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ABSTRACT

Context. The inversion of ring fit parameters to obtain subsurface flow maps in ring-diagram analysis for eight years of SDO obser-
vations is computationally expensive, requiring ∼3200 CPU hours.
Aims. In this paper we apply machine-learning techniques to the inversion step of the ring diagram pipeline in order to speed up the
calculations. Specifically, we train a predictor for subsurface flows using the mode fit parameters and the previous inversion results to
replace future inversion requirements.
Methods. We utilize artificial neural networks (ANNs) as a supervised learning method for predicting the flows in 15◦ ring tiles.
We discuss each step of the proposed method to determine the optimal approach. In order to demonstrate that the machine-learning
results still contain the subtle signatures key to local helioseismic studies, we use the machine-learning results to study the recently
discovered solar equatorial Rossby waves.
Results. The ANN is computationally efficient, able to make future flow predictions of an entire Carrington rotation in a matter of
seconds, which is much faster than the current ∼31 CPU hours. Initial training of the networks requires ∼3 CPU hours. The trained
ANN can achieve a rms error equal to approximately half that reported for the velocity inversions, demonstrating the accuracy of
the machine learning (and perhaps the overestimation of the original errors from the ring-diagram pipeline). We find the signature
of equatorial Rossby waves in the machine-learning flows covering six years of data, demonstrating that small-amplitude signals are
maintained. The recovery of Rossby waves in the machine-learning flow maps can be achieved with only one Carrington rotation
(27.275 days) of training data.
Conclusions. We show that machine learning can be applied to and perform more efficiently than the current ring-diagram inversion.
The computation burden of the machine learning includes 3 CPU hours for initial training, then around 10−4 CPU hours for future
predictions.
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1. Motivation: Speeding up ring-diagram inversions

Local helioseismology seeks to image the subsurface flows uti-
lizing the complex wave field observed at the surface (see review
by Gizon & Birch 2005). The procedure of imaging the subsur-
face flow fields from the Dopplershift images of the surface is
summarized as follows: projection and tracking of large Dopp-
lergram times series, transformation into Fourier space, analysis
of perturbations in the acoustic power spectrum (local frequency
shifts), and inversions. The refinement of large data sets into
the significantly smaller flow maps is computationally expen-
sive, and has to be repeated for all future observations. The field
of machine learning seeks to develop data-driven models that,
given sufficient training samples, will predict future observa-
tions, without the need for the aforementioned procedure. With
over 20 years of space-based observations, the field of local
helioseismology now possesses large amounts of data that can
be utilized by machine-learning algorithms to improve existing
techniques, or find relationships previously unknown to the field.

The field of machine learning grew out of the work to build
artificial intelligence. The application of machine learning is
broad in both scientific research and industries that analyze “big

data”, with some impressive results (e.g., Pearson et al. 2018).
However, the field of local helioseismology has thus far not used
this technique, despite the advantages it could provide given
the large amounts of data available. However, some work has
been done on the use of deep learning for multi-height local cor-
relation tracking near intergranular lanes (Asensio Ramos et al.
2017).

A widely used technique in local helioseismology is ring-
diagram analysis (see Antia & Basu 2007, for detailed review).
First presented by Hill (1988), the ring diagram technique ana-
lyzes slices (at constant frequency ω) of the 3D power spectrum
P(ω, kx, ky) of an observed (tracked and projected) patch of the
solar surface D(t, x, y). The cross-section of the power spectrum
reveals rings corresponding to the acoustic normal modes of the
Sun ( f - and p-modes). In the absence of flows these rings are
symmetric in kx and ky. However, the presence of flows in the
zonal (x) or meridional (y) directions breaks symmetry of these
rings, manifesting as ellipsoids. Acoustic modes traveling with
or against the direction of flow experience increases or decreases
in travel time, resulting in changes to the phase speed. The fre-
quency shift of a ring is then considered as a horizontal average
of the flows within the observed patch. Each mode (ring) is then
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fit, and the mode-fit parameters Ux and Uy determined, reveal-
ing the “flow” required to produce the shifts in each mode (ring).
The true subsurface flow field is then considered as a linear com-
bination of the mode-fits. In order to determine the flow field, an
inversion is performed using the mode-fit parameters Ux and Uy

and the sensitivity kernels Kn`(z) that relate frequency shifts of
a mode of radial order n and harmonic degree ` to the horizontal
velocity components ux and uy at height z in the interior (by con-
vention, z is negative in the interior and zero at the photosphere):

Un`
x =

∫
ux(z)Kn`(z) dz, Un`

y =

∫
uy(z)Kn`(z) dz, (1)

where Kn` is derived from solar models. The solution to the lin-
ear inversion is then a combination of the mode fits and coeffi-
cients cn` that give maximum sensitivity at a target height zt,

ux(zt) =
∑
n,l

cn`(zt) Un`
x , uy(zt) =

∑
n,l

cn`(zt) Un`
y . (2)

The ring-diagram pipelines that derive these coefficients
(Bogart et al. 2011a,b) are computationally expensive, requiring
16 s per tile or ∼3200 CPU hours for the entire SDO data set.

