interior rotation rate does not differ from the envelope by more than approximately ±30%. Uncertainties in the
rotational splittings are too large to unambiguously determine the sign of the radial shear.
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1. Introduction

Helioseismology has shown that the Sun exhibits a complex
differential rotation profile. The radiative interior rotates as a
solid body, while the convective envelope predominantly shows
a decreasing rotation rate with increasing latitude (Schou et al.
1998). Rotation in the convection zone is largely constant with
radius, except at the surface where a thin shear layer exists,
and at the interface with the radiative interior (known as the
tachocline). Differential rotation like that seen in the Sun may
sustain the solar magnetic dynamo. The relative importance of
each of these regions for generating the magnetic activity is,
however, not clearly understood (see, e.g., Charbonneau 2010,
for a review). Models that seek to explain the solar dynamo must
necessarily be limited by the scale of the differential rotation in
the Sun, but must also be robust against estimates of differential
rotation and activity measurements of other stars.

Measurements of latitudinal differential rotation on other
stars has been possible for some time using high-resolu-
tion spectroscopy (Reiners & Schmitt 2003), Doppler imaging
(Vogt & Penrod 1983; Collier Cameron et al. 2002; Hackman
et al. 2012), spectropolarimetric data (Semel 1989; Donati &
Collier Cameron 1997; Jeffers et al. 2014); variations of the rota-
tion periods measured by photometric variability have also been
used (Reinhold & Reiners 2013; Lehtinen et al. 2016).

Radial differential rotation, on the other hand, is more diffi-
cult to measure since the only means of studying stellar interiors
is through asteroseismology. Stars with a sufficiently strong driv-
ing mechanism (e.g., convective motion in the case of solar-mass
stars or radial opacity variations in more massive stars) are able
to excite oscillations that propagate through the stellar interior
(see, e.g., Aerts et al. 2010). These oscillations are perturbed by
velocity fields such as rotation in the interior, and so the frequen-
cies of the brightness variations seen on the surface are similarly
perturbed. However, high signal-to-noise, long duration obser-
vations are necessary to measure these minute perturbations, es-
pecially in Sun-like stars where the sensitivity of the modes to
rotation in the deep interior is lower than in the envelope.

Radial differential rotation has been measured in a selec-
tion of red giant stars (Beck et al. 2012; Deheuvels et al. 2012,
2015), and in cool subgiant stars (Deheuvels et al. 2014). Such
stars exhibit gravity-dominated mixed modes, which are sensi-
tive to rotation in the deep interior. In addition, Benomar et al.
(2015) studied a sample of predominantly fast rotating F-type
stars, where they combined asteroseismic measurements of the
mean stellar rotation rate with spectroscopic v sin i. Differences
between the two were attributed to differential rotation between
the radiative interior and convective envelope. Here we focus on
Sun-like main-sequence stars, a population which has so far re-
mained unexplored with respect to radial differential rotation.
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In stars like the Sun only the pressure dominated p-modes
are visible at the surface, and these have very little sensitivity to
the rotation in the radiative interior. This, in combination with
their typically slow rotation rate (McQuillan et al. 2014), makes
robust estimates of radial differential rotation difficult to ob-
tain (see, e.g., Lund et al. 2014). Approaches like those used for
red giants and subgiants are therefore unable to place meaning-
ful constraints on the radial differential rotation (Schunker et al.
2016b). Furthermore, because of their slow rotation the errors
on spectroscopic v sin i measurements of Sun-like stars become
prohibitively large, making the approach used by Benomar et al.
(2015) difficult. However, surface rotation measurements ob-
tained from photometric variability can be used in a similar fash-
ion to constrain the surface rotation.

In Nielsen et al. (2015) we compared the average internal ro-
tation rate with that derived from surface variability, for a small
sample of slowly rotating Sun-like stars (listed in Table 1). This
showed that the differential rotation between the surface and the
interior is likely very small. Here, we use the surface rotation rate
as a prior on the rotation of the convective envelope, in a direct
asteroseismic fit to the power spectra of the same stars. This fit
incorporates a two-parameter model for the radial rotation pro-
file, consisting of separate rotation rates of the radiative interior
and convective envelope. The surface rotation rate, which is de-
rived from photometric variability from active regions, is then
used to constrain the rotation of the convective envelope. The
approach adopted in the present work improves upon previous
measurements in the sense that it allows for variation in the sen-
sitivity of the modes to rotation at different depths inside the
star, combined with surface rotation measurements, thus provid-
ing tighter constraints on the radial shear at the tachocline.

