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ABSTRACT

Dynamical billiards are paradigmatic examples of chaotic Hamiltonian dynamical systems with widespread applications in physics. We study
how well their Lyapunov exponent, characterizing the chaotic dynamics, and its dependence on external parameters can be estimated from
phase space volume arguments, with emphasis on billiards with mixed regular and chaotic phase spaces. We show that in the very diverse
billiards considered here, the leading contribution to the Lyapunov exponent is inversely proportional to the chaotic phase space volume and
subsequently discuss the generality of this relationship.We also extend thewell established formalismbyDellago, Posch, andHoover to calculate
the Lyapunov exponents of billiards to include external magnetic �elds and provide a software on its implementation.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5099446

From the foundations of statistical physics to transport properties
of electronic devices, in many areas of physics “billiard models”
are an important tool for understanding complex dynamics. In a
billiard model, a point particle is moving freely (and frictionless)
on a �at (or constantly curved) surface until it hits the boundary
of the billiard where it is specularly re�ected. Chaotic dynamics in
the billiard are characterized by a positive “Lyapunov exponent,”
measuring how initially close trajectories separate exponentially
fast. Obtaining its value so far usually requires detailed numerical
simulations of the chaotic dynamics. In our paper, we assess how
well the Lyapunov exponent can be estimated from quite general
considerations. Speci�cally, we study how parameter changes that
vary the phase space structure of the billiard get re�ected in the
Lyapunov exponent. For example, the application of an external
magnetic �eld can force some trajectories in the billiard on closed
cyclotron orbits. We show how the mere existence of such orbits
varies the Lyapunov exponent of the chaotic dynamics through the
phase space volume they occupy. The knowledge of this connec-
tion will be helpful to understand physical mechanisms in many
systems like the magnetotransport in graphene nanostructures.

I. INTRODUCTION

Dynamical billiards are a well-studied class of dynamical sys-
tems, having applications in many di�erent �elds of physics. Besides

playing a prominent role in ergodic theory,1–3 billiards are important
example systems for understanding quantum chaos,4,5 with practi-
cal applications, e.g., inmodeling optical microresonators for lasers6,7

and room acoustics.8 Billiard models have also been particularly suc-
cessful in helping to understand transport properties of electronic
nanostructures such as quantum dots and antidot superlattices.9–18

A billiard consists of a �nite (or periodic) domain in which a
point particle performs free �ight with a unit velocity. Upon collision
with the boundary of the domain, the particle (typically) is specu-
larly re�ected. In Fig. 1, we are showing the two example billiards
we will be considering in this paper: the mushroom billiard (MB)19

and the periodic Sinai billiard1without (PSB) andwithmagnetic �eld
(MPSB).

An essential characterization of the chaotic dynamics of a bil-
liard is of course provided by its Lyapunov exponents. (In this article,
we will study the Lyapunov exponents of the “billiard �ow” in the
physical, continuous time, in contrast to those of the “billiard map”
in a discrete time that counts the number of collisions with the
boundary.) For a two dimensional billiard, the Lyapunov exponents
are four numbers λ1−4 that measure how “chaotic” the billiard is,
in terms of the average exponential rates of expansion (and con-
traction) of the phase space along certain characteristic directions.
Due to the Hamiltonian nature of the dynamics, the Lyapunov expo-
nents ful�l λ1 = −λ4, λ2 = λ3 = 0. Therefore, in the remainder of
the text, we will be only considering the largest exponent λ ≡ λ1. The
fundamental mathematical properties of the Lyapunov exponents
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FIG. 1. (a) A regular (blue) and chaotic (red) orbit in the mushroom billiard (MB),
whose cap radius is a constant set to 1 and the stem has widthw and height h. The
cap and the stem are separated with different background colors (orange, green).
(b) Chaotic orbits without (orange) and with (red) magnetic field and regular orbits
(blue, purple) in the magnetic periodic Sinai billiard (MPSB) with disc radius r .

in billiards, including rigorous proofs of their existence, have been
studied in the literature and can, e.g., be found in Refs. 20–22 and
references therein.

