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ABSTRACT

Context. Considerable effort has gone into using light curves observed by such space telescopes as CoRoT, Kepler, and TESS for
determining stellar rotation periods. While rotation periods of active stars can be reliably determined, the light curves of many older
and less active stars, such as stars that are similar to the Sun, are quite irregular. This hampers the determination of their rotation
periods.
Aims. We aim to examine the factors causing these irregularities in stellar brightness variations and to develop a method for determin-
ing rotation periods for low-activity stars with irregular light curves.
Methods. We extended the Spectral And Total Irradiance Reconstruction approach for modeling solar brightness variations to Sun-like
stars. We calculated the power spectra of stellar brightness variations for various combinations of parameters that define the surface
configuration and evolution of stellar magnetic features.
Results. The short lifetime of spots in comparison to the stellar rotation period, as well as the interplay between spot and facular
contributions to brightness variations of stars with near solar activity, cause irregularities in their light curves. The power spectra of
such stars often lack a peak associated with the rotation period. Nevertheless, the rotation period can still be determined by measuring
the period where the concavity of the power spectrum plotted in the log–log scale changes its sign, that is, by identifying the position
of the inflection point.
Conclusions. The inflection point of the (log–log) power spectrum is found to be a new diagnostic for stellar rotation periods which
is shown to work even in cases where the power spectrum shows no peak at the rotation rate.
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1. Introduction

The magnetic features on stellar surfaces lead to quasi-periodic
variations in stellar brightness as stars rotate. While such rotation
variations were first detected with ground-based instrumentation
(see e.g., Radick et al. 1998), most of the data have been accu-
mulated thanks to planet-hunting spaceborne missions aimed at
detecting planetary transits via photometric monitoring. In par-
ticular, CoRoT (Bordé et al. 2003; Baglin et al. 2006) and Kepler
(Borucki et al. 2010) telescopes have provided photometric time
series for several hundred thousand stars. Even more data is
expected from the recently-launched TESS mission (Ricker et al.
2014) and the future PLATO mission (Rauer et al. 2014).

The interest in studying stellar brightness variations is
twofold. First, they provide information about the stars them-
selves, such as their rotation periods and magnetic cycles. Sec-
ond, a quantitative assessment of stellar variability is needed
for the improved detection and characterization of extra-solar
planets.

Studies of stellar rotation periods are of particular inter-
est. Stellar rotation is closely linked to stellar magnetic activity
and age (Skumanich 1972). Consequently, surveys of stellar
rotation periods are the basis for calibrating gyrochronology

relationships between rotation period, color, and, age (cf.,
McQuillan et al. 2014), as well as for understanding the Galac-
tic star formation history (cf. Davenport 2017; Davenport &
Covey 2018), and for constraining properties of magnetic braking
(Metcalfe et al. 2016).

The light curves of many stars, especially young and active
ones, resemble a sine wave (see e.g., Fig. 4 from Reinhold et al.
2013). The rotation period of such stars manifests itself as a
clear peak in the Lomb–Scargle periodogram (Zechmeister &
Kürster 2009) or as a series of equidistant peaks in the autocor-
relation function (McQuillan et al. 2013) of their light curves.
Consequently, in the numerous studies aimed at determin-
ing stellar rotation periods employing Kepler and CoRoT data
(Walkowicz & Basri 2013; Reinhold et al. 2013; McQuillan et al.
2014; García et al. 2014; Buzasi et al. 2016; Angus et al. 2018)
most of the obtained rotation periods are related to such stars.

The largest available surveys of stellar rotation periods have
been compiled by Reinhold et al. (2013) using Lomb–Scargle
periodograms and by McQuillan et al. (2014) using autocorrela-
tion analysis. They determined rotation periods for, respectively,
24 124 and 34 030 presumably main-sequence Kepler stars.
Another approach was taken by García et al. (2014), who con-
centrated on Kepler stars with measured pulsations, applying

A32, page 1 of 17
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/201936018
mailto:shapiroa@mps.mpg.de
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 633, A32 (2020)

wavelet power spectra analysis in addition to the autocorrela-
tion analysis. They determined rotation periods in 310 out of 540
considered targets.

As successful as they are, the aforementioned approaches are
based on the assumption that stellar light curves have a regular
temporal profile. This is a valid assumption for young and active
stars but it fails for many old and less active stars. For the latter,
the elaborate configuration of magnetic features and their rela-
tively rapid evolution leads to rather complex light curves and
render the period determination very difficult.

The most prominent example of such a star exhibiting a com-
plex light curve is our Sun. Solar short-term variability (i.e.,
variability on timescales of up to a few solar rotation periods)
has a highly irregular temporal profile (see e.g., Fig. 1 from
Shapiro et al. 2016). The main reason for this is that only very
few sunspots last longer than the solar rotation period so that
the short-term variability of solar brightness is strongly affected
by sunspot evolution. Furthermore, Shapiro et al. (2017) show
that the global wavelet power spectrum of solar brightness varia-
tions, calculated over the period 1996–2015, does not have a clear
rotation peak due to the compensation of facular and spot con-
tributions to solar brightness variability. They show that since
faculae have much longer lifetimes than spots (e.g., facular fea-
tures can easily last for a few solar rotations), their contribution
to solar brightness variability has a very pronounced peak at
the solar rotation period. The peak in the spot component of
solar brightness variations is much less pronounced but the spot
component is stronger on timescales around the solar rotation
period (i.e., at about 10–50 days). As a result, two peaks almost
fully cancel each other. This is in agreement with other studies
(e.g., Lanza & Shkolnik 2014; Aigrain et al. 2015) which find
that the true rotation period of the Sun would not be detectable
at intermediate and high levels of solar activity when the spot
contribution to solar brightness variations wipes out the rotation
peak in the facular component. At the same time, the solar rota-
tion period is easily detectable during an activity minimum when
the brightness variations are brought about by long-lived faculae.

A good understanding of the physical phenomena deter-
mining solar variability might be helpful for solving problems
posed by stellar data. For example, Reinhold et al. (2019) sug-
gest that the dearth of the intermediate stellar rotation periods
in the Kepler sample (see e.g., McQuillan et al. 2014; Davenport
2017; Davenport & Covey 2018) can be partially caused by the
compensation of facular and spot contributions to brightness
variability (similar to the solar case) and the consequent inabil-
ity to detect rotation periods for such stars. Therefore the dearth
in the observed period distribution does not necessarily imply an
under-representation in the real period distribution.

We suggest that the irregularity of stellar light curves is an
important factor in explaining why rotation periods cannot be
determined for the majority of stars in the Kepler field (e.g., the
success rate of McQuillan et al. (2014) is only 25.5% since they
applied the autocorrelation method to 133 030 stars). Recently,
van Saders et al. (2019) show that the success rate of period deter-
minations decreases significantly with increasing stellar effective
temperature and that such a decrease cannot be explained by the
simultaneous decrease of the amplitude of stellar brightness vari-
ations. This is in line with our suggestion since spot lifetimes
are expected to decrease with stellar effective temperature (Giles
et al. 2017) and, consequently, the period determination becomes
more difficult.

In this paper, we employ an approach similar to that taken
by the Spectral And Total Irradiance Reconstruction model
(SATIRE, Fligge et al. 2000; Krivova et al. 2003), which was

originally developed for modeling solar brightness variations,
to synthesize stellar light curves and their power spectra. We
do this as a function of lifetimes of spots and faculae, the ratio
between facular and spot stellar surface-area coverage, and stellar
inclination (i.e., the angle between the direction to the observer
and stellar rotation axis). We specify the conditions under which
the rotation peak in stellar power spectra disappears and show
that even in such cases, the rotation period can still be deter-
mined from the high-frequency tail of the power spectrum. In
particular, we calculate the frequency where the concavity of the
power spectrum plotted on the log–log scale changes sign (i.e.,
the steepest point of the power spectrum). Such a frequency cor-
responds to the inflection point in the power spectrum of stellar
brightness variations. We demonstrate that the position of the
inflection point is proportional to the stellar rotation frequency
and can be used as a proxy for its determination. All in all, we
show that the power spectrum of stellar brightness variations is a
sensitive tool for studying stellar rotation and magnetic activity.

The SATIRE approach has been extensively validated against
various solar data (see, e.g., Ball et al. 2014; Yeo et al. 2014,
and references therein). Recently, SATIRE was used to show
that observed solar brightness variations can be explained with
remarkable accuracy by the joint action of only two sources: the
surface magnetic field and granular convection (Shapiro et al.
2017). This result puts us in a strong position for modeling the
brightness variations of Sun-like stars.