2. Rotation from surface activity

We use measurements of rotation from surface variability orig-
inally performed in Nielsen et al. (2015), which are listed in
Table 1. The data characteristics and method of measuring ro-
tation will therefore only be briefly covered here.

For both the measurements of the surface rotation and the
asteroseismic analysis we used white-light photometric observa-
tions from NASA’s Kepler satellite (Borucki et al. 2010). These
observations span approximately 1400 days, and are available
with two different integration times: long cadence (LC) at
∼29.45 min, and short cadence (SC) at ∼59 s. These observa-
tions are made available through the Mikulski Archive for Space
Telescopes1.

To measure surface rotation we use the LC time series,
which were pre-processed for systematic noise using the auto-
mated PDC_MAP and msMAP pipelines (Stumpe et al. 2012;
Smith et al. 2012). However, we also performed manual time se-
ries extraction and reduction from the raw pixel level data using
the software package PyKe2. This was done to ensure that any
variability observed in the time series was not caused by the au-
tomated reduction pipelines (see Nielsen et al. 2015, for details).

For each quarter of Kepler observations, we infer the pe-
riod of rotation by identifying the peak with highest amplitude
in the Lomb-Scargle periodogram. The average rotation period
over the full duration of the Kepler observations, which here
we call ΠS, is then obtained by taking the median of the rota-
tion periods over all available quarters. The associated standard
deviation, σS, is obtained by 1.48 · MAD, where MAD is the

1 https://archive.stsci.edu/
2 http://keplerscience.arc.nasa.gov/PyKE.shtml

median absolute deviation of the rotation periods over the avail-
able quarters (Nielsen et al. 2015). In Table 1 we show the val-
ues of ΩS = 2π/ΠS, with asymmetric errors corresponding to the
68% confidence interval.

3. Rotation from asteroseismology

In this section we describe the data and methods used to extract
rotation information from the stellar oscillations.

The oscillations of Sun-like stars have periods on the order
of 5−10 min, and we therefore use the SC time series for this
part of the analysis. We use the power density spectra of these
observations that have been made available through the Kepler
Asteroseismic Science Operations Center3 (KASOC). Prior to
computing the power density spectra, the time series were pro-
cessed using the KASOC filter (Handberg & Lund 2014), which
optimizes them for asteroseismic analysis.

This filtering includes removing any possible planetary tran-
sits and variability caused by surface features on the stars, as
well as discontinuities between quarters. Such features and vari-
ability may elevate the noise level in the frequency range con-
taining stellar oscillation modes, thereby potentially obscuring
the minute effects of rotation.

3.1. Maximum likelihood estimation

The maximum likelihood approach is a method to fit a paramet-
ric model M(Θ, ν j) of the expectation value of the power spec-
trum to a realization {P j} of the power spectrum. The compo-
nents of the vector Θ are the parameters to be determined in
the fit. The observed power P j at frequency ν j is distributed
according to a χ2 distribution with 2 degrees of freedom (e.g.,
Woodard 1984; Duvall & Harvey 1986; Gizon & Solanki 2003).
The probability of observing a given value P j in the power spec-
trum is thus an exponential distribution:

f j

(
P j,Θ

)
=

1
M(Θ, ν j)

exp
(
−

P j

M(Θ, ν j)

)
· (1)

For high duty-cycle observations like those from Kepler (&90%)
the power in two different frequency bins can be assumed to be
independent (e.g., Stahn 2010). Hence, the joint probability of
the observations is given by the product of the individual prob-
abilities f j, where j spans the frequency domain of interest (in
this paper the whole power spectrum). The best-fit parameters Θ̂
are the parameters that maximize the log-likelihood, which is
the logarithm of the joint probability function evaluated at the
observed {P j},

L (Θ)= ln
J∏

j=1

f j

(
P j,Θ

)
=−

J∑
j=1

ln M
(
Θ, ν j

)
+

P j

M
(
Θ, ν j

) , (2)

where J ∼ 106 is the number of frequencies. Here we use a
Markov chain Monte Carlo sampler4 (Foreman-Mackey et al.
2013) to search the parameter space and to return the best-fit
estimate Θ̂. We note that the logarithm of the joint probability is
used for better numerical stability in the optimization.

3 http://kasoc.phys.au.dk/
4 We use the Python package EMCEE, available at http://dan.iel.
fm/emcee/current/
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Table 1. Fundamental stellar parameters (top) and best-fit values for ΩE and ΩI, without (middle) and with (bottom) a prior on ΩE.