Quantitative studies of the Lyapunov exponent in actual physi-
cal billiards are surprisingly rare, however. A computational frame-
work for calculating λ in billiard systems was formulated by Dellago,
Posch, and Hoover in Refs. 23 and 24 (to which we refer to as the
“DPH framework” in the following, and which we will extend to
the dynamics in magnetic �elds). Alternative approaches are pre-
sented, e.g., in Refs. 25 and 26. In the literature, Lyapunov exponents
have been computed for the PSB on square27 and hexagonal23,27 lat-
tices, as well as for the stadium billiard,23,28 which is related to the
mushroom billiard. Furthermore, there are results for the magnetic
elliptical billiard29 and the inverse magnetic stadium.30

All these quantitative calculations rely on detailed numerical
simulations of the complex billiard dynamics. In this paper, how-
ever, we want to follow a di�erent approach exploring approximate
expressions for the parameter dependence of the Lyapunov expo-
nents in some paradigmatic cases, especially of billiards with the
“mixed” phase space, where regions of regular and chaotic dynam-
ics coexist. Our work is motivated by a recent study that has shown
that magnetoresistance measurements in graphene and semiconduc-
tor nanostructures directly re�ect the parameter dependence of the
chaotic phase space volume.9 This is due to the fact that character-
istic transport times in the chaotic sea are fundamentally linked to
the respective volume of the chaotic phase space in the correspond-
ing billiards. In particular, for the magnetic periodic Sinai billiard
(MPSB) in Fig. 1(b), it was analytically shown that themean collision
time κ(B) between successive collisions with the discs (of radius r)
as a function of an applied external magnetic �eld B is equal to the
varying chaotic phase space portion gc(B) times the value of κ at a
zero magnetic �eld,9 i.e.,

κ(B) = gc(B) × κ(0) = gc(B) ×
1 − πr2

2r
. (1)

[The value of κ(0) is obtained from Eq. (3).] For the convenience of
the reader, we replicate the proof of Eq. (1) from Ref. 9, which uses
Kac’s lemma,31–33 in Appendix D.

The Lyapunov exponent in billiards is also linked to mean
collision times as the following back-of-the-envelope calculation

motivates. Let us study the perturbation growth, i.e., the exponential
growth of the phase space distance |δ0(t)| of two initially in�nites-
imally close by trajectories. The origin of the exponential perturba-
tion growth and thus of chaos in billiards is collisions with curved
boundaries.34 Assuming an average perturbation growth increase of
C between collisions with curved boundaries and an average time κ

between such collisions, one would expect a perturbation growth of
|δ0(t)| ≈ Ct/κ |δ0(0)|. This means for the Lyapunov exponent of the
ergodic component of phase space [see the de�nition in Eq. (4)], we
expect

λ ≈
log(C)

κ
. (2)

In general, billiards have noncurved boundaries as well as
curved ones. Themean collision time τ between two consecutive col-
lisions with any parts of the billiard boundary is known analytically
for “any” billiard and is given by

τ =
π |Q|
|∂Q|

, (3)

where |Q| is the area of the billiard and |∂Q| is the total length of
its boundary.20 Since Eq. (3) is averaged over the entire boundary of
the billiard, it includes contributions from both chaotic and regular
components (if any). Also, notice that a formula similar to Eq. (3)
exists for billiards of any dimension, see Ref. 20.