This paper is restricted to modeling for the purposes of val-
idating the proposed approach, while its application to available
stellar data is the subject of forthcoming papers. The rest of the
paper is structured as follows: in Sect. 2, we describe the model
used to synthesize the light curves presented in this study. In
Sect. 3, we consider the illustrative case of stars whose variabil-
ity is exclusively brought about by dark spots. A more realistic
case of stars with dark spots and bright faculae is detailed in
Sect. 4. The impact of various properties of stellar magnetic fea-
tures on the position of the inflection point is outlined in Sect. 5,
while the dependence of the inflection point position on the
level of stellar magnetic activity is presented in Sect. 6. Finally,
conclusions are drawn in Sect. 7.

2. Model description

Strong concentrations of a magnetic field emerging on the stel-
lar surface lead to the formation of active regions encompassing
magnetic features, such as dark spots and bright faculae (see e.g.,
a review by Solanki et al. 2006). The transits of these regions
over the visible stellar disk as the star rotates, as well as their evo-
lution, are dominant sources of brightness variations in Sun-like
stars on timescales from about a day.

In our model, we constructed active regions as a mixture of
spot and facular areas. We note that a model based on such an
assumption would not be suitable for calculating stellar bright-
ness variations on the timescale of the magnetic activity cycle
since it does not account for the emergence of the ephemeral
active regions (see e.g., Dasi-Espuig et al. 2016, and references
therein). At the same time, the variability on the timescale of
stellar rotation is brought about by the largest facular and spot
features, which usually emerge together. Therefore, such a sim-
ple model of stellar active regions is expected to be appropriate
for modeling stellar rotation variability and is often employed
in the literature (e.g., Lanza et al. 2003, 2009; Gondoin 2008;
Borgniet et al. 2015; Morris et al. 2018).

The size of active regions is assumed to be much smaller than
the stellar radius, which is a good assumption for the Sun and for
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stars with near-solar levels of magnetic activity. Consequently,
we did not consider the exact geometrical shape of active region
or its spot and facular components, prescribing the same value of
the foreshortening factor for the entire region when computing
its visible solid angle.

At each moment of time t the stellar brightness at the
wavelength λ is given by

F(λ, t) = FQ(λ) +
∑

i

Ωi(t) · (φi,F(t) CF (λ, ri) + φi,S (t) CS (λ, ri)
)
,

(1)

where FQ(λ) is the brightness of a quiet star, that is, a star with-
out any active regions. The summation was performed over all
active regions visible at time t and Ωi(t) is a solid angle of the
ith active region seen from the vantage point of the observer.
By changing the number of regions on the stellar surface we
were able to simulate stars with different levels of magnetic
activity. Factors φi,F(t) and φi,S (t) are fractions of spot and fac-
ular parts of the area of ith active region, respectively (with
φi,F(t) +φi,S (t) = 1). CF(λ, ri) and CS (λ, ri) are spectral contrasts
of faculae and spots relative to the quiet stellar regions along the
direction to the ith active region ri.

For the sake of simplicity, here we considered only stars that
rotate as a solid body. We assumed that the emergence of stel-
lar active regions follows the solar latitudinal distribution and
happens in the activity belts, that is, between the latitudes of 5◦
and 30◦ (see e.g., Knaack et al. 2001). This should be a good
approximation for slowly-rotating stars like the Sun (Schüssler &
Solanki 1992), which are the main focus of our study.

As we show below, the growth phase of the active regions
did not have a strong effect on our results so it was not included
in most of the experiments. In other words, we started tracking
the region and its effect on stellar brightness only after it reached
its maximum area.

We utilized spectra for the quiet Sun, faculae, spot umbra,
and spot penumbra calculated by Unruh et al. (1999) with
the ATLAS9 radiative transfer code (Kurucz 1992; Castelli &
Kurucz 1994). Following Wenzler et al. (2006) and Ball et al.
(2012), we computed sunspot spectra as a mixture of 80%
penumbral and 20% umbral spectra.

The Unruh et al. (1999) spectra have proven reliable for mod-
eling solar brightness variations (see e.g., reviews by Ermolli
et al. 2013; Solanki et al. 2013, and references therein) and, con-
sequently, we expected them to be applicable to modeling stars
with near-solar fundamental parameters. At the same time, the
profile of the high-frequency tail of the power spectrum and,
consequently, the position of the inflection point depends on the
centre-to-limb variations of brightness contrasts of stellar mag-
netic features. These, in turn, depend on the fundamental stellar
parameters. The apparatus for calculating contrasts of magnetic
features in stars with various fundamental parameters is becom-
ing available (see Norris et al. 2017; Witzke et al. 2018; Salhab
et al. 2018) so that we plan to generalize our study in a forth-
coming publications. Simulations of facular contrasts at stars
with different effective temperatures which are presently avail-
able (see e.g., Fig. 5.16 from Norris 2018) indicate that the results
presented in this study are applicable, at least, to stars from late-F
to early-K spectral types.

All the light curves presented in this study were calculated
as they would be seen by the Kepler telescope, that is, by mul-
tiplying Eq. (1) with the Kepler total spectral efficiency and
integrating it over all relevant wavelengths. The simulations
were performed with a six-hour cadence. We checked that the

decrease in the time step in our simulations had virtually no
effect on the spectral power of variability at periods from about
two–three days and larger, so that such a choice was appropriate
for our goals.

As illustrated by Eq. (1), the variability of the flux F(λ, t)
is brought about by the time-dependence of the solid angles of
active regions seen from the vantage point of observer, Ωi, and
by the time-dependence of facular and spot fractions αi,F(t) and
αi,S (t). The former is attributed to the evolution of magnetic
features, as well as to the rotation of the star, and consequent
change of the foreshortening factor. The latter is given by the dif-
ference between facular and spot lifetimes. For example, in the
(rather unrealistic) case of the same lifetime of spot and facu-
lar components of an active region, their relative coverage would
not depend on time and, consequently, the time dependence of
the contribution of active regions to stellar brightness would be
solely determined by the variable solid angle Ωi(t).

All in all, the power spectra of stellar brightness variations
depend on properties of stellar active regions and the viewing
geometry. To better illustrate the important effects and individual
roles of each of the involved parameters, we start by considering
a greatly simplified case of variability in Sect. 3 and, eventu-
ally, adding more realism into our simulations in the subsequent
sections – while still keeping the model relatively simple.

3. Stars with spots

In this section, we examine stellar brightness variations due to
spots, that is, we put αS (t) to 1 and αF(t) to 0 in Eq. (1). We
tracked a star over a time interval of 1600 days, which roughly
corresponds to the duration of 17 Kepler quarters, that is, approx-
imately the total duration of the Kepler mission. During this
interval, we let 300 spots emerge, each at a random point in time
and in a random place within the activity belts on the stellar sur-
face (see Sect. 2). Since we were interested in the impact of spot
evolution on the profile of the power spectrum of stellar bright-
ness variations and, in particular, on the position of the inflection
point, for illustrative purposes we assumed that all spots had the
same growth and lifetimes, independently of their size. We also
started with the simple case of spots emerging in three relative
sizes, scaling as 1:2:3, and considered 100 spots of each of the
sizes. A more realistic treatment is employed in the subsequent
sections. We note that the absolute size of spots does not play a
role in the calculations presented in this section since it affects
only the amplitude of the brightness variations and has no effect
on the profile of their power spectrum.

3.1. High-frequency tail of the power spectrum and inflection
point

Figures 1 and 2 show two realizations of light curves calculated
for a model star rotating with a 30-day period. We assume that
spots instantaneously emerge on the stellar surface (i.e., that the
growth time is zero) and then their areas linearly decrease with
time. In other words, the spot area A(t) after the emergence can
be written as

A(t) = A0

(
1 − t − t0

Tspot

)
, t0 ≤ t ≤ t0 + Tspot, (2)

where A0 is the maximum area and t0 is the time of emergence.
We put Tspot = 25 d to produce light curves for Figs. 1 and 2.
Since times and positions of individual emergences are kept ran-
dom, the two light curves shown in these figures are distinctly
different from each other.
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Fig. 1. Model light curve of star with 30-day rotation period covered by
spots and observed from its equatorial plane. The spots decay accord-
ing to a linear law with Tspot = 25 d. Two upper panels: normalized
light curve (panel a) and corresponding Lomb–Scargle periodogram
(panel b). Panels c–f : global wavelet power spectra (left panels) and
corresponding gradient of the power spectra (right panels) calculated
with the 6th order Morlet wavelet (panels c and d) and with the sixth-
order Paul wavelet (panels e and f ). The values of the gradients of
these power spectra are a scaled and offset by unity (see Eq. (3) and
the discussion in the text for the exact quantity plotted). Numbers in
panels d and f correspond to the positions of the inflection points (i.e.,
local maxima of the gradient). Vertical dashed lines in panels b, c, and e
indicate the rotation period of the modeled star. Vertical solid lines in
panels d and f indicate the positions of the inflection points. We note
that since spots reduce stellar brightness, the normalized variability
(i.e., normalized F(λ, t) − FQ(λ) values, see Eq. (1)) is plotted between
−1 and 0.