KIC 004914923 KIC 005184732 KIC 006116048 KIC 006933899 KIC 010963065

Teff[K] 5807 ± 89 5744 ± 63 5968 ± 58 5764 ± 46 6158 ± 57
M/M� 1.118 ± 0.020 1.205 ± 0.025 1.023 ± 0.021 1.096 ± 0.026 1.062 ± 0.021
R/R� 1.378 ± 0.009 1.342 ± 0.010 1.225 ± 0.008 1.574 ± 0.025 1.220 ± 0.009
rcz/R 0.724 0.731 0.757 0.786 0.714
[Fe/H] 0.091 ± 0.083 0.384 ± 0.025 −0.191 ± 0.049 0.126 ± 0.037 −0.189 ± 0.038
Age [Gyr] 6.23 ± 0.36 4.39 ± 0.13 5.70 ± 0.21 6.57 ± 0.30 4.18 ± 0.19
ΩS [µHz] 0.63+0.13

−0.09 0.56+0.01
−0.01 0.66+0.09

−0.07 0.37+0.02
−0.02 0.94+0.03

−0.02

Without prior
ΩE [µHz] 4.11+2.28

−2.19 1.14+0.92
−0.88 0.79+0.74

−0.75 0.29+1.63
−1.41 1.28+2.01

−1.79
ΩI [µHz] −4.73+3.40

−3.55 −0.07+1.34
−1.30 0.50+1.04

−1.04 0.49+1.83
−2.08 0.28+2.99

−3.13
(ΩI −ΩE) [µHz] −8.84+5.59

−5.84 −1.22+2.23
−2.21 −0.28+1.77

−1.78 0.21+3.25
−3.71 −1.00+4.75

−5.11
i [deg] 36.24+5.31

−4.31 67.51+9.42
−10.56 72.63+10.83

−10.25 61.68+18.42
−14.74 42.76+8.14

−4.83

With prior
ΩE [µHz] 0.65+0.13

−0.10 0.56+0.01
−0.01 0.65+0.09

−0.06 0.37+0.02
−0.02 0.94+0.03

−0.02
ΩI [µHz] 0.60+0.31

−0.31 0.61+0.14
−0.08 0.65+0.15

−0.14 0.37+0.18
−0.09 0.93+0.29

−0.36
(ΩI −ΩE) [µHz] −0.04+0.38

−0.40 0.05+0.14
−0.09 0.01+0.19

−0.22 0.00+0.18
−0.10 −0.01+0.29

−0.37
(ΩI −ΩE)/ΩE −0.06+0.64

−0.54 0.09+0.26
−0.16 0.02+0.33

−0.31 0.00+0.50
−0.26 −0.01+0.31

−0.39
i [deg] 41.27+7.73

−5.57 71.62+9.59
−10.89 75.02+9.01

−9.31 67.53+15.59
−17.08 43.32+7.91

−4.70

Notes. Top: the effective temperature Teff , mass M, radius R, metallicity [Fe/H], age, and radius of the tachocline rcz are derived from stellar
structure models. These structure models are obtained from fits to the oscillation mode frequencies and spectroscopic measurements of the effective
surface temperature from Bruntt et al. (2012). The surface rotation ΩS is computed from multiple measurements of rotation over the Kepler mission
lifetime. All values are adapted from Nielsen et al. (2015). Middle: best-fit values for ΩE, ΩI, and the angle of the stellar inclination angle i, without
the application of a prior. Bottom: best-fit values for ΩE, ΩI, and i with the PDF of ΩS used as a prior on ΩE. For all rotation rates and the inclination
angle i the errors are given by the 16th and 84th percentile values of the posterior densities of each parameter. For the relative difference between
ΩE and ΩI, the average of the percentiles is between −29% and +34%, indicating the range of likely configurations of the differential rotation.

Fig. 1. Smoothed power spectrum of KIC 006116048 shown in black, and the best-fit model shown in red. The inset shows a zoom around
1945 µHz at an l = 2, 0 pair. The l = 2 consists of a multiplet of 2l + 1 azimuthal orders with frequencies that are separated by the effects of
rotation. In this case the rotation rate is not high enough to separate the modes by more than the intrinsic broadening caused by the damping of the
mode. The l = 2 multiplet is therefore only broadened rather than clearly split into its individual azimuthal components.

3.2. Power spectrum model

The pulsations in a Sun-like star are stochastically excited and
damped by the convective motion in the outer layers of the star.
The oscillations are decomposed into spherical harmonic func-
tions with angular degree l and azimuthal order m, as well as a

radial order n which describes the number of nodal shells in the
radial direction.