Our endeavor is to use the large data sets available in the
pipeline to improve the ring diagram procedure by using deep
networks. Specifically, we seek (through machine learning) to
determine the complex mapping from the raw Doppler time
series to the flows. In this study we present initial results in per-
forming the inversion without the need for any inversions or ker-
nels, using machine-learning techniques.

In Sect. 2 we present the data to be used and the proposed
machine-learning technique. Section 3 examines the perfor-
mance of the proposed method with a number of machine-
learning techniques in both accuracy and computational burden.
Section 4 examines a case study of the effect of machine learn-
ing on equatorial Rossby waves. Discussions and conclusions
are given in Sect. 5.

2. Proposed method

Machine-learning studies can be divided into two branches,
unsupervised and supervised learning. This study will be of the
latter kind, in which we know the flow corresponding to the
mode fits (from the current pipeline) and thus train an estima-
tor to predict flow values given a new set of mode fits. While no
study has directly examined the accuracy of ring-diagram anal-
ysis, the results of a number of studies have remained consis-
tent with other measurement techniques (e.g., Giles et al. 1997;
Schou & Bogart 1998). It is possible that the existing pipeline
has systematic errors that affect the inversion results. Any super-
vised learning method will inherit these problems, as this is the
weakness of data-driven models. If problems were found and
resolved in the pipeline, any trained machine-learning models
would have to be retrained for the correct flows, although this
will not invalidate the results of this study. The proposed super-
vised method of this study comprises two main components:
preprocessing and applying artificial neural networks (ANN) for
regression, both of which are described in detail in the following
sections.

For clarity in the terminology used here, we define the fol-
lowing. Input data consist of a large number Nobs of tiles, each
with a number of mode-fits/features Nfeatures identified in the ring
pipeline. The output data consist of Nobs flow values, correspond-
ing to each input tile, for 31 depths.

Fig. 1. Mode coverage of each uniquely identified [n, `] mode in the
mode-fits pipeline from CR2097 to CR2201. The modes highlighted
with blue appear in more than 90% of the tiles and therefore are used in
this study. All other modes are neglected.

2.1. Extraction of features from the pipeline

The ring-diagram pipeline (Bogart et al. 2011a,b) developed for
use on the high-resolution, high-cadence data of the Helioseis-
mic and Magnetic Imager (HMI, Schou et al. 2012) has provided
unprecedented analysis of the subsurface flows of the Sun. The
data for each step in the pipeline are available on the NetDRMS1

database, and for this study we use the mode fits Ux and Uy and
the inverted flows ux and uy. Due to the statistical nature of the
machine learning, we ignore the derived error values of the fits in
the training. However, in Sect. 3.2 we show the effect realization
noise has on the machine-learning predictions.

The SDO program has been running since 2010, and has
observed over 100 Carrington rotations (CRs). For this study we
make use of the data from CR2097 to CR2201, which covers
eight years. Each CR consists of a maximum of 6816 tiles, but
some rotations have less coverage. In total, over the 104 rota-
tions, there are 709 734 inversion results available in the pipeline.
Additionally, we focus this study on the 15◦ maps, which upon
inversion probe depths down to 20.88 Mm below the photo-
sphere.

Each tile has a number of mode fits that have been detected
by the pipeline. From tile to tile the presence of these modes can
vary; sometimes detected, other times overlooked. For this study
each unique mode, with radial order n and harmonic degree `,
is considered an independent feature. The presence of a single
mode in all tiles is called the mode coverage. In order to avoid
bias from missing modes, we reduce the number of features by
applying strict mode coverage requirements. Specifically, for a
single mode, if it is detected in less than 90% of the tiles then
it is neglected. This significantly reduces the number of features
in the machine learning, and minimizes any bias (to zero) we
have from missing data. Upon application of this mode-coverage
requirement, 152 separate modes remain. Figure 1 shows the
mode coverage for all modes detected in the pipeline, as well
as the modes selected for this machine-learning study.

In summary, the dataset (for each horizontal component x
and y of the flow) consists of 709 734 tiles (samples) with 152
features (modes) each specifying the frequency shifts of acoustic
waves due to flows. The corresponding target consists of 709 734

1 http://jsoc.stanford.edu/netdrms/
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flow vectors for each of the 30 depths from a depth of 0.696 Mm
to 20.88 Mm.

2.2. Preprocessing of input features

The goal of preprocessing the input features is to produce more
effective features which show high contrasts. Typically, this
involves three steps: interpolation to fill missing data, normaliza-
tion of the input features, and reduction of the number of input
features.

Previously, we neglected modes that appeared in less than
90% of the tiles. However, many of the tiles still do not have
complete mode coverage. The problem of how to handle miss-
ing data is well known in machine learning. In statistics and
machine-learning literature, the replacement of missing data is
known as data imputation. A number of solutions exist for com-
pleting the data set (e.g., Little & Rubin 1987). However, for this
study we use the simple solution of replacing the missing values
by the mean of the mode.