One can clearly see the individual dips caused by the tran-
sits of spots as a star rotates (Figs. 1a and 2a). Nevertheless, the
Lomb–Scargle periodograms of both light curves do not have a
clear 30-day peak (Figs. 1b and 2b). Instead, the peaks appear
to be rather random and their locations depend on the specific
realization of spot emergences. The same situation is seen when
global wavelet power spectra with sixth-order Morlet and Paul
wavelets (see Figs. 1c and 2c, and Figs. 1e and 2e, respectively)
are computed: all four power spectra do not have any notice-
able signature for the rotation peak. In comparison to the Morlet
wavelet, the Paul wavelet implies a poorer frequency localiza-
tion but stronger averaging in the frequency domain when power
spectra are computed. Consequently, wavelet power spectra cal-
culated with the Paul wavelet have less detail but they are more
resistant to statistical noise (Torrence & Compo 1998).

In Figs. 1d, f and 2d, we plot the ratios Rk between the power
spectral density P(ν) at two adjacent frequency grid points: Rk ≡
P(νk+1)/P(νk). It is easy to show that these ratios can be written
as

Rk = 1 +
d ln P(νk)

d ln ν
· (∆ν)k

νk
, (3)
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Fig. 2. Same as Fig. 1 but for another realization of spot emergences.

where ∆ν is spacing of the frequency grid. We calculate power
spectra on a grid that is equidistant on a logarithmic scale, that
is, ∆ν/ν is constant. Therefore, Rk values represent the gradient
of the power spectrum plotted on a log–log scale (as in Figs. 1c,
e, and 2c, e), scaled with some factor (which depends on the
chosen frequency grid) and offset by unity.

For the sake of simplicity, from now on we refer to the Rk val-
ues as the gradient of the power spectrum. One can see that while
the gradient of the Morlet power spectra has sophisticated pro-
files with many local maxima (corresponding to inflection points
in the Morlet power spectrum), the gradient of the Paul power
spectra looks much simpler. Furthermore, while the power spec-
tra of both light curves have no noticeable peak at the rotation
period, both sixth-order Paul power spectra have inflection points
giving rise to very clear peaks in the gradients of the power spec-
tra. Importantly, the location of these points is the same for the
two realizations plotted in Figs. 1 and 2.

In Figs. 1 and 2, we show two light curves corresponding
to the same lifetime of spots but to different realizations of spot
emergences. In Fig. 3, we look at things the other way around
and consider power spectra of four light curves calculated with
the same realization of spot emergences but with different life-
times of spots. The power spectrum of the light curve with a
spot lifetime Tspot = 90 days has a pronounced rotation peak.
Its amplitude decreases rapidly with decreasing spot lifetime
and disappears completely when the lifetime of spots becomes
smaller than the stellar rotation period: neither Tspot = 20 days
nor Tspot = 12 days cases display any signature of the peak in the
power spectrum around the rotation period. To better illustrate
this point, we also plot the power spectra on a linear vertical
scale (Fig. 3b).

Figure 3 illustrates the point that stellar rotation periods can-
not be determined from the maximum of the power spectrum
when lifetimes of spots are small in comparison to the rotation
period (at least for a star with no faculae). Interestingly, this is
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Fig. 3. Power spectra of model light curves plotted on logarithmic (top
panel) and linear (middle panel) scales on the vertical axis. The gra-
dients of the power spectra in the top panel are plotted in the bottom
panel. The modeled spots decay according to a linear law with life-
times, Tspot, equal to: 90 d (blue), 50 d (orange), 20 d (magenta), and
12 d (red). All four light curves are calculated for the same realization
of spot emergences. Vertical dashed lines at 30 d and 7.2 d correspond
to the rotation period of the simulated star and the approximate posi-
tion of the inflection point in all four power spectra, respectively. Power
spectra are calculated with the sixth-order Paul wavelet.

the case for the Sun since sunspots very rarely last longer than
the solar rotation period (Baumann & Solanki 2005).

The bottom panel of Fig. 3 points to an alternative method for
determining rotation periods when spot lifetimes are shorter than
the stellar rotation period. One can see that the high-frequency
tail of the power spectra is much less sensitive to spot lifetime. In
particular, the position of the inflection point is almost the same
in all four cases. The results obtained so far strongly suggest that
the high-frequency tail of the power spectrum may provide a
more robust way of determining stellar rotation periods. There
are different ways of parameterizing the tail, for example, one
can approximate it with the help of a multi-component powerlaw
fit similar to that employed by Aigrain et al. (2004) and establish
the connection between parameters of such a fit and the rotation
period. However, in the present study we limit ourselves to show-
ing that the position of the inflection point is a sensitive proxy
of the stellar rotation period, leaving other methods for future
investigations.

The profile of the power spectrum and, consequently, the cal-
ibration factor between the position of the inflection point and

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

In
fl

ec
ti

o
n
 p

o
in

t 
p
o
si

ti
o
n

0 20 40 60 80 100
Decay Time [d]

0.1

0.2

0.3

0.4

In
fl

ec
ti

o
n
 p

o
in

t 
p
o
si

ti
o
n

Fig. 4. Dependence of inflection point position (in fractions of rotation
period, Prot = 30 d) on spot lifetime, Tspot. Each value of the spot life-
time corresponds to five realizations of spot emergences with linear (red
asterisks) and five realizations with exponential (blue asterisks) decay
laws. Lower panel: zoom in of the upper panel. Blue and red lines in
the lower panel show positions of the high-frequency inflection points
averaged over corresponding five realizations.

rotation period depend on the wavelet utilized for calculations.
The wavelets with good frequency localization lead to power
spectra with multiple, often many inflection points whose posi-
tions depend on the specific realization of emergences (compare
Figs. 1d and 2d). At the same time, wavelets with very low fre-
quency localization lead to a strong scatter in the relationship
between inflection point position and the rotation period. After
considering several wavelets with different degrees of frequency
localization we found that the sixth order Paul wavelet introduces
the best smoothing of the power spectra for our purposes. An
example of power spectra and corresponding gradients calcu-
lated utilizing wavelets with different frequency localization is
given in Fig. A.1. We emphasize that the inflection point itself
does not have a clear physical meaning and it is just a convenient
way of quantifying the profile of the high-frequency tail of the
power spectrum.

3.2. Effect of spot emergence and lifetime

In Fig. 4, we show the dependence of the inflection point posi-
tion on the lifetime of spots. In addition to the linear decay law,
several other functional forms, such as parabolic and exponential
decays (Bumba 1963; Martínez Pillet et al. 1993; Petrovay & van
Driel-Gesztelyi 1997), have been proposed (also see review by
Solanki 2003). To illustrate the impact of the functional form of
the decay law on the inflection point position, we also consider
an exponential law under which the spot area can be written as

A(t) = A0 exp
(
− t − t0

Tspot

)
, t ≥ t0. (4)

Figure 4 shows that the position of the inflection point
remains stable and is not affected by Tspot for values above about
15 d (i.e., one half of the rotation period) for the linear decay law
and 10 d (one third of the rotation period) for the exponential
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Fig. 5. Same as Fig. 4 but comparing inflection points obtained for three
values of spot emergence time: 0 d (blue), 1 d (red), and 2 d (orange).
An exponential decay law is imposed.

decay law. We note, however, the slightly different meanings of
Tspot for the two decay laws. Tspot corresponds to spot lifetime
for linear decay (i.e., the spot disappears when Tspot is reached),
while Tspot in the exponential decay law implies an e-folding
time.

Since the exact profile of the power spectrum depends on
the realization of spot emergences, the positions of the inflec-
tion point show some scatter around the mean values (solid lines
in Fig. 4) for a fixed lifetime. This scatter represents an intrin-
sic uncertainty in using the inflection point as a proxy for the
rotation period. For some of the realizations, “rogue” inflec-
tion points at lower periods appear (seen below 0.1 in the upper
panel). Furthermore, inflection points are also found at large
periods, even forming a high-period branch for spot lifetimes
larger than about 30 days. These points are linked to the rotation
peak in the power spectra (which is only present if spot lifetime
is large, see blue curves in Fig. 3).

Up until this point, we considered spots that emerge instan-
taneously on the stellar surface and then decay. Such an assump-
tion is reasonable for our purposes since the emergence and
growth of spots takes significantly less time than the decay and
rarely lasts longer than a few days (see e.g., van Driel-Gesztelyi
& Green 2015). To estimate the effect of the non-zero growth
time, we compare in Fig. 5 the positions of the inflection points
calculated for a spot emergence (and growth) time of 0 d (i.e.,
assuming instantaneous emergence as in Fig. 4), 1 d, and 2 d.
We assume a linear growth of spot area during the emergence
phase. One can see that including a non-zero emergence phase
slightly shifts the inflection point to lower periods but the effect
is relatively small (on average 8% for 2d emergence time).