Figure 1 shows the spectrum of KIC 006116048 and a best-
fit model. The inset shows an l = 2, 0 pair, where the l = 2 peak
is a multiplet consisting of 2l + 1 rotationally-split azimuthal
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components. The l = 1 (not shown in the inset) and l = 2 multi-
plets contain the rotation information.

The expectation value of the power of a single oscil-
lation mode can be approximated by a Lorentzian profile
(Anderson et al. 1990). The oscillation spectrum of a Sun-like
star contains a number of these modes, and we therefore model
the spectrum as a sum of Lorentzian profiles

M (Θ, ν) =
∑

n

3∑
l=0

l∑
m=−l

S nl Elm (i)
1 + (2/Γnlm)2 (ν − νnlm)2 + B (ν). (3)

Each mode has a peak height of S nlElm (i), a full width at half
maximum Γnlm, and a central frequency νnlm. Because of the long
duration of the Kepler observations, the mode width Γnlm is dom-
inated by the damping rate of the oscillations by convective mo-
tions. The damping rate, and therefore the mode width, increases
smoothly with frequency in a Sun-like star. We therefore param-
eterize the mode width by a 5th order polynomial (Stahn 2010).

The parameter S nlm is a function of the oscillation amplitude
and the instrument-dependent visibility of a given mode. These
are not parameters of interest for the analysis of rotation per-
formed here and they are therefore combined in S nl, which is
left as a free parameter for each multiplet in the model fit.

An additional modulation Elm (i) of the peak height comes
from the inclination angle, i, of the stellar rotation axis relative to
the line of sight to the observer. We use the same expression for
Elm (i) as given by Gizon & Solanki (2003). This accounts for the
relative differences in peak height of the azimuthal components
with the same radial order and angular degree, and allows us to
determine the stellar inclination angle from the power spectrum
fits.

The mode frequencies νnlm are perturbed by rotation

νnlm = νnl + m

π∫
0

R∫
0

Ω(r, θ)
2π

Knlm(r, θ)rdrdθ, (4)

where νnl is the average mode frequency of a multiplet nl, Ω(r, θ)
is the internal angular velocity of the star, and Knlm(r, θ) is the
rotation sensitivity kernel for the mode nlm. The kernels give
the sensitivity of the modes to the local angular velocity in the
star (see Christensen-Dalsgaard 2003, Eq. (8.35)), and depend
on the structure of the star. These kernels are computed using
stellar structure models originally from Nielsen et al. (2015).

In addition to the oscillation modes the power spectrum also
contains a level of background noise. This is modeled by

B (ν) =

Q∑
q=1

Aqτq

1 +
(
2πντq

)αq
+ W, (5)

which consists of a frequency-independent shot noise level W
and a level of frequency-dependent red noise. The frequency-
dependent noise is caused primarily by the stochastic variability
of the granulation on the stellar surface, and by the very low-
frequency noise from surface activity and instrumental effects
(Harvey et al. 1988). The power excess from these noise sources
is modeled using Q Harvey-like terms (see, e.g., Aigrain et al.
2004; Kallinger et al. 2014), which have a characteristic am-
plitude Aq, time-scale τq, and decay with increasing frequency
determined by the exponent αq. For most of the stars Q = 2
Harvey-like terms are sufficient, but for KIC 004914923 an ad-
ditional term (Q = 3) located at ∼1200 µHz is required to ad-
equately account for the background variation with frequency.

Similar noise terms are marginally visible in the residuals of the
other stars, but not to the same extent as for KIC 004914923.
We do not expect the omission of this term to influence the ro-
tation measurements for these stars. Karoff et al. (2013) suggest
that the source of this noise may be faculae on the stellar sur-
face, with variability on shorter timescales than the more clearly
visible granulation pattern at ∼100−400 µHz.

3.3. Representing the radial shear by a step function

It is currently not possible to obtain resolved estimates of Ω(r, θ)
for stars other than the Sun by inversion of the mode frequencies
(Lund et al. 2014; Schunker et al. 2016b). It is possible, how-
ever, to test how well the data can constrain an assumed model
rotation profile.

The solar rotation profile has a shear layer at the base of the
convection zone between the uniformly-rotating interior and the
convective envelope. While the rotational shear is both radial and
latitudinal in the Sun, in this paper we choose to constrain only
the radial shear, effectively averaging over the latitudinal com-
ponent of the differential rotation. We parameterize the angular
velocity profile of the five Sun-like stars under study by a simple
radial step function in the model fit

Ω (r) =

{
ΩI for 0 ≤ r < rcz
ΩE for rcz ≤ r ≤ R, (6)

where R and rcz are the radius of the star and the base of the con-
vection zone, respectively. Both R and rcz are determined from
stellar structure models in Nielsen et al. (2015). The two param-
eters ΩI and ΩE are the rotation rates of the radiative interior
and convective envelope, and a significant difference between
the two would indicate the presence of shear at the base of the
convection zone.