The next stage is the normalization of each feature, which
brings all features into a similar dynamic range. The need for
this is driven by the fact that many machine-learning techniques
will be dominated by features with a large range, while nar-
row ranged features can be ignored. To avoid this, normaliza-
tion of each feature is performed in order to bring all features
into the same range, and thus remove any preference for a spe-
cific feature. There are a number of different approaches that can
be taken to achieve this (e.g., minimum-maximum feature scal-
ing, standard score, student’s t-statistic and studentized residual),
and we recommend the reader to read Juszczak et al. (2002) for
an in-depth explanation of each approach. For this study we use
standard score. The transformation of a vector of frequency-shift
measurements X to the new normalized feature X̃i of observation
i is as follows:

X̃i =
Xi − µ
σ

, (3)

where µ is the mean of the elements of X and σ the standard
deviation. The new features X̃ will have a zero mean with unit
variance.

The final step in the preprocessing of this study is reduction
of the 152 features (modes) to a smaller number, in order to ease
computational burden.

Typically, the processing of features is done through either
feature selection, that is, choosing only a subsample of modes,
or feature reduction, where new feature space is generated from
original modes (see Alpaydin 2010, Chap. 6). By limiting our
study to those 152 features with sufficient mode coverage, we
have already performed feature selection. However, the remain-
ing number of modes is still quite high and we seek to further
reduce this through feature reduction. Here, feature reduc-
tion is achieved through Canonical Correlation Analysis (CCA;
Hotelling 1936; Hardoon et al. 2004).

The CCA seeks linear combinations of the input data X and
output data Y (flow velocities), which have a maximum correla-
tion with each other. Specifically, we seek Canonical Correlation
Vectors ai and bi that maximize the correlation
ρ(ai, bi) = Corr(aT

i X, bT
i Y). (4)

Following the method outlined by Härdle & Simar (2007), it can
be shown that ai and bi are related to the covariance matrices
ΣXX = Cov(X, X) and ΣYY = Cov(Y,Y) through

ai = Σ
−1/2
XX Ui,

bi = Σ
−1/2
YY Vi,

(5)

where Ui and Vi are the ith left and right singular vectors from
the following singular value decomposition (SVD):

SVD
(
Σ
−1/2
XX ΣXYΣ

−1/2
YY

)
= [· · ·Ui · · · ]Λ[· · ·V j · · · ]T , (6)

with Λ the diagonal matrix of singular values and ΣXY =
Cov(X,Y). It remains to be determined how many Canonical cor-
relation vectors are required to capture the relationship between
X and Y . In Sect. 3.2 we show that upon application of CCA the
number of features in the input data reduces from 152 to 1, for
each depth and flow component.

Figure 2a shows the coefficients of the modes for feature
reduction, computed through CCA for two target depths. Over
plotting the phase speed corresponding to modes with a lower
turning point at the target depth shows that the CCA gives more
weight to modes that are sensitive to horizontal flows at the tar-
get depth. Thus, while we have reduced the 152 features to 1
(for each depth and flow component) the sensitivity to horizon-
tal flows at the target depth is maintained.

Figure 2b compares the averaging kernel computed for tile
hmi.rdVtrack_fd15[2196][240][240][0][0] with one built with
the coefficients derived through the CCA. While the CCA finds
the coefficients that maximize the correlations between mode-fits
and flows for all tiles, the results show that the kernels compare
reasonably well (despite no prior requirement on depth local-
ization). We note that the CCA kernels are more sensitive to the
surface for deep zt, indicating that the CCA may find some depth
correlations. The exact correlation of flows with depth is beyond
the scope of this study, but is worth future investigation.

A schematic of the entire preprocessing pipeline is shown in
Fig. 3.

2.3. Neural networks

The ANN is one of the most common supervised machine learn-
ing methods and has been described in a wide range of literature
(e.g., Hand et al. 2001; Haykin 2009; Bishop 2006). While many
other methods exist in machine learning, we have found that the
ANN performs best for this study (see Sect. 3.2), and therefore
we explain here the ANNs that we use in detail. For an overview
of other methods, see Alpaydin (2010). One advantage of the
ANN is that it can solve nonlinear problems, which arise in this
study due to different mode sets used in the inversion of each tile
(dependent on noise and disk position etc.), which directly feed
into the inversion results.

In this work a Multi-Layer Perceptron (MLP) neural network
(e.g., Haykin 1998) is used (see Fig. 4 for example). This class
of ANN is known as a feed-forward ANN, where each layer con-
sists of multiple neurons (or activation functions) acting as fun-
damental computation units. Connectivity is unidirectional from
neurons in one layer to neurons in the next layer such that the
outputs of a neuron in a layer serve as input to neurons in the
following layer. The degree to which each neuron is activated is
specified by the weight of the neuron.