4. Stars with spots and faculae

Sunspots are generally parts of bipolar magnetic regions which
also harbor smaller magnetic elements. Ensembles of these mag-
netic elements form bright faculae (see e.g., Solanki et al. 2006,
2013, for reviews). Faculae are present on late-type stars and play

an important role in stellar photometric variability (e.g., Shapiro
et al. 2016; Witzke et al. 2018; Reinhold et al. 2019). For exam-
ple, faculae dominate the variability over the course of magnetic
activity cycles for old stars like the Sun (Lockwood et al. 2007;
Radick et al. 2018). They also significantly affect solar bright-
ness variations on timescales of a few days (Shapiro et al. 2016,
2017) and, thus, one can expect the position of the inflection
point in the power spectra for stars that are similar to the Sun to
be affected by the facular contribution to stellar brightness vari-
ability. In this section, we investigate the effect of faculae on the
position of the inflection point in the power spectrum of stellar
brightness variations.

4.1. Treatment of faculae

Here we extend the model outlined in Sect. 2 and describe
the treatment of the facular contribution to stellar brightness
variability. Furthermore, we relax the assumption of the equal
lifetime for all magnetic features adopted in Sect. 3 for illustra-
tive purposes. Instead, we consider a more comprehensive model
for the decay of magnetic features.

For the sake of simplicity, we limited ourselves to the case of
the instantaneous emergence of active regions. This should not
affect any of the conclusions drawn here since the duration of the
emergence does not have a strong impact on the position of the
inflection point (see Sect. 3.2). We assumed that immediately
after emergence, all magnetic regions have the same fractional
coverage by spot and facular components. Consequently, we
calculated the power spectrum of photometric variations and
position of the inflection point as a function of the facular to
spot area ratio at the time of maximum area, S fac/S spot. We note
that for the case of instantaneous emergence, the time of max-
imum area coincides with the time of emergence. Since facular
and spot lifetimes are generally different the ratio at the time of
maximum area, S fac/S spot, is not identical to the “instantaneous”
(i.e., “snapshot”) ratio obtained at any random instance.

We adopted a solar log-normal distribution of spot sizes,
taken from Baumann & Solanki (2005), but we only considered
spots larger than 60 MSH (micro solar hemisphere). Conse-
quently, the size of the spot component of each emerging
magnetic region was randomly chosen following the Baumann &
Solanki (2005) distribution. The log-normal distribution implies
that while most of the spots have small sizes of about 100 MSH,
every now and then huge spots with sizes of more than
3000 MSH appear. Then, instead of considering a constant life-
time of all spots as we did in Sect. 3, we followed Martínez
Pillet et al. (1993) and considered a constant decay rate of spots.
This resulted in a linear decay law with large spots living longer
than small spots. The choice of the decay rate was not straight-
forward since it is rather poorly constrained even in the solar
case. We considered values between 10 MSH day−1 given by
the Gnevyshev–Waldmeier relation between sunspot sizes and
lifetimes (Waldmeier 1955) and that of 41 MSH day−1 given by
Martínez Pillet et al. (1993). In any case, as we show below, the
position of the inflection point is basically independent of the
decay rate.

The lifetimes of spots were computed from spot areas and
decay rates. To calculate the lifetime of faculae, we assumed
a fixed ratio between lifetimes of facular and spot components
of the active region (which implies a fixed decay rate also for
faculae). Since lifetimes of the facular component are usually
significantly larger than those of spots (see reviews: e.g., by
Solanki et al. 2006; van Driel-Gesztelyi & Green 2015) the active
regions in our model emerge as a mixture of spot and facular
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Fig. 6. Power spectra of brightness variations of star rotating with a 30-day period plotted on logarithmic (upper panels) and linear (middle
panels) scales. Also plotted are the gradients of the power spectra (lower panels). The calculations presented in left and right hand panels have
been performed with the same set of model parameters (see text for details) but are associated with two different realizations of active regions
emergences. Black, red, and blue curves correspond to total brightness variations (calculated with S fac/S spot = 5.5), as well as their facular and spot
components, respectively. Numbers in the middle panels indicate peaks in the power spectra, while numbers in the lower panels point to positions
of the inflection points.

regions but then they spend a significant part of their lifetimes as
purely facular regions.

In our simplified parametric consideration of active region
evolution, we did not directly account for the faculae brought
about by the decay of spots. This implies (a) an underestimation
of facular areas in our model; (b) deviations of the facular decay
law from linear. Point (a) can be indirectly taken into account
by the increase of the S fac/S spot ratio (in other words facular
area in this ratio represents not only the facular features emerg-
ing together with spots but also the product of the spot decay).
We also did not expect that point (b) could noticeably affect our
calculations since the exact time evolution of magnetic features
does not have a strong impact on the position of the inflection
point. Recently, Işık et al. (2018) performed more realistic calcu-
lations of magnetic flux emergence and surface transport in stars
with various rotation periods. As a next step, we plan to employ
their results in our modeling.

4.2. Superposition of spot and facular contributions to stellar
brightness variability

In Fig. 6, we depict power spectra of brightness variations
brought about by faculae, by spots, and by their mixture (red,

blue, and black lines, respectively). We set the spot decay rate
to 25 MSH day−1, which is roughly in-between the estimates
given by Waldmeier (1955) and Martínez Pillet et al. (1993). The
facular components of active regions were set to live twice as
long as spot components. We considered 1600-day light curves
and let 2400 emergences randomly happen during this time. The
absence of any clustering of emergences in time implies that the
mean activity level of a star during the entire time of simula-
tions stays the same, in other words, we did not consider activity
cycles. The 2400 emergences resulted in a mean fractional disk
spot coverage of about 0.3% (due to the adopted log-normal dis-
tribution of spot sizes, the exact value slightly depends on the
specific realization of emergences), which is a typical solar value
around the activity maxima.

The left and right panels of Fig. 6 show power spectra of
two light curves, as well as those of their facular and spot com-
ponents. Both light curves have been calculated with the same
set of model parameters specified above, but corresponding to
two different realizations of magnetic region emergences. In
the realization plotted in the left panels, both spot and facu-
lar components have a prominent peak at the stellar rotation
period. However, since facular and spot components are in anti-
phase at periods around the rotation period (see discussion in
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Shapiro et al. 2017) the superposition of them leads to a dis-
appearance of the rotation harmonic in the power spectrum of
total brightness variations. Instead, a pronounced maximum in
the power spectrum appears at 13.9 d, meaning that it is shifted
by about 54% from the rotation period. The bottom panels of
Fig. 6 show that the location of the inflection point is differ-
ent for the facular and spot components. This is not surprising
since the high-frequency tail of the power spectrum depends on
the centre-to-limb variations of magnetic features contrasts and
those are different for spots and faculae. In the given example,
the position of the inflection point of total brightness variations
is shifted by 26% relative to the position of the inflection point
of the spot component alone. This number corresponds to the
error in determining the rotation period which would be made
if, in the absence of any information about the relative role of
spot and facular components of the variability, one connects rota-
tion period and position of the inflection point while assuming
purely spot-dominated variability. We note that in the case pre-
sented in the left panel of Fig. 6, such an error is more than two
times smaller than the error made when assuming that the rota-
tion period corresponds to the maximum of the power spectrum
(26% vs. 54%).

In the realization plotted in the right panels of Fig. 6,
the spot component does not have a maximum at the rotation
period, while the facular component still shows a clear maxi-
mum (although it is slightly shifted to larger periods). In line
with the discussion in Sect. 3, the position of the inflection
point of the spot component is not affected by the disappear-
ance of the peak corresponding to the rotation period (the shift
of 0.6 d is within the scatter between different realizations of
emergences, see Figs. 4–5). The superposition of the facular
and spot components results in two pdeaks in the power spec-
tra of total brightness variations, one at 13.0 d (i.e., shifted
from the rotation period by 57%) and another at 55.5 d (i.e.,
shifted by 85%). Both figures are larger than the shift of the
inflection point caused by the facular component, which is equal
to 37%.

5. Main factors affecting the position of the
inflection point

In this section, we investigate the dependence of the inflection
point position on the facular to spot area ratio at the time of maxi-
mum area, S fac/S spot (Sect. 5.1), and test this dependence against
the solar case (Sect. 5.2). We also establish the dependence of the
inflection point position on stellar inclination (Sect. 5.3).

In Sects. 3 and 4, we defined the positions of the inflection
points from the power spectra calculated using entire span of
1600-day light curves. While such a definition of the inflection
point was appropriate for the illustrative purposes of Sects. 3
and 4, here we update the way the position of the inflection
point is calculated to bring our calculations more into line with
available stellar photometric data (e.g., Kepler or TESS).