The starting point of our work is the observation that in bil-
liards the mean collision time between curved boundaries κ (a more
precise de�nition will be given in Sec. II C) is fundamentally linked
to the chaotic phase space volume VCH by Kac’s lemma.31–33 There-
fore, the Lyapunov exponent is also linked to the chaotic phase space
volume, and the aim of this paper is to explore how far consider-
ations like Eq. (1) allow us to estimate the parameter dependence
of the Lyapunov exponent in billiard systems. To this end, we will
analyze the contributions to the approximate expression (2) and com-
pare it with detailed numerical simulations. In Sec. II, we provide the
basic framework we will use for computing λ, as well as apply the
aforementioned back-of-the-envelope calculation to realistic pertur-
bation growth. Following in Sec. III, we present our results about the
periodic Sinai billiard and the mushroom billiard. We conclude by
discussing the generality of our approach, while presenting one addi-
tional billiard with mixed phase space, the inverse stadium billiard,
which has been studied by Vörös et al.30

II. LYAPUNOV EXPONENTS IN BILLIARDS

In this section, we �rst give a brief overview of the DPH
framework23,24 for numerically computing λ, reciting the equations
that will be relevant for our study. We will then extend the frame-
work to motion in an external magnetic �eld. In the following, we
will assume that the point particle in the billiard has unit mass, and
momentum and velocity are the same.

The (maximum) Lyapunov exponent is de�ned based on the
evolution of the four-dimensional perturbation vector
δ0 = (δq, δp)T as

λ0(0),δ0(0) = lim
t→∞

1

t
log

|δ0(t)|
|δ0(0)|

, (4)
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with δ0 evolving according to the evolution equations in tangent
space, δ0̇ = J(0(t)) · δ0, where J is the Jacobian matrix of the equa-
tions of motion. For almost all 0(0) inside an ergodic component of
phase space, the value of λ does not depend on the initial condition.

A. Without magnetic field

The time evolution in the tangent space for a particle moving in
a straight line is

δ0(t) =
(

I2×2 t · I2×2

02×2 I2×2

)

δ0(0). (5)

At discrete time points, Eq. (5) is interrupted by collisions with the
boundary and the perturbation vector changes discontinuously. The
perturbation vector just after the collision (wewill use ′ to label quan-
tities right after the collision) is derived from the one just before the
collision as24

δ0′ =
(

δq − 2 (δq · n)n

δp − 2 (δp · n)n − 2γr
(δq·e)
cosφ

e′

)

(6)

for a collision with a boundary segment of curvature γr . The two
types of boundaries we will encounter in this work are straight walls
and the boundaries of circular discs. For a straight wall section γr = 0
and for a disc of radius r, we have γr = ± 1

r
, with—for collisions hap-

pening from the inside of the disc (as in the MB) and + otherwise
(as in the PSB). Here, n denotes the normal vector of the boundary
segment at the collision point q, and φ is the angle of incidence (mea-
sured with respect to the normal to the surface). The vectors e and e′

are unit vectors orthogonal to the incident and re�ected momenta p
and p′, respectively (for more details, see Ref. 24).

Notice that a collision with a straight wall does not change the
normof δ0 because both the coordinate and the velocity components
are re�ected specularly.

B. With magnetic field

Wenow extend theDPH formalism for a particle experiencing a
magnetic �eld perpendicular to the billiard plane. In this section, we
present only the �nal expressions. The full calculations are presented
in Appendix A.

The magnetic �eld is uniform, with value B (positive means a
counterclockwise rotation). The free evolution of the perturbation
vector δ0(t) in the presence of a perpendicular magnetic �eld is
given by

δ0(t) = B · δ0(t0),

B =







I2×2
ρ sin(ωt)

−ρ (cos(ωt) − 1)
ρ (cos(ωt) − 1)

ρ sin(ωt)

02×2
cos(ωt)
sin(ωt)

− sin(ωt)
cos(ωt)






, (7)

with the cyclotron frequency ω = 2B and the cyclotron radius
ρ = 1/ω. As already mentioned in the introduction, in the billiard,
the particle always moves with unit velocity by convention. The
expressions that give the discontinuous change of the perturbation

vector at a collision with a wall or disc are

δ0′ =
(

δq − 2 (δq · n)n

δp − 2 (δp · n)n − 2γr
〈δq,e〉
cosφ

e′

)

− ω
(δq · n)

(p · n)

(

0
S · p

)

,

S = 2

(

−2n1n2 n21 − n22
n21 − n22 2n1n2

)

, n =
(

n1
n2

)

, (8)

where γr again is the curvature of the wall segment (0 for a straight
wall, ± 1

r
for a disc).