The MLP uses supervised learning in order to determine
the correct weights for each neuron. This algorithm proceeds
in two phases: forward and backward propagation. The network
is initialized with random values for the weights. The forward
propagation then runs the input through the network, generating
outputs based on the initial layer weights. In the backward prop-
agation (BP), the errors between the ANN outputs and actual val-
ues (flows) are computed. Using this error, the weights of each
activation function are then updated (through stochastic gradient
descent) in order to minimize the output errors. The BP algo-
rithm is performed in mini-batches (200 samples) of the total
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(a) (b)

Fig. 2. Panel a: coefficients computed using cross-correlation analysis for ux (left panel) and uy (right panel) to reduce the 152 unique modes to
a single feature for each depth and flow component. Here we show the coefficients for two depths, 20.88 Mm (top panel) and 0.696 Mm (bottom
panel). The CCA computes the ideal weights for the original data, given correlations with the output flows at a single depth. The phase speed
corresponding to lower turning points at the target depth is also shown (green line). Modes close to this phase speed are given greater weight by
the CCA. Panel b: averaging kernel built using the inversion pipeline (orange dashed) for a single tile, and an equivalent kernel built using the
CCA coefficients derived using all tiles (blue line).

Ux or Uy
(mode fits)

Mode
Selection

≥ 90% coverage

Imputation

Mean Filling

Feature
Scaling

Standardization

Feature
Reduction

CCA (1 depth)

X̃(zt)
(Reduced mode-fits)

Fig. 3. Preprocessing pipeline proposed by this study for preparing the mode fit parameters for the machine learning. The pipeline must be
performed for both Ux and Uy, while the CCA must be performed for each depth. The output X̃(zt) is then the input for the ANN (Fig. 4).

dataset, with several passes over the entire set until convergence
is achieved. Unlike classic stochastic gradient descent which
updates the weights after every sample pass through the ANN,
mini-batches settle on the minimum better because they are less
subjected to noise. On average, each iteration will improve the
weights, minimizing the difference between the predicted output
and pipeline output.

The specific algorithm for the forward and backward prop-
agation is as follows. For ring-diagram tile (sample) k in mini-
batch n, yl

j,k(n) is the output of neuron j in the layer l (which
consists of ml neurons) and wl

ji(n) ∈ R is the weight applied
to the output of neuron i in the previous layer l − 1 fed
into neuron j in layer l. The previous layer (l − 1) consists
of ml−1 neurons. In the forward propagation, the weights are
fixed and the outputs are computed on a neuron-by-neuron
basis:

yl
j,k(n) = ϕ(υl

j,k(n)), (7)

where

υl
j,k(n) := bl

j(n) +

ml∑
i=1

wl
ji(n)yl−1

i,k (n), (8)

and the function ϕ refers to the activation function and bl
j(n) is

the bias. In this work, the activation function in the hidden layers

is the Rectifier Linear Unit (ReLU) function while the identity
function is used for the output layer

ϕ(υl
j,k(n)) =

{
max(0, υl

j,k(n)) l = hidden,
υl

j,k(n) l = output. (9)

Our choice in the ReLU function for the hidden layers is due
to its improved convergence over other activation functions and
the fact that it suffers less from the vanishing gradient problem
(Glorot et al. 2011).

For tile k, the output of the network is denoted by

ŷk(n) = youtput
1,k (n), (10)

where for this study we have a different network for each depth
(due to CCA, Sect. 2), and hence only one neuron in the output
layer.

In order for the ANN to compute precise solutions, the
weights need to be updated iteratively such that the following
cost function is minimized.

J(w(n), b(n)) =
1
2

Ntitle∑
k=1

(yk − ŷk(n))2 , (11)

where yk is the data from the pipeline for tile k (and for a given
depth) and ŷk(n) is the output of the ANN for mini-batch n. For
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...

X̃(zt)

H1
1

H1
2

H1
M

ŷ(zt)

Input
layer

Hidden
layer

Output
layer

Fig. 4. General structure of the Multi-layer Perceptron. The input layer
consists of 1 passive node, which is the output of the preprocessing
pipeline, which relays the values directly to the hidden layer. The hidden
layers H1 consist of M nonlinear active neurons that modify their input
values and produce a signal to be fed into the next layer. The output
layer then transforms its input values (from the hidden layer) into the
flow values at target height zt.

the first iteration (mini-batch), the weights are chosen randomly.
The weights are then updated through back-propagation to min-
imize J .