As in Sects. 3 and 4, we synthesized 1600-day light curves
but instead of employing them directly for calculating positions
of the inflection points, we first made “Kepler-like” light curves
out of them. In other words, we split the light curves into 17 quar-
ters of 90 days (ignoring the last 70 days) and linearly detrended
each of the quarters. Then, instead of calculating the positions of
the inflection points using the entire light curve, we calculated
the positions of the inflection points in every quarter and con-
sidered the outlier-resistant mean, ignoring points outside of two
standard deviations from the mean value.

This procedure is illustrated in Fig. 7 for spot- and faculae-
dominated variability, as well as for the intermediate case of
the facular to spot area ratio at the time of maximum area (see
Sect. 4.1), S fac/S spot = 3 (compare top and middle panels to see
the difference between original and “Kepler-like” light curves).
We adopted a value of 25 MSH day−1 for the sunspot decay rate
and set the facular lifetime to be three times that of spots. The
positions of the inflection points in each of the quarters are plot-
ted in the bottom panels of Fig. 7. The inflection points cluster
in branches and, in particular, one can clearly see the branch cor-
responding to the high-frequency inflection point (i.e., at about
5–7 d). In the case of faculae-dominated variability, there is also
a stable branch of low-frequency inflection points (in between
15 and 20 d, see right bottom panel of Fig. 7). This is due to the
lifetime of faculae being sufficiently large for preserving a low-
frequency inflection point (see discussion in Sect. 3.2). Since the
high-frequency branch is more stable, we constrained ourselves
to its analysis and refrained from studying the low-frequency
branch. The existence of the low-frequency branch might poten-
tially lead to an ambiguity in the period determination. If, for
example, the high-frequency branch is not visible due to the
high noise level in the data, then the low-frequency branch might
be erroneously taken for the high-frequency branch. This would
lead to a roughly four-time overestimation of the period. Such
an ambiguity can be resolved by applying additional criteria. For
example, one would expect that rotational periods of fast rota-
tors should be caught by the autocorrelation or Lomb–Scargle
periodogram techniques. Consequently, if there is, for example,
an ambiguity between rotation periods of seven and 28 days,
and both Lomb–Scargle periodograms and autocorrelation anal-
ysis fail, then the 28-day value should be chosen for the rotation
period.

Figure 7 also shows that the positions of the inflection
points slightly fluctuate from quarter to quarter and sporadically
“rogue” inflection points appear. This is because the exact pro-
file of the power spectrum depends on the specific realization of
emergences of magnetic regions.

5.1. Position of the inflection point as a function of the facular
to spot area ratio

In Fig. 8, we present the dependence of the inflection point posi-
tion on the area ratio between the facular and spot components of
active regions at the time of maximum area, S fac/S spot. We keep
the mean fractional disk-area spot coverage constant and set it
to about 0.3% (see Sect. 4.2). Hence, the S fac/S spot value affects
only the facular coverage.

The decay rate of spots was set as 10 MSH day−1, accord-
ing to the Gnevyshev-Waldmeier relation. In agreement with
the calculations presented in Figs. 6–7, we considered a fixed
ratio between lifetimes of facular and spot components of active
regions (Tfac and Tspot, respectively). We note that in the solar
case, the faculae last significantly longer than spots (see e.g.,
review by Solanki et al. 2006). For example, Preminger et al.
(2011); Dudok de Wit et al. (2018) find that facular features
can affect solar UV irradiance (where it can be disentangled
from noise more easily than in the white light) for up to three–
four solar rotations (see their Fig. 5). In this context, Fig. 8
shows calculations for cases of Tfac/Tspot = 1, Tfac/Tspot = 2, and
Tfac/Tspot = 3.

Figure 8 shows that for spot-dominated variability (i.e., for
small S fac/S spot values), the inflection point is located at 22% of
the rotation period (we only plot the high-frequency inflection
points). We note that a small shift with respect to the 25% value
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Fig. 7. Three examples of simulated stellar variability: spot-dominated variability (S fac/S spot = 0.01, left panels), intermediate case (S fac/S spot = 3,
middle panels), and faculae-dominated variability (S fac/S spot = 100, right panels). Upper panels: original (i.e., without any detrending) light curves.
Intermediate panels show light curves split in 17 90-day quarters and linearly detrended in each of the quarters. The separation between quarters is
marked by the vertical black lines. The asterisks in the lower panels correspond to the positions of inflection points in each of the quarters. Numbers
in the upper right corners of the lower panels are the outlier-resistant mean values of the inflection point positions. These values are also indicated
in the lower panels by horizontal black lines. Red asterisks correspond to the inflection points utilized for calculating the outlier-resistant mean
value, blue asterisks are trimmed as outliers.

seen in Figs. 4–5 is brought about by the different procedures for
calculating the inflection point position, in other words, taking
the outlier-resistant mean of 17 90-day intervals instead of com-
puting a single inflection point. In the case of faculae-dominated
variability (i.e., of large S fac/S spot values) the inflection point is
located at about 14% of the rotation period. The level of the sta-
tistical noise (i.e., variations in inflection point position caused
by the random pattern of active regions emergences) is about
2–3%.

While the position of the inflection point strongly depends on
the S fac/S spot value, the difference between the three considered
Tfac/Tspot values is barely visible (compare red, blue, and black
curves in Fig. 8). This has two important implications. First, aus-
piciously, the ambiguities in facular lifetime do not have a strong
effect on the calculations of the inflection point position. Sec-
ond, the position of the inflection point depends rather on the
facular to spot area ratio at the time of maximum area than on
the instantaneous ratio (which is proportional to the product of
area ratio at the time of maximum area and ratio of the facular
and spot lifetimes). We note that this result is in line with the
discussion in Sect. 3, where we showed that the position of the
inflection point only weakly depends on the lifetime of magnetic
features.

Since stellar S fac/S spot values are a priori unknown, their
effect on the relation between rotation period and inflection point
position introduces additional uncertainty in the period deter-
mined with the help of the inflection point (see Sect. 6 for a
more detailed discussion). At the same time, the dependence of
the inflection point position on the S fac/S spot value makes it pos-
sible to determine the ratio for stars with known rotation periods.
We note that since the dependence presented in Fig. 8 is rather
noisy, it is more suitable for studying general trends (e.g., the
dependence of facular to spot ratio on stellar activity) than for
deducing S fac/S spot values for individual stars. We plan to deter-
mine S fac/S spot values for McQuillan et al. (2014) sample of
34 030 stars with known rotation periods in a forthcoming
publication. In this paper, we limit ourselves to giving an exam-
ple of the application of the GPS method to stars significantly
more variable than the Sun with presumably spot-dominated
variability (see Appendix C).

The calculations presented so far in this section were per-
formed for fixed values of the rotation period, mean fractional
disk-area spot coverage, and spot decay rates. In Appendix A, we
illustrate that the calibration factor between the inflection point
position and rotation period is only marginally influenced by the
rotation period (Fig. A.2), spot coverage (Fig. A.3), and the spot
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Fig. 8. Dependence of inflection point position (given as fraction of
rotation period, Prot = 30 d) on facular to spot area ratio at time of max-
imum area, S fac/S spot. Shown in red are the calculations with lifetime
of facular component of active regions, Tfac, equal to the lifetime of
spot component, Tspot. Black and blue correspond to the Tfac/Tspot = 2
and Tfac/Tspot = 3 cases, respectively. For each pair of S fac/S spot and
Tfac/Tspot values five realizations of emergences of active regions are
shown. In other words, each of the S fac/S spot values correspond to five
red, five black, and five blue asterisks. Red, black, and blue lines mark
the positions of the inflection points averaged over the five correspond-
ing realizations. The black horizontal line indicates the position of the
solar inflection point from Amazo-Gomez et al. (2019), while the black
vertical line marks the solar S fac/S spot value established in Appendix B.

decay rate (Fig. A.4). Furthermore, we show that the position
of the inflection point scarcely depends on the latitude of the
emerging active regions (Fig. A.5).

5.2. Inflection point in the power spectrum of solar brightness
variations

Let us now locate the Sun in Fig. 8. This requires knowledge
of the inflection point position in the power spectrum of solar
brightness variations as well as of the solar S fac/S spot value.
Amazo-Gomez et al. (2019) demonstrate that the inflection point
in the power spectrum of solar brightness variations is located at
a period of about 4.17 days, which is roughly 15.9% of the solar
synodic rotation period at the equator. There are also a number
of studies aimed at determining the instantaneous ratio between
facular and spot solar disk-area coverages (see e.g., Chapman
et al. 1997). At the same time the solar value of the facular to spot
ratio at the time of maximum area, S fac/S spot is, on the whole,
rather poorly studied and until now has remained unknown. In
Appendix B, we present a new method for determining the solar
S fac/S spot value and show that mean solar value over the 2010–
2014 period is about 3. Figure 8 demonstrates that this value, in
combination with the position of the solar inflection point from
Amazo-Gomez et al. (2019), agrees well with our calculations.
This is reassuring, since it indicates that our simple paramet-
ric model allows for accurate calculations of the inflection point
position.