C. The “toy model”

Before �nding an approximate expression for the value of λ in
our model systems, it is worthwhile to get an impression of how
the norm of the perturbation vector evolves with time. In Fig. 2,
we show typical plots for the three di�erent billiards. We computed
the perturbation growth using the DPH framework, sampling the
perturbation vector immediately before and after every collision to
resolve the instantaneous jumps. As the DPH evolution is linear, in
the actual numerical simulations, we renormalized the perturbation
vector after sampling to prevent numerical errors due to the rapid
perturbation growth.

Let us �rst examine Figs. 2(a) and 2(b). We see that the norm
of the perturbation vector changes in two ways. Let the jth collision

with a disc happen at time tj =
∑j−1

i=0 1ti = tj−1 + 1tj−1. There a dis-
continuous change of the perturbation vector norm happens, so that
|δ0′

j| = aj|δ0j| (in general, aj is a function of δ0j). The collision event
is followed by a time-interval 1tj, in which the perturbation norm
changes continuously because there are no collisions with curved
boundaries. Just before the next collision with a disc the perturbation
norm takes the value |δ0j+1|. In the following, we will refer to these
repeated segments of the growth curve as “elementary growth seg-
ments,” starting with one collision event with a disc and ending just
before the next one. In general, it is the segment of the perturbation
growth curve between successive dispersing or defocussing collisions
which are the origin of chaos in billiards.34 An elementary growth
segment thus re�ects the perturbation growth during an “e�ective
free path” as de�ned by Bunimovich.34

A crucial simpli�cation we do in deriving an approximate
expression for the Lyapunov exponent will be to express the pertur-
bation growth in the time-interval 1tj as a function z(1tj) of the
interval length. The actual precise value |δ0j+1/δ0

′
j| is not a simple

scalar function of the time interval since, for example, in the case of
the PSB we can obtain from Eq. (5)

|δ0j+1(1t)| =
√

(δq′
j + δp′

j1t)2 + (δp′
j)
2 (9)

[due to the linearity of the equations of motion of the tangent space
we can assume a norm of |δ0′

j| = 1 in Eq. (9)]. Equation (9) depends
on the initial orientations of both the momentum and position
deviation vectors and thus is not a function of just 1t.

We will show, however, by analyzing numerical data, that a rea-
sonable approximation can be obtained by assuming that such a
function z(1t) exists. Notice that this assumption is only regard-
ing the existence of z. The functional form and its complexity can
be completely arbitrary (and in fact in the following we have three
di�erent versions of z for the di�erent billiards). For each elementary
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FIG. 2. Typical time evolution of the logarithm of the norm of the perturbation vector |δ0(t)| for the periodic Sinai billiard without (a) and with (c) magnetic field (B = 1)
and for the mushroom billiard (e) (without magnetic field). Zoom-ins are below each panel. For (a)–(d), red markers mean collision with the disc, while blue markers mean
“collision” with the periodic walls (not a true collision, but a way of recording the value of |δ0|). For (e)–(f), red is collision with cap head, orange with cap walls, blue with stem
sides, and green with stem bottom. The colored background stripes denote the “elementary growth segments” discussed in Sec. II C (random colors are used) with hatched
orange color used for the laminar episodes (see Sec. II C).

growth segment, we thus write

|δ0j+1| = z(1tj) × aj × |δ0j| = z(1tj) × |δ0′
j|. (10)

We then recursively apply Eq. (10) to get

|δ0n| =
n−1
∏

i=0

aiz(1ti)|δ0(0)| ⇒

log (|δ0n|) =
n−1
∑

i=0

log(ai) + log(z(1ti)) (11)

(using |δ0(0)| = 1) and with Tn =
∑n−1

i=0 1ti we use Eq. (4) to write
λ = limn→∞ log (|δ0n|) /Tn. The quotient of the in�nite sums is the
same as the ratio of the average over all unit cells (denoted by 〈·〉), i.e.,