In back-propagation, the layer weight wl
ji(n) is adjusted on

a layer-by-layer basis, from the output layer to the first hid-
den layer. These updates occur for each iteration (mini-batch)
n, for several passes through all the training data. Each mini-
batch consists a number K(n) of tiles. In this work the update
of the weights and biases is achieved through stochastic gradient
decent:

wl
ji(n + 1) = wl

ji(n) − η ∂J
∂wl

ji(n)
,

bl
j(n + 1) = bl

j(n) − η ∂J
∂bl

j(n)
,

(12)

where η is the learning rate which governs how much the weights
are changed at each iteration with respect to the cost function.
Here the partial derivatives, or intuitively the response of the cost
function to changes in a specific weight or bias, are computed
through

∂J
∂wl

ji(n)
=

1
K(n)

K(n)∑
k=1

δl
j,k(n)yl−1

i,k (n),

∂J
∂bl

j(n)
=

1
K(n)

K(n)∑
k=1

δl
j,k(n),

(13)

where δl
j,k(n) is the error of neuron j in layer l for tile k in mini-

batch n. In order to determine δl
j,k(n), one has to know the error

of the proceeding neurons. Hence in order to determine all δ, the
error of the output neuron is computed first:

δ
output
j,k (n) = yk − ŷk(n). (14)

δl
j,k

yk − ŷk(n)
ϕ′(υl

j,k(n))

(a)

δl
j,k Σ

...

δl+1
1,k

δl+1
2,k

δl+1
ml+1,k

ϕ′(υl
j,k(n))

wl+1
1 j

wl+1
2 j

wl+1
ml+1 j

(b)

Fig. 5. Schematics of the Back-Propagation process, where the error of
each neuron δ is computed first from the error in the output layer (panel
a), through all the hidden layers (panel b). The weights and bias are
updated accordingly. Panel a: schematic of how the error is computed
for the output neuron (Eq. (14)). We note that in this study we use the
identity function for the activation function of the output, ϕ′(υl

j(n)) = 1.
Panel b: schematic of how the error of neuron j in hidden layer l is
computed from the error of the ml+1 neurons in layer l + 1 (Eq. (15)).

The errors of the ml neurons in layer l are then computed from
those ml+1 neurons in layer l + 1, through

δl
j,k(n) = ϕ′(υl

j,k(n))
ml+1∑
q=1

δl+1
q,k (n)wl+1

q j (n), (15)

where ϕ′ is the derivative of the activation function.
Figure 5 shows a diagram of the Back-Propagation process

in the both the hidden and output layers.
After updating the layer weights in the backward propaga-

tion, the next mini-batch is used in forward- and back propa-
gation to further minimize the cost function. This is repeated
(numerous times through the whole data set) until the maximum
allowed number of iterations is reached, or an early stopping cri-
terion is met. The convergence rate of the ANN weights is gov-
erned by the learning rate η, which must be chosen such that the
weights converge in a reasonable number of iterations while still
finding the global minimum of the cost function. Typically, the
determination of η is done experimentally, by slowly increasing
η until the loss starts to increase. For this study we find (through
a grid search) η = 0.001 to be a reasonable learning rate.

In practice a regularization term α
∑

w2 is included in
Eq. (11) to penalize complex models that may result in over-
fitting. Here we have set α to 0.001.

3. Performance

In the previous section, the ANN predicts flows from the mode
shifts given by the ring-diagram pipeline. Here, the performance
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of the proposed method is shown and compared to alternative
approaches. In this study we use the software packages Python
3.5.4 and scikit-learn 0.19.1 (Pedregosa et al. 2011), which are
freely available.

3.1. Experimental metrics and setup

The evaluation metric for this problem will be the root mean
square error (RMSE),

RMSE =

√√√
1

Ntile − 1

Ntile∑
k=1

(yk − ŷk)2, (16)

where yk is the flow for tile k from the ring-diagram pipeline
and ŷk the predicted flow from the machine learning. For this
study the RMSE of each depth will be computed and compared
to the mean of the pipeline inversion error. The success of an
estimator is then measured by comparing the size of the error of
the prediction to that of the inverted flow.

In order to verify that the proposed method (preprocessing
and ANN) has the ideal performance when compared to other
existing methods, an additional evaluation metric is introduced;
the computational time (CPU time). As stated previously, the
goal of this study is to improve upon the current pipeline, pri-
marily in reducing the computational burden. As such, each step
in preprocessing and the chosen ANN architecture will be com-
pared to other methods/architectures in order to demonstrate
both the computational burden and accuracy of the proposed
method. We note that a large selection of methods exist and a
comparison of them all is beyond the scope of this paper. Here
we compare to the most common methods.

To avoid overfitting when training supervised methods, the
dataset is split randomly into training and testing subsets, in a
manner known as k-fold cross-validation (e.g., Mosteller et al.
1968). k-fold cross validation splits the data into k sets, each
roughly equal in size. The training is then used on k − 1 sub-
sets and testing (using an evaluation metric) is performed on
the remaining subset. This process is applied k times, shifting
the testing segment through all of the segments. In doing so the
entire data set is used for training and, in turn, prediction. With
each sample in the entire set being used for validation at one
time through this process, we can then measure the performance
metric of the prediction by averaging the entire set. For this study
we use ten-fold cross-validation on the flow data to obtain a com-
plete set of predicted values. These predicted values are subse-
quently compared with the actual values to obtain the evaluation
metric (RMSE) mentioned above.