We note that due to the lack of constraints on the dependence
of S fac/S spot value on size of magnetic regions, we assumed
the same S fac/S spot ratio for all emerging magnetic regions.
Solar data indicate that the instantaneous ratio between disk-
area coverages by faculae and spot decreases from minimum to
maximum of solar activity (Chapman et al. 1997; Foukal 1998;
Solanki & Unruh 2013; Shapiro et al. 2014). One can speculate
that such behavior is partly attributed to a stronger cancellation
of small magnetic flux concentrations (associated with faculae)
at higher levels of solar activity when regions with opposite
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Fig. 9. Sensitivity of inflection point to inclination of stellar rotation
axis. Plotted is the dependence of the inflection point position (given as
a fraction of the rotation period, Prot = 30 d) on the ratio between facular
and spot disk-area coverages at the time of maximum area, S fac/S spot.
Each S fac/S spot value corresponds to five realizations calculated with
inclination ϕ = 90◦ (equatorial view, blue), ϕ = 57◦ (black), and ϕ =
45◦ (red). Red, black, and blue lines show positions of the inflection
points averaged over the five corresponding realizations.

polarities lie closer to each other (Cameron 2018, priv. comm.).
Based on this, one might suggest that the ratio at the time of
maximum area should not show as strong a dependence on solar
activity as the instantaneous ratio does. This is in line with
the results of Amazo-Gomez et al. (2019), who could not pin-
point any clear dependence of the solar inflection point (which
depends on the ratio at the time of maximum area, see above) on
the level of solar activity. A possible change in this ratio within
a stellar activity cycle would contribute to the scatter in position
of the inflection points.

5.3. Effect of inclination

The trajectories of active regions across the stellar disk as a
star rotates depend on the position of the observer relative to
the stellar equator. Consequently, stellar brightness variability
is a function of the inclination (Schatten 1993; Knaack et al.
2001; Vieira et al. 2012; Shapiro et al. 2016), which is the angle
between the stellar rotation axis and the direction to the observer.
Therefore, one can expect that the position of the inflection point
depends on the inclination.

Figure 9 is the same as Fig. 8, except the differently colored
symbols now represent different stellar inclinations. In contrast
to Fig. 8, all calculations shown in Fig. 9 are performed with
Tfac/Tspot = 3, but with three different values of the inclination:
90◦ (blue), 57◦ (black), and 45◦ (red). An inclination of 90◦ cor-
responds to observations from the equatorial plane (so that the
blue asterisks are identical in Figs. 8 and 9). An inclination of
57◦ is the mean value of the inclination for a random distribution
of rotation axes orientations. One can see that all three depen-
dences are very close to each other. Noticeable deviations in the
inflection point position happen only for faculae-dominated stars
with inclination value of 45◦ (red asterisks in the right part of
Fig. 9).

6. Position of the inflection point as a function of
stellar magnetic activity

The main goal of this section is to connect the position of
the inflection point with proxies of stellar magnetic variability,
namely with the S-index and photometric variability. When the
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facular to spot area ratio at the time of maximum area, S fac/S spot,
is fixed, the position of the inflection point does not show any
dependence on the total coverage of stellar surface by active
regions (see Fig. A.3). At the same time, the level of magnetic
activity affects the relative areas of facular and spot parts of
active regions (Shapiro et al. 2014) and, consequently, the value
of S fac/S spot. This leads to the dependence of the inflection point
position on the magnetic activity which we study in this section.

In this context, we simulated light curves with a different
number of active regions emerging on each underlying star over
the 1600-day period of simulations. We started with 80 emer-
gences for the “quietest” light curves and ended with 81 000
emergences for the most “active” light curves. The sizes of spot
components for active regions were randomly chosen according
to the log-normal distribution from Baumann & Solanki (2005)
(see Sect. 4.1). For each of the simulations, we calculated the
mean value of the spot disk-area coverages and employed Eq. (1)
from Shapiro et al. (2014) to get the corresponding value of the
S-index. Next we employed Eq. (2) from Shapiro et al. (2014)
to obtain the value of the facular disk-area coverages from the
S-index. We corrected this value by subtracting facular cov-
erage corresponding to the absence of spots (0.5% according
to Eqs. (1–2) from Shapiro et al. 2014). Then we calculated
S fac/S spot value, that is, the ratio at the peak area of the active
region, which would result in such an instantaneous facular disk-
area coverage. We considered the Tfac/Tspot = 3 case and set the
decay rate of spots to 10 MSH day−1 (see Sect. 5.1).

The resulting dependences of the inflection point position
and S fac/S spot value on the S-index are given in the upper panel
of Fig. 10. One can see that the S fac/S spot value decreases with
the S-index. This is because Eqs. (1) and (2) in Shapiro et al.
(2014) are based on the extrapolation from the solar case, where
spot disk-area coverage depends on the S-index quadratically,
while the dependence of facular disk-area coverage is linear.
A decrease of the S fac/S spot value with the S-index causes a
rather weak shift of the inflection point to higher frequencies.
For example, one can see that the position of the inflection
point slightly shifts from solar minimum to solar maximum.
At the same time, the shift is smaller than the fluctuations of
the inflection point caused by the statistical noise so that it
does not contradict the results of Amazo-Gomez et al. (2019)
(see Sect. 5.2). Interestingly, the position of the inflection point
remains similar to that of the Sun even for significantly more
active stars.

For each of the simulated light curves, we calculated vari-
ability following the definition of variability range by Basri et al.
(2011). Namely, we split the light curves into 30-day segments.
We sorted the segments by brightness and calculated the range
between the fifth and 95th percentile of the brightness. Then
we calculated the mean range among all 30-day segments. The
resulting variability values are plotted in the middle panel of
Fig. 10 as a function of the S-index. One can see that although
the spot disk-area coverage increases quadratically with the
S-index, the increase of the photometric variability is almost
linear. This is because the variability range depends not on the
absolute value of stellar disk-area coverages by active regions
but, rather, on its fluctuations over time. The rise in the number
of active regions leads to a more uniform surface distribution
which, in turn, decreases the variability range.

The middle panel of Fig. 10 shows that solar variability
range changes from almost zero during the solar minimum to
roughly 1.5 ppt (parts per thousand). This is in agreement with
a more accurate calculation in Shapiro et al. (2016; see their
Fig. 10a). In the lower panel of Fig. 10, we plot the dependence
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Fig. 10. Dependence of inflection point position (given as fraction of
rotation period, Prot = 30 d) on S-index and stellar photometric vari-
ability (shown in red in top and bottom panels, respectively) as well as
dependence of photometric variability on S-index (middle panel). Blue
asterisks in upper panel indicate the dependence of the facular to spot
ratio at the time of maximum area, S fac/S spot, on the S-index. Black ver-
tical lines in upper and middle panels point to the range of solar S-index
values, while the horizontal black line in the top panel corresponds to
the position of solar inflection point from Amazo-Gomez et al. (2019).

of the inflection point position on the variability range. In most
of the cases, the position of the inflection point remains in
between roughly 14 and 21% of the rotation period, even for stars
significantly more variable than the Sun.

The lower and upper panels of Fig. 10 hint at a seemingly
simple way of eliminating the uncertainty in calibration between
the stellar rotation period and inflection point position brought
about by the unknown facular contribution to stellar variabil-
ity (see Sect. 5.1). One can either estimate the calibration factor
from the value of the S-index (if known) or from the amplitude of
the photometric variability. However, all the dependences plotted
in Fig. 10 are produced for fixed values of the spot decay rate and
ratio between facular and spot lifetimes (see above). Both these
values are rather uncertain even for the solar case. To take this
into account, we recalculated all the dependences for a broad
range of spot decay rates and ratios between facular and spot
lifetimes and plotted them in Fig. 11. One can see that the result-
ing dependences are noisier than those plotted in Fig. 10. This
is because a) the spot decay rate affects the connection between
the number of emergences and instantaneous spot disk-area cov-
erage (which defines the value of the S-index) and b) the ratio
between facular and spot lifetimes is in charge of the connec-
tion between instantaneous disk area coverages and those at the
time of maximum area. All in all, Fig. 11 shows that, despite a
significant level of noise, most of the inflection points for stars
with variability ranges below 3 ppt are located between 13% (for
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Fig. 11. Same dependences as in Fig. 10 but computed for nine pairs
of spot decay rates and ratios between facular and spot lifetimes. For
each pair of these parameters, calculations are performed for five real-
izations of active regions emergences. Shown are calculations with
Tfac/Tspot = 2 (black), Tfac/Tspot = 3 (blue), and Tfac/Tspot = 5 (red). For
each Tfac/Tspot ratio, we perform calculations with three values of spot
decay rates: 41, 25, and 10 MSH day−1.

faculae-dominated stars) and 21% (for spot-dominated stars) of
the rotation period. In this respect, we suggest that the best algo-
rithm for determining rotation periods for stars similar to the Sun
would be to take a solar value of about 16% (solar value, see
Sect. 5.2), keeping in mind that the intrinsic uncertainty of our
method is about 25%.