λ ≈
1

κ

(

〈log(a)〉 + 〈log(z(1t))〉
)

, (12)

κ ≡ 〈1t〉. (13)

Averaging over the unit cells implicitly assumes the ergodicity.
Notice also that in some billiards, there could be several ergodic
chaotic components that are separated from each other. In such
cases, the above process has to be applied to each component sep-
arately, since each component has its own exponent λ. For the bil-
liards considered here, we have found that furthermore 〈log(z(1t))〉
= log(z(〈1t〉)) = log(z(κ)) is good approximation that we will use.
This approximation is valid when the standard deviation of 1t is
small (compared to its mean).

In the remainder of the text, wewill call Eq. (12) the “toymodel.”
It is the more detailed version of the back-of-the-envelope calcula-
tion given in the introduction. In Sec. III we will apply this toy model

to speci�c billiards and see how well it approximates the Lyapunov
exponent and its parameter dependence.

D. Software

All numerical computations presented in this paper were
performed with an open source software to simulate billiards,
“DynamicalBilliards.jl.”35 In this paper, we extend the DPH frame-
work to magnetic �elds. We also implemented this extension in
the software (which previously only included the nonmagnetic
case). All code we used for this paper, including all code to repli-
cate the �gures we show here, is publicly available on GitHub:
https://github.com/Datseris/arXiv˙1904.05108.

III. RESULTS

A. Periodic Sinai billiard

We start our analysis with the PSB because it is the simplest case
and we are able to give a fully analytical expression for the Lyapunov
exponent in the simpli�ed toy model. We note that in the absence of
a magnetic �eld, the PSB is ergodic and its phase space is not mixed.
Nevertheless, it will serve as a pedagogic example of how the toy
model approximates the Lyapunov exponent.

For the PSB, τ = κ and the value of τ is known from Eq. (3)

κPSB =
1 − πr2

2r
. (14)

An approximation for z(1t) is easily found as well from Eq. (9),
namely,

zPSB(t) ≈
√

1 + t2, (15)
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FIG. 3. (a) Lyapunov exponent of the periodic Sinai billiard for different radii, com-
pared with the toy model. The dashed curve obtains 〈log(a)〉 by numeric average,
while the red curve uses Eq. (19). The blue curve is using the DPH framework.
(b) Average value of 〈log(a)〉 used in panel (a). (c) Perturbation norm increases

during the free flight part. In the zoom in (d), we also plot the curve
√
1 + 1t2 as

a dashed line.

which uses the assumption that after a collision with a disc, the
momentum contribution to the perturbation vector is much larger
than the position contribution, i.e., |δp′| � |δq′|. Numerical calcu-
lations show that this approximation is valid for small enough radii
(see Fig. 3). The instantaneous change factor 〈log(a)〉 is rather large
for all but very large disc radii. Also, as seen in panel (c) and its inset
(d), Eq. (15) almost perfectly approximates the perturbation norm
increase during the free �ight part.

We still need an approximate expression for a, the instantaneous
change factor, which we can derive from Eq. (6). Since the norm of
the position deviation does not change at the collision, we focus on
the momentum deviation δp′ = δp(r) − 2

r

δq·e
cos(φ)

e′ with δp(r) = δp −
2 (δp · n)n (if not explicitly written otherwise all quantities in this
paragraph have a collision-time index j, which we suppress to make
the symbols simpler). We de�ne A = 2

r

δq·e
cos(φ)

and carrying out the

calculations leads to

|δ0′|/|δ0| = a =
√

1 + A2 − 2A(e′ · δp) (16)

again using the assumption that |δ0j| = 1 (and recall that |δp(r)|
= |δp|, |δq′| = |δq|).

We now need to average 〈log(a)〉. We start our approxima-
tion by replacing the inner product (δq · e) by an averaged quantity
b(r) (we show below how b depends on r). It is expected that per-
turbations will grow and orient themselves perpendicular to the
particle’s direction of motion. Since e is a unit vector perpendicular

to the particle’s momentum and thus parallel to δq, this means that
〈|(δq · e)|/|δ0|〉 = 〈|δq|/|δ0|〉 = b(r).