3.2. Experimental analysis

In this section we present the results of each step in the proposed
method, using the aforementioned evaluation metrics (compu-
tational time and RMSE). For clarity and brevity, we show the
comparison results only for a depth of 10.44 Mm. However, the
results are consistent with other depths. In order to assess each
step in preprocessing, a basic ANN architecture is chosen. The
network consists of one layer with ten neurons. In order to assess
each step in the preprocessing, the proposed method of Sect. 2
is used with only the chosen step being varied. The CPU time
and rms error of the machine learning is determined from the
application of ten-fold cross-validation upon the entire data set
(709 734 tiles).

Table 1. Comparison between methods for the completion of missing
data.

Method CPU Time (s) Flow RMSE (m s−1)

ux uy ux uy
Mean 2 2 8.6 7.3
Median 28 63 8.6 7.3
Most-Frequent 31 860 87 963 8.9 7.4

Notes. The bold row is the proposed method.

Table 2. Comparison of performance for different methods of normal-
ization.

Method CPU Time (s) Flow RMSE (m s−1)

ux uy ux uy
MM-01 3 3 8.6 7.3
MM-11 3 4 8.6 7.3
MA 5 3 8.6 7.3
SS 4 4 8.6 7.3

Notes. The bold row is the proposed method.

Table 3. Comparison of the performance of different feature selec-
tion/reduction methods.

Method CPU Time (s) Flow RMSE (m s−1)

ux uy ux uy
Kbest 6 3 13.41 11.05
ET 44 44 13.85 8.58
DT 234 242 13.94 8.26
CCA-1 14 12 8.61 7.29
CCA-2 14 14 8.61 7.29
PLS 9 11 13.06 10.55

Notes. The bold row is the proposed method.

3.2.1. Data imputation

Table 1 compares the different methods used to replace the miss-
ing data in the mode-fit parameters. In terms of computational
gain, it is clear that the mean completion is ideal (2 CPU sec-
onds).

3.2.2. Normalization

Table 2 shows the performance of four different normalization
methods, namely, the feature scaling e.g., Minimum-Maximum
scaled from 0 to 1 (MM-01) or −1 to 1 (MM-11), Maxi-
mum Absolute (MA), and the standardization scaling (SS). The
computational burden for each step is rather small, with little
difference between them. The same is also true for the RMSE,
showing that the choice in normalization is arbitrary for the pro-
posed method.

3.2.3. Feature selection/reduction

Table 3 shows the results of applying different feature-
reduction methods. The proposed CCA reduction is compared
with different feature selection/reduction methods: selecting
K best features using f -score (Hand et al. 2001), applying
tree-based methods such as Decision Trees (Hand et al. 2001;
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Table 4. Comparison between supervised machine-learning methods
with the same preprocessing.

ML Training and prediction time RMSE (m s−1)

ux uy ux uy
Lin <1 <1 8.8 7.3
Bay <1 <1 8.8 7.3
DT 19 20 8.8 7.4
ET 2 2 8.7 7.3
RF 39 42 10.5 9.0
GTB 274 154 8.6 7.3
KNN 50 35 9.0 7.7
NN 170 169 8.6 7.3
SVR 61 441 47 555 8.5 7.3

Notes. The bold row is the proposed method.

Rokach & Maimon 2014) or Ensemble Trees (Geurts et al.
2006), and Partial Least Squares (Hastie et al. 2001). The com-
putational times show that our chosen method (CCA) is not the
fastest, but when comparing the RMSE it out performs the other
feature methods. Interestingly, using only a one-component vec-
tor achieves good accuracy, and increasing to two component
vectors does not improve the result.

3.2.4. Neural networks

The results thus far have focused on the preprocessing steps of
the proposed method. We now focus on the performance of a
number of machine-learning techniques and network architec-
tures and compare them to the neural network proposed in this
study.

Table 4 compares different supervised machine-learning
methods after applying data completion, normalization, and fea-
ture reduction. The methods examined are Linear Regression,
Bayesian Regression (Hastie et al. 2001; Bishop 2006), Deci-
sion Tree (Hand et al. 2001; Rokach & Maimon 2014), Ensem-
ble Tree (Geurts et al. 2006), Random Forest (Breiman 2001),
Gradient Tree Boosting (Friedman 2000), K-Nearest Neigh-
bor (Hastie et al. 2001), and Support Vector Regression (Bishop
2006; Haykin 2009). The computation time for each method
scales with the complexity of the model from the Linear model
(<1 s) to Support Vector Regression (∼50 000 s). While the pro-
posed ANN takes 200−400 s for training and predicting, this
is still significantly small compared to the current burden of the
pipeline. A comparison of the accuracy shows that the ANN pre-
sented in this paper is among the methods showing the best perfor-
mance, with an RMSE of 8.6 m s−1 for ux and 7.3 m s−1 for uy.

The above results show that the ANN performs best for the
ring-diagram inversions. However, ideal results depend upon the
architecture of the ANN, specifically, what number of layers and
neurons gives the best results for the ANN. Table 5 shows the
performance of the ANN with different numbers of hidden lay-
ers. The results show that best performance is obtained with just
one hidden layer. The addition of extra layers increases computa-
tional burden due to the increase in the complexity of the model.
In terms of how many neurons are required per layer, we have
found through experimentation that the RMSE does not improve
with more than 10 units.