We must, however, provide some words of caution. We
assumed that the brightness variations of stars with near solar
values of effective temperatures can be calculated by a simple
extrapolation of the solar model. In other words, we disregarded
the potential presence of active longitudes in the emergence of
active regions (we note, however, that the existence of active lon-
gitudes have been also proposed for the Sun, see e.g., Berdyugina
& Usoskin 2003), and we assumed a solar distribution of sizes
of active regions, solar spot decay rates, as well as solar ratios
between facular, spot umbra, and spot penumbra areas.

The presence of active longitudes might significantly
increase the amplitude of brightness variations and, simulta-
neously, make the rotation peak in the power spectra more
pronounced. Along the same line, while we do not expect that
the size distribution of active regions has a direct impact on the
position of the inflection point, it can influence the photometric
variability and, hence, affect the dependence plotted in the lower
panel of Fig. 11. Finally, there is the critical assumption that the
dependence of facular and spot disk-coverages on stellar activ-
ity (expressed via the S-index) follow solar relationships. Any
deviations from the assumed relationships might affect both the

position of the inflection point and the amplitude of the pho-
tometric variability. We note, however, that solar relationships
proved to be very successful for modeling stellar brightness vari-
ations on timescales of the magnetic activity cycle (Shapiro et al.
2014).

7. Conclusions

We have developed a physics-based model for calculating stellar
brightness variations. The model is loosely based on the highly
successful SATIRE approach for modeling solar brightness vari-
ations.

We utilized our model to show that the rotation signal in the
photometric records of stars with near solar fundamental param-
eters and rotation periods is significantly weakened by a) short
lifetimes of spots and b) partial compensation of spot and facular
contributions to the rotation signal. Both these factors can also
lead to the appearance of “rogue” global maxima in the power
spectra of stellar brightness variations. These maxima are not
associated with the rotation period and can mislead the stan-
dard methods for rotation period determination. We construe this
as the explanation for the low success rates in detecting rota-
tion periods of stars similar to the Sun (van Saders et al. 2019;
Reinhold et al. 2019).

We show that even in the absence of the rotation peak in
the power spectra of stellar brightness variations, the information
about the rotation period is still contained in the high-frequency
tail of the power spectrum. In particular, the rotation period can
be determined by applying a pre-calculated calibration factor to
the frequency corresponding to the inflection point, that is, the
point where the concavity of the power spectrum plotted in the
log–log scale changes sign. We have demonstrated that the cali-
bration factor only weakly depends on the parameters describing
the evolution of stellar active regions (e.g., their lifetime), stel-
lar disk-area coverage by active regions, and stellar inclination.
At the same time, the calibration factor depends on the relative
areas covered by spots and faculae. On the one hand, this intro-
duces an intrinsic uncertainty in the periods determined with our
method. On the other hand, the dependence of the calibration
factor on the ratio between facular and spot-area coverage allows
for the measuring of this ratio in stars with known rotation peri-
ods. This might prove interesting for constraining the properties
of flux emergence in Sun-like stars (see e.g., Işık et al. 2018).

We show that the ratio between the inflection point position
and rotation period is about 0.2–0.23 for purely spot-dominated
stars, which are supposedly much more active than the Sun (see
e.g., Shapiro et al. 2014). The presence of faculae decreases the
ratio so that we expect it to be in between 0.13 and 0.21 for
stars with a near-solar level of photometric variability. Despite
the significant uncertainty, the main advantage of our method is
that it can be used for determining rotational periods for stars
with irregular light curves where other available methods fail.
For such stars, we recommend using the solar value of the ratio,
that is, 0.16, which should return rotational period with a roughly
25% uncertainty.

We intend to further develop the model presented in this
study and to apply it to the available stellar photometric data.
On the theoretical side, we plan to (a) extend the present study
to stars with various fundamental parameters by replacing the
Unruh et al. (1999) spectra of the quiet Sun and solar magnetic
features with recent simulations of stellar spectra (see e.g., Beeck
et al. 2015; Norris et al. 2017; Witzke et al. 2018); (b) utilize
recent simulations of magnetic flux emergence and transport by
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Işık et al. (2018) in order to better describe the evolution of active
regions.

On the observational side, we plan to a) test our method
for the determination of the rotation period against the available
solar photometric data (see Amazo-Gomez et al. 2019) and stars
with known rotation periods; b) apply our method to the sample
of Kepler (and, in the future, TESS) stars with unknown rotation
periods.
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Appendix A: Additional figures

The section includes Figs. A.1–A.5.

Fig. A.1. Global wavelet power spectra (left panels) of light curve
from Fig. 1 and corresponding gradients of power spectra (right panels)
calculated with different wavelets. The frequency localization of the uti-
lized wavelet is increasing from the top to bottom panels. As in Fig. 1,
vertical dashed lines in the left panels indicate the rotation period of
the modeled star. Vertical solid lines and numbers in the right panels
(not shown in the bottom panel) indicate the positions of the inflection
points.
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Fig. A.2. Dependences of inflection point position on ratio between fac-
ular and spot disk-area coverage at the time of maximum area, S fac/S spot,
plotted for three values of the rotation period: 20 d (blue), 30 d (black),
and 40 days (red). Shown are positions in days (upper panel) and ratios
with respect to the rotation period (lower panel). Calculations are per-
formed for a spot decay rate of 25 MSH day−1, Tfac/Tspot = 3, and
mean fractional disk-area spot coverage of 0.3%. As in Figs. 8–9 for
each pair of S fac/S spot and rotation periods values, five realization of
active regions emergences are shown. Red, black, and blue lines indi-
cate positions of the inflection points averaged over corresponding five
realizations. A small deviation of 20 d curve from 30 d and 40 d curves
in the lower panel at high S fac/S spot values can be explained by the insuf-
ficient cadence of light curves (4 points per day) for 20 d rotation period
and aliasing effect.
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Fig. A.3. Same as Fig. 8, but for three values of mean fractional disk-
area spot coverage: 0.075% (blue), 0.3% (black), and 0.75% (red).
Calculations are performed for spot decay rate of 25 MSH day−1,
Tfac/Tspot = 3 and rotation period of 30 d.
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Fig. A.4. Same as Fig. 8, but for three values of spot decay rate:
10 MSH day−1 (blue), 25 MSH day−1 (black), 41 MSH day−1 (red). Cal-
culations are performed for mean fractional disk-area spot coverage of
0.3%, Tfac/Tspot = 3 and rotation period of 30 d.
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Fig. A.5. Same as Fig. 8, but calculated assuming that all emergences
of active regions happen at equator (blue), latitudes ±30◦ (black), and
latitudes ±60◦ (red). Calculations are performed for mean fractional
disk-area spot coverage of 0.3%, Tfac/Tspot = 3 and rotation period of
30 d.

Appendix B: Solar values of facular to spot area
ratio at the time of maximum area

As discussed in Sect. 4.1, the directly-observed instantaneous
ratio between solar disk coverages by faculae and spots is dif-
ferent from the ratio between facular and spot areas in individual
magnetic regions at the time of their maximum area, S fac/S spot.
At the same time, in Sect. 5 we show that the position of the
inflection point is defined by the ratio at the time of their max-
imum area, S fac/S spot and, thus, we need to know the solar
value of S fac/S spot to check whether the position of the inflec-
tion point in the power spectrum of solar brightness variations
is consistent with the model presented here. In this section, we
demonstrate how to determine the solar value of S fac/S spot from
the observed instantaneous records of solar disk coverages by
spots and faculae (see Sect. 5.2).

First, we employ the model setup described in Sect. 4.1 to
calculate the power spectra of modeled facular and spot disk
area coverages as they would be seen along the stellar rota-
tion axis and from the stellar equatorial plane. We consider the
case of Prot = 30 d, S fac/S spot = 3.4, Tfac/Tspot = 3, adopting a
log-normal distribution of spot sizes from Baumann & Solanki
(2005) and 25 MSH day−1 for the sunspot decay rate.

The left panels of Fig. B.1 show the global wavelet (Morlet,
sixth order) power spectra (top) of instantaneous disk cover-
ages by spots and faculae observed along the rotation axis of

a modeled star (so that the rotational modulation does not affect
the power spectra), as well as their ratio (bottom). One can see
that the ratio is roughly constant and equal to S 2

fac/S
2
spot up to the

period of about 90 days (i.e., 3Prot). This is not surprising since
the decay of magnetic features only affects the power spectrum
at timescales larger than the decay time.