Which portion of |δ0| is contained in |δq| is answered based on
howperturbations evolve during the free �ight part. Starting from the
jth collision the perturbations evolve for time1tj. Using Eq. (9) (and
assuming that the cross terms δp · δqwill drop out in the averaging),
we obtain

|δqj+1|
|δ0j+1|

=

√

|δq′
j |2

|δp′
j |2

+ 1t2j
√

|δq′
j |2

|δp′
j |2

+ 1 + 1t2j

. (17)

To analytically resolve Eq. (17), we use the same assumption as
in Eq. (15), |δp′| � |δq′|. We then average, replacing 1t by κ , which
leads to

b(r) =

√

κ2
PSB

1 + κ2
PSB

. (18)

We discard the term 2A(e′ · δp) in Eq. (16) again assuming that
the inner product averages to 0. Now, the only variable left to aver-
age over is φ, the angle with respect to the normal vector. This is
distributed in [−π/2,π/2] with probability distribution of cos(φ)/2.
Therefore,

〈log(a)〉 =
∫ π

2

− π
2

log





√

1 +
(

2b

r cos(φ)

)2




cos(φ)

2
dφ

=
csch−1

(
2b
r

)√
4b2 + r2

r
+ log

(
b

r

)

, (19)

with csch−1 being the inverse hyperbolic cosecant.
We then put Eqs. (14), (15), (18), and (19) into the toy model

of Eq. (12) and obtain an analytic approximation for the Lyapunov
exponent

λPSB(r) =
2r

1 − πr2

(

csch−1
(
2b(r)
r

)√

4b(r)2 + r2

r

+ log

(
b(r)

r

)

+ log





√

1 +
(
1 − πr2

2r

)2







 . (20)

The result is shown in Fig. 3(a), comparedwith the numerical value of
λ using the DPH framework as well as with the result of computing
the term 〈log(a)〉 in the toy model numerically from the evolution
of the perturbation vector norm. All three curves are in excellent
agreement for small and intermediate r, only for large r does Eq. (20)
slightly deviate from the numerical values because the approximation
for b(r) in Eq. (18) and thus for 〈log(a)〉 becomes less accurate.

B. Magnetic periodic Sinai billiard

We now want to apply the same process to the MPSB, which,
however, has a mixed phase space: there exist collisionless orbits like
those seen in Fig. 1(b) that constitute the regular part of phase space
(other unstable periodic orbits of zeromeasure are not relevant here).
We are of course only considering the Lyapunov exponent of the
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chaotic part of the phase space, which means that we initialize parti-
cles only in the chaotic phase space region. The mean collision time
κMPSB between successive collisions with discs is also only de�ned for
the chaotic phase space part (as the regular trajectories do not collide
with the discs).

The free �ight evolution in the MPSB is fundamentally di�er-
ent from the PSB. Not only are the functional forms di�erent but in
addition due tomagnetic focusing, it is possible (and in fact quite fre-
quent) for the perturbation norm to “decrease” during the evolution,
as can be seen in Figs. 4(e) and 4(f). In addition, as visible in Fig. 2(d),
it is also possible for the norm to decrease during the instantaneous
change as well.

This more complex behavior is of course hidden in the more
complicated formulas of our extension to the DPH framework for
magnetic �elds. For example, explicitly writing out Eq. (7) gives

|δ0(t)| =
[

(δp2x + δp2y)

+
(

δqx + δpy
cos(ωt) − 1

ω
+ δpx

sin(ωt)

ω

)2

+
(

δqy − δpx
cos(ωt) − 1

ω
+ δpy

sin(ωt)

ω

)2
]1/2

(21)

(where againwe assumed |δ0(0)| = 1). The consequences of Eq. (21)
can be seen in Figs. 4(d) and 4(e). Using a univariate scalar function
z(1t) to approximate these distributions appears to be a bold move,
but in the end it will turn out to give good approximation. To obtain
z(1t), we simplify Eq. (21) to

zMPSB(t) =

√

1 +
(
1 − cos(ωt)

ω

)2

+
(
sin(ωt)

ω

)2

, (22)

which is also plotted in Figs. 4(d) and 4(e).
In the next step, we compute 〈log(a)〉 numerically and use its

value in the toy model along with zMPSB(κ(B)). We remind that the
value of κ , the mean collision time between discs in MPSB, is not
known analytically but it is connected with the chaotic phase space
portion through Eq. (1). The results of the toy model are presented
in Fig. 4.