With this choice of rotation profile, Eq. (4) can be rewritten
as

νnlm = νnl + m
ΩI

2π

rcz∫
0

Knl(r)dr + m
ΩE

2π

R∫
rcz

Knl(r)dr, (7)

where the kernels Knl are functions of radius only. The ker-
nels depend on the unperturbed eigenfunctions and mass density
from the stellar structure model, which are computed prior to
the fit to the oscillation power spectrum. In Eq. (7) the only free
variables are therefore νln, ΩI, and ΩE.

The error on the stellar radius R is approximately 1%, and
is estimated to be at a similar level for the convection zone ra-
dius because of the high-quality data. Variations of this scale on
the radii are not expected to contribute significantly to the esti-
mate of the radial shear (Schunker et al. 2016a), and we there-
fore keep both radii fixed in the model fits. These values are
listed in Table 1.

Figure 2 shows the cumulative integral of the radial sensitiv-
ity kernel Knl(r) for the n = 17, l = 1 mode in KIC 006116048.
The dashed line marks the base of the convection zone at a ra-
dius of rcz = 0.757R, separating the convective envelope (shaded
red) and the radiative interior. We note that the integral of the
kernel is never exactly unity, due to the effect of the Coriolis
force (Ledoux 1951). The cumulative integral up to the base of
the convection zone reaches a value of ∼0.41, showing that the
oscillation modes are still moderately sensitive to rotation below
the convection zone.

Figure 1 shows the model fit to the power spectrum of
KIC 006116048. The perturbations to the mode frequencies are
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Fig. 2. Cumulative integral of the radial component of the rotation sen-
sitivity kernel of the n = 17, l = 1 mode in KIC 006116048. The shaded
area denotes the part of the integral which is sensitive to the envelope ro-
tation ΩE, while the unshaded part is sensitive to the interior rotation ΩI.
The dashed line denotes the radius of the base of the convection zone rcz
which separates the two parts of the star.

only visible on scales of a few µHz, as shown by the splitting
of the l = 2 mode in the inset. The posterior distributions of ΩE
and ΩI are shown in Fig. 3. The large widths of the posterior
density distributions of ΩE and ΩI indicate that the information
from the oscillation modes alone is not able to constrain the two
parameters, allowing a wide range of likely solutions for either.
However, it is clear that the two parameters are very strongly
anti-correlated. Therefore, if a prior is applied to one parameter
the other may also be constrained.

The results of the initial fits without priors are given in the
middle section of Table 1; all the stars show similar rotation rates
corresponding to ΩE ≈ ΩI within the 68% confidence interval.
An exception to this is KIC 004914923 where the best-fit values
suggest ΩI − ΩE = −8.84+5.59

−5.84 µHz. While the 95% confidence
interval (corresponding to 2σ) extends to encompass ΩE = ΩI
as for the other stars, it would appear that the most likely config-
uration for KIC 004914923 is the interior and envelope spinning
rapidly in opposite directions. However, this deviation is likely
caused by the strong anti-correlation between the inclination an-
gle and ΩE (and subsequent correlation with ΩI). To test this,
we fixed i to its 84th percentile value (see Table 1, middle sec-
tion) and re-sampled the posterior distributions of ΩE and ΩI.
We found that these solutions correspond to a configuration with
ΩE ≈ ΩI.

The fit to KIC 004914923 is different from the fit to the other
stars only in that it was necessary to fit a third Harvey-like back-
ground term, but otherwise the spectrum and model terms are
identical to the other stars. We searched for potential causes
of the deviation in the inclination angle by running a fit for
KIC 004914923 with only Q = 2 background terms as for the
other stars, using only the high signal-to-noise modes near the
center of the p-mode envelope, and adding additional marginally
visible modes at higher and lower frequencies. However, none of
these approaches produced a significantly different value of the
inclination angle. In addition, we note that the best-fit rotation
rates do not change appreciably whether the ` = 3 modes are
included in the model or not.