3.2.5. RMSE of the model versus depth

The results thus far have been shown for one depth (10.44 Mm);
Fig. 6 shows the differences between mean inversion error and

Table 5. Comparison of ANN performance for different numbers of
hidden layers, with 10 neurons in each layer.

No. of layers CPU Time (s) Flow RMSE (m s−1)

ux uy ux uy
1 170 169 8.59 7.29
2 360 194 8.59 7.29
3 342 330 8.59 7.30
4 427 439 8.61 7.30
5 3099 1695 8.62 7.30

Notes. The bold row is the proposed method.

Fig. 6. Comparison of the pipeline inversion error (black lines) and
machine-learning error (RMSE, red lines), for ux (solid) and uy (dashed)
for all depths below the surface. The green lines are the standard devi-
ation of the prediction values after noise realizations are added to the
mode fits.

the RMSE of the ANN for all depths below the photosphere.
We have ignored the results at zt = 0 Mm (photosphere) due
to inconsistency in the inverted flows in the HMI pipeline. The
results of Fig. 6 show that the proposed ANN of this study
achieves a RMSE that is generally below the inversion errors
reported in the pipeline. While the errors are not directly compa-
rable, the results provide confidence in the results of the machine
learning. Additionally, while the errors reported in the pipeline
are similar for ux and uy, there is a difference in the machine-
learning errors. This is due to errors in the machine learning
resulting from different variances in ux and uy with the former
having larger variance than the latter. This variance leads to a
more difficult fit for the model, and thus higher error. Addition-
ally, the machine learning may have difficulties fitting ux due to
systematics in the patch tracking in the x direction.

3.2.6. Effect of realization noise

So far, we have used only the mode fits in predicting the flow val-
ues. However, the determination of these mode fits is not exact
and hence the effect of mode-fit error on the machine-learning
model must be considered. In order to examine the propagation
of errors we take CR 2107-2201 and build the ANN described
previously. The mode fits of the remaining ten rotations are then
perturbed by a realization of the errors. Predictions are then
made with the new noisy data. This process is repeated 1000
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Fig. 7. Model error (RMSE) between an ANN trained with the complete
105 CRs and one trained with a subset (using k-fold cross-validation).
The errors converge for both ux (solid) and uy (dashed) as the subsample
size approaches the full sample size. Here we only show the results for
depths of 20.88 Mm (blue), 10.44 Mm (green), and 0.696 Mm (orange).

times and the deviation is computed. Figure 6 shows the aver-
aged deviation as a function of depth given the noisy data. For
ux the errors are of the order of the inversion pipeline, while the
uy are less. This result is not unexpected. The ANN was trained
to find a particular relationship between the mode fits and the
flows across the disk. By adding errors to the data, these errors
propagate through the model, producing a deviation in the pre-
dictions higher then the RMSE of the model. The fact that the
deviations are not significantly greater than those reported in the
pipeline is a good indicator of the robustness of the model to
errors.

3.2.7. RMSE of the model versus number of samples

We conclude this section by addressing the question of how
many samples are needed for an accurate ANN. In the field of
machine learning, the answer to the common question of how to
get a better model is: more data. Thus, we compute the model
error (RMSE) between a model that is trained with the complete
105 CRs, and those trained with only a subset. Again we use
ten-fold cross-validation in prediction. Figure 7 shows the con-
vergence of models trained with increasing subset size to that
trained with the full data set. The results show that with just
a small subset of around 1–10 CRs (∼6000–60 000 Tiles) the
difference in model error between the predictions of an ANN
trained with the 105 CRs and those of an ANN trained with
a subset is below 4 m s−1 for the three depths examined. The
results also show that uy converge slower than ux. to that of
the full set Increasing the sample size used in training slowly
improves the model with each additional tile.

4. Case study: equatorial Rossby waves

In fitting any model to a vast amount of data, there is a possibility
that the subtle helioseismic features in each tile are removed or
altered. Figure 8 shows the pipeline and machine-learning flows
for both components of the flow, and the difference between
them. Close examination shows that while the general structure
is nearly identical, some small features present in the pipeline

Fig. 8. Comparison of the flow maps for ux (left panel) and uy (right
panel) between the pipeline (top panel) and machine learning (middle
panel), and the difference between them (bottom panel, scaled by factor
10) at a target depth of 0.696 Mm. The maps are generated from a time
average over the CR 2100. The predicted values were obtained from an
ANN trained using CR 2107-2201.

flows are not present in the machine learning (e.g., at longitude
and latitude 280◦ and 40◦, respectively). While these features
appear as artifacts to the keen observer, they raises the ques-
tion of whether the machine-learning model (in an effort to fit
a model) overlooks helioseismic signatures seen after averag-
ing over long timescales. To explore this possibility, we examine
equatorial Rossby waves in the same manner as Löptien et al.
(2018), but with the predicted flows.