More strictly, when carrying out an observation along the
rotation axis, the disk area coverage by the individual magnetic
feature is proportional to the product of the unit step function
(i.e., the function which returns 0 before the emergence of the
magnetic feature and 1 after the emergence) and a function
describing linear decay. The power spectral density of such a
right-triangle function (hereafter function F1(t)) is proportional
to:

D(ν) ∼ S 2
feature

x2 +
S 2

feature

x4

(
sin(x/2)2 + sin((x − π/2)/2)2

)
, (B.1)

where S feature is the disk area coverage of the feature at the time
of maximum area, x ≡ 2πTdecν, and Tdec is a decay time of
magnetic feature (see Eq. (2)).

At x >> 1 (which corresponds to P << 2πTdec, where
P ≡ 1/ν), the second term on the right-hand side of Eq. (B.1)
becomes negligibly small in comparison to the first term.
Consequently, the corresponding power spectral density D(ν)
decreases with a frequency following the 1/ν2 dependence, irre-
spectively of the decay time of magnetic feature. Hence, the ratio
between power spectra of facular and spot disk area coverages
of an active region (consisting of facular and spot features, see
Sect. 4) is equal to S 2

fac/S
2
spot. We note that the power spectra

of the observed instantaneous facular and spot disk coverages
are brought about by the superposition of the contributions from
many incoherently emerging active regions. Therefore, the ratio
of the high-frequency parts of the power spectra represents the
mean S fac/S spot value over all active regions. Since the contri-
bution of magnetic features to the disk coverage is proportional
to their size, this mean value is weighted towards larger active
regions.

Let us now consider the case of observations from the stel-
lar equatorial plane (i.e., the solar case since the ≈7.25◦ angle
between the solar equator and ecliptic may be neglected in our
analysis). The middle panels of Fig. B.1 show the global wavelet
power spectra of facular and spot disk coverages resulting from
the same realization of active regions emergences as shown in
the left panels, but here the active regions are observed from the
equatorial plane of the modeled star. One can see that the ratio
between facular and spot power spectra is strongly affected by
rotation at periods below 45 d (i.e., 3/2 Prot) but it is basically
not affected by the rotation at periods between 45 d and 90 d.
We provide an explanation for such behavior below.

The disk area coverage by a single transiting magnetic fea-
ture for a star observed from the equatorial plane is proportional
to the product of three functions: (a) the right-triangle function
F1(t) (with power spectral density given by Eq. (B.1)); (b) a
function which returns zero during half of the period when the
feature is at the far-side of the star and one during another half
of the period when the feature is on the near-side of the star (i.e.,
shifted by 0.5 square wave function, hereafter function F2(t));
(c) function describing the foreshortening effect (hereafter, func-
tion F3(t)).

The Fourier transform of the square wave function con-
tains only odd-integer harmonics of the form ±(2k−1)νrot where
νrot = 1/Prot. The shift by 0.5 brings about an additional zero
frequency component so that the Fourier transform of function
F2(t) contains zero frequency and odd-integer harmonics. The
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Fig. B.1. Power spectra of facular (red) and spot (blue) disk area coverages for modeled star observed along its rotational axis (left upper panel),
modeled star observed from its equatorial plane (middle upper panel), and for Sun deduced from SDO/HMI observations (right upper panel).
Corresponding ratios between the power spectra of facular and spot disk area coverages are plotted in the lower panels. Vertical black lines in the
lower panel denote the interval between 45 and 90 days. Horizontal black line in the left and middle lower panel denotes the S 2

fac/S
2
spot value used

in the simulations (see text for more details). Horizontal black line in the right lower panels denotes ratio value of 9.

foreshortening function F3(t) is proportional to the cosine of
the angle between the direction from the centre of the star to
the observer and to the magnetic feature and contains only ±νrot
components. Multiplication in the time domain corresponds to
the convolution in the frequency domain. Consequently, the
Fourier transform of the product of F2(t) and F3(t) functions
contains all harmonics of the rotational period ±kνrot and zero
frequency component.

All in all, the disk area coverages observed from the stel-
lar equatorial plane can be obtained by multiplying disk area
coverages observed along the stellar rotation axis (which are
proportional to F1(t)) with a function containing a zero fre-
quency component and harmonics of the rotational frequency.
As discussed above, the power spectra of facular and spot disk
coverages are proportional to each other with the exception of
the [0, νrot/3] interval. After the convolution, the signal in this
interval will be propagated to [| ± k νrot |, | νrot/3 ± k νrot |] (i.e.,
[0, νrot/3], [νrot, 4/3 νrot], [2 νrot, 7/3 νrot]..., and [2/3 νrot, νrot],
[5/3 νrot, 2 νrot], ...) intervals. Interestingly, the signal does not
propagate to the [1/3 νrot, 2/3 νrot] (or [3/2 Prot, 3 Prot]) interval.
This explains the curious behavior of the ratio between power
spectral density of facular and spot disk coverages in this interval
shown in the middle lower panel of Fig. B.1: neither the decay of
magnetic features nor the stellar rotation affects it.

The power spectra and their ratio shown in the right pan-
els of Fig. B.1 are calculated using solar disk area coverages
obtained by Yeo et al. (2014) using solar magnetograms and
continuum images recorded by the Helioseismic and Magnetic
Imager onboard the Solar Dynamics Observatory (SDO/HMI)
for the period from May 2010 till August 2014. In agreement
with the previous discussion, the ratio between the two power
spectra is roughly constant in the time interval between 45 d and
90 d and corresponds to S fac/S spot value of 3.

Appendix C: Three examples of the GPS method
application to the Kepler stars

An extensive test of our method for determining stellar rota-
tion periods will be the focus of our forthcoming publications.
In particular, we will analyze the dependence of the inflection
point position on the photometric variability and test the depen-
dence established in Sect. 5.2. Here, as an example, we apply our
method to stars significantly more variable than the Sun, with
presumably spot-dominated variability.

In the upper panels of Figs. C.1–C.3, we show the Kepler
light curves of KIC2141852 (Fig. C.1), KIC2553816 (Fig. C.2),
and KIC2992964 (Fig. C.3). The data for 15 Kepler quarters
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Fig. C.1. Light curve of KIC2141852 (upper panel) and positions of
inflection points for each Kepler quarter (lower panel). Kepler quar-
ters 2–16 are numbered in the upper panel and separated by the vertical
black lines. Asterisks in the lower panel correspond to the positions of
inflection points. Value of the outlier-resistant mean of the inflection
point positions in the low-period branch (see text for more details) is
indicated by the horizontal black line. Red asterisks correspond to the
inflection points utilized for calculating the outlier-resistant mean value,
blue asterisks are trimmed as outliers. Rotation period ranges returned
by our method (PGPS) and period from Reinhold et al. (2013) (PR2013)
are listed in the lower panel.
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Fig. C.2. Same as C.1 but for KIC2553816.

0 200 400 600 800 1000 1200

-1.5

-1.0

-0.5

0.0

0.5

1.0

V
ar

ia
b
il

it
y
, 
%

 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16

0 200 400 600 800 1000 1200
Time, day

0

5

10

15

20

In
fl

ec
ti

o
n
 p

o
in

t 
p
o
si

ti
o
n
, 
d
ay

PGPS=19.7-23.9 d

PR2013=20.9 d

Fig. C.3. Same as C.1 but for KIC2992964.

(quarter 2–quarter 16) have been downloaded from the MAST
portal1 and reduced with the PDC-MAP pipeline (Stumpe et al.
2012; Smith et al. 2012). The lower panels of Figs. C.1–C.3 show
the position of the inflection points for each of the Kepler quar-
ters. The behavior of the inflection points is very similar to that
shown for the synthesized light curves in Fig. 7. Namely, inflec-
tion points fluctuate around the mean position and, from time
to time, “rogue” inflection points appear, mainly corresponding
to the high-period branch. We note that a large number of
high-period inflection points imply that the lifetime of magnetic
features on the stars considered in this Section is comparable
or larger than their rotational periods (see Sect. 3.2). This is
consistent with the highly regular light curves of considered
stars.

We have calculated the outlier-resistant mean of the low-
period inflection point positions as well as the standard error of
the mean. Since we expect that the variability of our exemplary
stars is spot-dominated, the ratio between the inflection point
position and the rotational period should lie between 0.2 and
0.23 (see Fig. 8). We applied these factors to the mean position
of the inflection point taking the standard error of the mean into
account. The resulting ranges for the rotation periods (PGPS) are
indicated in Figs. C.1–C.3 and compared to the periods (PR2013)
reported by Reinhold et al. (2013). One can see that periods from
Reinhold et al. (2013) are within the range given by our method
for all the three considered stars.

1 https://mast.stsci.edu/portal/Mashup/Clients/Mast/
Portal.html
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