4. Limits on radial differential rotation

4.1. Adding a prior from surface rotation

In the following we assume that the rotation period, ΩS, from
surface variability provides a constraint on the rotation period
of the stellar envelope. In practice, we assume that the prior
on 2π/ΩE is Gaussian with a mean 2π/ΩS and standard devi-
ation σS, as defined in Sect. 2. The log-likelihood function that
must be maximized then becomes

L (Θ) = −

J∑
j=1

ln M
(
Θ, ν j

)
+

P j

M
(
Θ, ν j

) 
−

1
2σ2

S

(
2π
ΩE
−

2π
ΩS

)2

·

(8)

Figure 3 shows an example of the prior on ΩE in red for
KIC 006116048. Given the asteroseismic measurements, the
prior on ΩE provides a constraint on ΩI.

4.2. Constraints on the radial shear

Table 1 lists the best-fit values of ΩE and ΩI with and without
the application of a prior. Comparing ΩE before and after the use
of the prior, we find that ΩE matches ΩS to a high degree. This
means that the prior dominates the fit for ΩE, and the spectra
do not appear to contain any significant information to constrain
ΩE when ΩI is also a free parameter. Because of the strong cor-
relation between the two parameters, this constraint on ΩE also
reduces the range of likely values of ΩI. The median ΩI values
consistently fall close to those of ΩE for all the stars, with errors
between ∼0.08−0.36 µHz. This uncertainty stems from the rela-
tively low sensitivity to rotation of the modes in the interior, and
is the main contributor to the error on the radial shear.

The parameter of interest is the difference between the two
rotation rates, and are shown in the lower section of Table 1. The
median values of ΩE and ΩI with the prior included suggest that
the most likely configuration for all the stars is close to ΩE = ΩI,
corresponding to solid-body rotation. The error on ΩI − ΩE is
now on the order of <∼0.4 µHz (compared to >1 µHz without the
prior), indicating that shear values are typically very small and
likely do not exceed a few hundred nHz.

For comparison between the stars we also list the relative
differences between the envelope and interior rotation rates in
Table 1. Figure 4 shows the probability density distributions of
these relative differences after the application of the priors in the
fit. The distributions predominantly have median values close
to zero and are roughly symmetric (except KIC 005184732, see
below). The median of the 68% confidence interval for all the
stars range from −29% to +34%. Because of the near symmetry
it is not possible to infer which rotates faster in Sun-like stars,
the radiative interior or the convective envelope.

4.3. Special case of KIC 005184732

The posterior of ΩE for most of the stars is similar to the corre-
sponding prior distribution. However, for KIC 005184732 this is
not the case. The posterior density shows a second maximum at
ΩE/2π = 1.33+0.32

−0.24 µHz, separated by a low-likelihood region
from the location of the prior at ΩE/2π = 0.56 ± 0.01 µHz.
This local maximum gives rise to the bimodality indicated by
the red shaded region in Fig. 4 for KIC 005184732. The reason
for this is illustrated in Fig. 2 of Gizon & Solanki (2003), which
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Fig. 3. Correlation between the posterior density of ΩE (right) and ΩI (top) for KIC 006116048 before the application of a prior (in grayscale).
From the posteriors themselves it is clear that the two parameters are poorly constrained, with a standard deviation of several µHz in both cases.
The two parameters are, however, strongly anti-correlated. In the center frame the dashed black line indicates ΩE = ΩI. Dashed red denotes the
median of the ΩS probability density function, and the shaded bar corresponds to the 68% confidence interval. The full distribution of ΩS is shown
in the right panel, which is used as a prior to constrain ΩE.

shows that for inclinations of 60◦ to 70◦ the peak height of the
m = ±1 components are comparable to the m = ±2 components
of the l = 2 multiplet. This ambiguity in peak height gives rise
to a secondary maximum at close to twice the rotation rate of
the star since the azimuthal orders are separated approximately
by integer multiples of the rotation rate. Since KIC 005184732
has an inclination of ∼71◦ (see Table 1) this ambiguity is ex-
pected. The rotation rate is, however, also strongly constrained
by the l = 1 multiplet, which reduces the significance of this lo-
cal maximum. Because this maximum is considered an alias of
the true rotation rate, it is omitted when computing the results
for KIC 005184732 shown in Table 1.

This same feature is also visible for the other stars, but to
a much lesser extent. In these cases the separation between the
global and local maximum is much less clear. Since they do not
appear to contribute significantly to the estimation of ΩE and ΩI,
they are not removed.

5. Conclusion

We fit the oscillation spectra of five Sun-like stars in the Kepler
field, using a model of the stellar rotation profile with rotation
rates ΩI for the radiative interior and ΩE for the convective en-
velope, with a shear at the base of the convection zone.