Löptien et al. (2018) recently reported the unambiguous
detection of retrograde-propagating vorticity waves in the near-
surface layers of the Sun. These waves exhibit the dispersion
relation of sectoral Rossby waves. Solar Rossby waves have long
periods of several months with amplitudes of a few meters per
second, making them difficult to detect without averaging large
amounts of data. To detect these Rossby waves in both the raw
data and the machine-learning data, we follow the technique of
Löptien et al. (2018), specifically:
1. Flow tiles (ux, uy) are sorted into cubes of Latitude, Stoney-

Hurst Longitude and time.
2. The one-year frequency signal (B-angle) is removed.
3. Missing data on the disk are interpolated in both time and

latitude.
4. Data exceeding a distance of 65◦ from disk center are

neglected.
5. The data are remapped into a reference frame that rotates at

the equatorial rotation rate (453.1 nHz) and are then trans-
formed back to a Carrington longitude grid.

6. The longitude mean is subtracted.
7. The vorticity is computed.
8. Spherical harmonic transforms (with m = `) and temporal

Fourier transforms are applied to produce a power spectrum.
We apply this procedure to the flow maps at depths of 0.696 Mm
and 20.88 Mm.
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Fig. 9. Comparison of the Rossby wave power spectrum computed from
∼6 years (CR 2089-2201) of pipeline data (left panel) and from the
machine learning (right panel) for a depth of 0.696 Mm. The machine
learning method was trained using 10 Carrington rotations (CR 2079-
2088). The red line is the dispersion relation ω = −2Ωref/(m + 1) of
sectoral Rossby waves, measured in a frame rotating at the equatorial
rotation rate Ωref = 453.1 nHz.

In order to examine if Rossby waves are still present in the
machine learning we take the results from the ANN model out-
lined in the previous sections for CR 2097-2181. The Rossby
wave procedure outlined above was then followed using these
new maps. Figure 9 compares the Rossby wave power spectrum
from the pipeline flows and the machine learning, computed at
a depth of 0.696 Mm. Upon visual inspection they appear to
be very similar, validating the ability of the machine-learning
method to recover the presence of Rossby waves. Addition-
ally, Fig. 10 shows slices of the power spectrum for different
azimuthal order m, for the proposed method trained with 1, 10,
and 20 CRs (from the unused CR 2182-2201). The results show
that using as small a sample as 1 CR (∼6800 tiles) to train the
machine-learning model can produce a model that captures the
Rossby wave power spectrum reasonably well.

5. Conclusion

Local helioseismology has provided vast amounts of raw
observed data for the Sun, but despite 50 years of observations
and analysis, we still have no consistent and complete picture of
its internal structure. The computational field of machine learn-
ing and artificial intelligence has grown in both usage and capa-
bility in the last few decades, and has shown promise in other
fields in ways that could be extended to local heliseismology.

In this study we have shown that machine learning pro-
vides an alternative to computationally expensive methodolo-
gies. We have also shown that in using the data of 8 years of
HMI observations, we can use an ANN model to predict future
flow data with an RMSE that is well below that of the observa-
tions, while maintaining the flow components of interest to local
helioseismology. Additionally, we find that the propagation of
noise realization results in a deviation of the flow values of the
order of the pipeline errors. The computational burden was pre-
viously 31 CPU hours for 1 CR of data. With a trained ANN
the computational cost is now 10−3 CPU hours. While we have
focused our efforts on obtaining an accurate ANN model, the
results of Sect. 3 show that any number of common architectures

Fig. 10. Comparison of sectoral power spectra at a depth of 20.88 Mm
for the Rossby waves with azimuthal orders m = 4 and m = 12.
The results include the HMI observations (blue) and machine learning
trained using 1 (CR 2079) and 10 (CR 2079-2088) CRs (red and green,
respectively). For each m, the power spectrum frequency (ν) is centered
on the Rossby wave frequencies (νm) reported by Löptien et al. (2018).

or preprocessing can obtain a reasonable model for future pre-
dictions. Nevertheless, nonlinear models (such as the proposed
ANN here) can capture some of the nonlinearity (e.g., noise or
missing modes) that occurs between all tiles across the disk.

Here we have only shown the computational efficiency gain
achieved by the application of machine learning, but future
improvements can be made. The method presented here is purely
data driven, without introducing a priori constraints. Recent
studies (e.g., Raissi et al. 2017a,b) have shown that physics
informed neural networks can be built that are capable of enforc-
ing physical laws (e.g., mass conservation) when determining
the machine-learning model. While the constraint of physical
laws is beyond the scope of the work here, these studies demon-
strate the potential of machine learning in determining subsur-
face solar structures for which we have prior knowledge of
constraints. Additionally, the use of synthetic ring diagrams
computed using computational methods with machine learning
could improve current capabilities of the pipeline in probing
solar subsurface flows. Therefore, the application of machine
learning and deep learning techniques present a step forward for
local helioseismic studies.
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