The Kepler mission provides high-cadence, long-duration
observations with high photometric precision. However, using
the oscillation spectra alone it is not possible to constrain the
difference between the two parameters in the rotation mod-
els. The posterior distributions of ΩE and ΩI from the uncon-
strained fit span a wide range of rotation rates, up to several times
that estimated from surface variability. The unconstrained fit to
KIC 004914923 even produces a configuration of opposite sign
and rapid rotation for the interior and the envelope.

The interior and envelope rotation rates are strongly anti-
correlated, which stems from the fact that the weighted aver-
age of the rotation rates are very well constrained by the aster-
oseismic rotational splittings. By applying a tight prior to the
envelope rotation ΩE, we can obtain a constraint on the interior
rotation rate ΩI. The prior is given by the surface rotation rate
inferred from the photometric variability caused by surface ac-
tivity (Nielsen et al. 2015). Using all available measurements of
rotation to help constrain the interior differential rotation offers
a clear advantage. Such a prior assumes that the mean rotation
rate of the envelope matches that of the surface to within the un-
certainties, i.e., that latitudinal differential rotation is negligible.

Using a parametric fit with priors to the power spectra of
the five stars studied here, we were able to constrain the radial
differential rotation to an average range of −29% to +34% of the
surface rotation (see Table 1). This is consistent with a previous
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Fig. 4. Relative differences between the envelope and interior rotation rates for each of the stars in the analyzed sample. For KIC 005184732 the
red shaded part of the posterior denotes the values where ΩE is exceptionally high and so a likely alias of the real rotation rate (see Sect. 4.3). Solid
and dashed black vertical lines denote the median (16th and 84th percentiles of the distributions); for KIC 005184732 they apply only to the dark
shaded part of the posterior distribution.

study of Sun-like and F-type dwarfs by Benomar et al. (2015),
who found the likely range extending from −41% to +54% using
a different parameterization of the oscillation power spectrum.
While the average range that we find is also biased toward higher
values of ΩI relative to ΩE, KIC 010963065 shows the opposite
behavior. It is therefore not possible to unambiguously determine
the sign of the differential rotation based on our sample.

These measurements constrain the radial differential rotation
in our sample of Sun-like stars to less than a few hundred nHz.
For comparison, the radial differential rotation in the Sun is on
the order of 10 nHz (Schou et al. 1998). Measuring solar-like
differential rotation rates is not yet possible for other stars, even
with the high-quality data from the Kepler mission. Asteroseis-
mic rotation measurements of distant stars are limited by the rel-
atively low number of observable modes, and by the large width
of the modes relative to the small rotational frequency splitting
typical of most Sun-like stars. However, these measurements still
serve to eliminate a wide range of possible combinations of inter-
nal rotation rates, which would have implications for constrain-
ing dynamo models.

When applied to the measurement of differential rotation of
individual stars, the intrinsic limitations of asteroseismology will

likely not be overcome in the immediate future. An alternative
approach is to perform ensemble fits to a selection of stars of the
same type (e.g., Sun-like), thereby placing average limits on the
differential rotation rates of that sample (Schunker et al. 2016b).
Based on the limits of the radial differential rotation found in
this work (∼0.4 µHz), a reasonable sample size to average over
would be on the order of a few hundred stars, all with similar
properties such as age, surface gravity, effective temperature,
and rotation rate. This approach would require a large sample
of stars of each type, observed over a long period of time and
at high cadence. The Kepler sample only contains a few hun-
dred main-sequence stars observed with such criteria, spanning
a range of spectral types. However, with the future launch of the
ESA PLATO mission (Rauer et al. 2014) this sample will grow
to thousands of main-sequence stars.
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Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Deheuvels, S., Ballot, J., Beck, P. G., et al. 2015, A&A, 580, A96
Donati, J.-F., & Collier Cameron, A. 1997, MNRAS, 291, 1
Duvall, Jr., T. L., & Harvey, J. W. 1986, in NATO Advanced Science Institutes

(ASI) Series C 169, ed. D. O. Gough, 105

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,
306

Gizon, L., & Solanki, S. K. 2003, ApJ, 589, 1009
Hackman, T., Mantere, M. J., Lindborg, M., et al. 2012, A&A, 538, A126
Handberg, R., & Lund, M. N. 2014, MNRAS, 445, 2698
Harvey, J. W., Hill, F., Kennedy, J. R., Leibacher, J. W., & Livingston, W. C.

1988, Advances in Space Research, 8, 117
Jeffers, S. V., Petit, P., Marsden, S. C., et al. 2014, A&A, 569, A79
Kallinger, T., De Ridder, J., Hekker, S., et al. 2014, A&A, 570, A41
Karoff, C., Metcalfe, T. S., Chaplin, W. J., et al. 2013, MNRAS, 433, 3227
Ledoux, P. 1951, ApJ, 114, 373
Lehtinen, J., Jetsu, L., Hackman, T., Kajatkari, P., & Henry, G. W. 2016, A&A,

588, A38
Lund, M. N., Miesch, M. S., & Christensen-Dalsgaard, J. 2014, ApJ, 790, 121
McQuillan, A., Mazeh, T., & Aigrain, S. 2014, ApJS, 211, 24
Nielsen, M. B., Schunker, H., Gizon, L., & Ball, W. H. 2015, A&A, 582, A10
Rauer, H., Catala, C., Aerts, C., et al. 2014, Exp. Astron., 38, 249
Reiners, A., & Schmitt, J. H. M. M. 2003, A&A, 412, 813
Reinhold, T., & Reiners, A. 2013, A&A, 557, A11
Schou, J., Antia, H. M., Basu, S., et al. 1998, ApJ, 505, 390
Schunker, H., Schou, J., & Ball, W. H. 2016a, A&A, 586, A24
Schunker, H., Schou, J., Ball, W. H., Nielsen, M. B., & Gizon, L. 2016b, A&A,

586, A79
Semel, M. 1989, A&A, 225, 456
Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012, PASP, 124, 1000
Stahn, T. 2010, Ph.D. Thesis, Göttingen University, Germany
Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, PASP, 124, 985
Vogt, S. S., & Penrod, G. D. 1983, PASP, 95, 565
Woodard, M. F. 1984, Ph.D. Thesis, University of California, San Diego

A6, page 8 of 8

http://linker.aanda.org/10.1051/0004-6361/201730896/2
http://linker.aanda.org/10.1051/0004-6361/201730896/3
http://linker.aanda.org/10.1051/0004-6361/201730896/4
http://linker.aanda.org/10.1051/0004-6361/201730896/5
http://linker.aanda.org/10.1051/0004-6361/201730896/6
http://linker.aanda.org/10.1051/0004-6361/201730896/7
http://linker.aanda.org/10.1051/0004-6361/201730896/8
http://linker.aanda.org/10.1051/0004-6361/201730896/10
http://linker.aanda.org/10.1051/0004-6361/201730896/11
http://linker.aanda.org/10.1051/0004-6361/201730896/12
http://linker.aanda.org/10.1051/0004-6361/201730896/13
http://linker.aanda.org/10.1051/0004-6361/201730896/14
http://linker.aanda.org/10.1051/0004-6361/201730896/16
http://linker.aanda.org/10.1051/0004-6361/201730896/16
http://linker.aanda.org/10.1051/0004-6361/201730896/17
http://linker.aanda.org/10.1051/0004-6361/201730896/18
http://linker.aanda.org/10.1051/0004-6361/201730896/19
http://linker.aanda.org/10.1051/0004-6361/201730896/20
http://linker.aanda.org/10.1051/0004-6361/201730896/21
http://linker.aanda.org/10.1051/0004-6361/201730896/22
http://linker.aanda.org/10.1051/0004-6361/201730896/23
http://linker.aanda.org/10.1051/0004-6361/201730896/24
http://linker.aanda.org/10.1051/0004-6361/201730896/25
http://linker.aanda.org/10.1051/0004-6361/201730896/25
http://linker.aanda.org/10.1051/0004-6361/201730896/26
http://linker.aanda.org/10.1051/0004-6361/201730896/27
http://linker.aanda.org/10.1051/0004-6361/201730896/28
http://linker.aanda.org/10.1051/0004-6361/201730896/29
http://linker.aanda.org/10.1051/0004-6361/201730896/30
http://linker.aanda.org/10.1051/0004-6361/201730896/31
http://linker.aanda.org/10.1051/0004-6361/201730896/32
http://linker.aanda.org/10.1051/0004-6361/201730896/33
http://linker.aanda.org/10.1051/0004-6361/201730896/34
http://linker.aanda.org/10.1051/0004-6361/201730896/34
http://linker.aanda.org/10.1051/0004-6361/201730896/35
http://linker.aanda.org/10.1051/0004-6361/201730896/36
http://linker.aanda.org/10.1051/0004-6361/201730896/38
http://linker.aanda.org/10.1051/0004-6361/201730896/39

	Introduction
	Rotation from surface activity
	Rotation from asteroseismology
	Maximum likelihood estimation
	Power spectrum model
	Representing the radial shear by a step function

	Limits on radial differential rotation
	Adding a prior from surface rotation
	Constraints on the radial shear
	Special case of KIC005184732

	Conclusion
	References