Besides the fact that our toy model approximates λ very accu-
rately, Fig. 4 shows the impact of phase space restriction on λ. In our
toy model, the value of λ is composed of �ve contributions, the �rst
being the denominator κ . The value of 〈log(a)〉 itself has two con-
tributions, one again stemming from κ (as shown in Sec. III A) and
the other from B. The function zMPSB also has two contributions, one
from B and one from κ . Therefore, three out of �ve contributions to
λ are inherently linked to the restriction of the chaotic phase space
by regular orbits.

C. Mushroom billiard

Because the volume fractions of the regular and the chaotic
phase space regions are not known analytically in theMPSB, we have
turned to a billiard that also has a mixed phase space but allows us
to calculate these fractions, and, as we will show, the relevant aver-
age time scales analytically: themushroombilliard (MB). The regular
orbits in theMB are orbits forever staying in the cap, evolving exactly

FIG. 4. (a) Lyapunov exponent of the magnetic periodic Sinai billiard (MPSB) for
different radii vs magnetic field, compared with the toy model. The solid curves
are the numeric result λ, the dashed curves are the toy model using the numeric
average of 〈log(a)〉. (b) Numeric average of 〈log(a)〉 vs the magnetic field. (c)
Chaotic phase space portion [gc = κ/κ(0)] of the MPSB [(a)–(c) share legend].
(d) and (e) Perturbation norm change during the free flight in theMPSB (calculated
with the DPH framework). Plotted with dashed lines are Eq. (22) (data for r = 0.2).

like they would as if they were in a circular billiard.19 The tangential
circle to these orbits has a radius ≥w/2, as shown in Fig. 1(a). The
rest of the orbits, which do not satisfy this criterion, eventually enter
the stem and are chaotic. The tangential circle argument was used
in Ref. 5 to obtain an analytic expression for the regular phase space
volume VREG of the MB as a function of the billiard parameters,

VREG = 2π

(

arccos
(w

2

)

−
w

2

(

1 −
w2

4

))

, (23)

VTOT = 2π(hw + π/2), (24)

VCH = VTOT − VREG, (25)

where VTOT and VCH are the total and chaotic phase space volume
(all lengths are scaled to the cap radius r which is �xed to r = 1). The
parameter dependence of VCH is illustrated in Figs. 5(c) and 5(d).
Interestingly, VCH does not vanish for small h, although it is obvi-
ous that there are no chaotic orbits for h = 0. This discontinuity is
due to the fact that the volume of chaotic phase space in the cap
is independent of stem height for nonzero h, but drops to zero for
h = 0.

Chaos 29, 093115 (2019); doi: 10.1063/1.5099446 29, 093115-6

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. (a) A laminar episode (orange, dashed) and two chaotic episodes (blue,
purple) in the mushroom billiard. Start and end of each episode are denoted with
closed and open circles and the blue episode starts directly after the orange. The
cap head is plotted in dark color to differentiate. (b) Mean return time to the stem
bottom, which is equivalent with the average elementary growth segment time,
Eqs. (27) and (28). (c) and (d) Volume of chaotic phase space for the mushroom
billiard.

In Figs. 6(c) and 6(d), we present a scatterplot of various pos-
sible increases of the perturbation norm during the unit cells. We
found that there are clearly distinct contributions to the increase,
each seemingly approximated as a linear function of1t. By analyzing
the dynamics in more detail, it turns out that the di�erent contri-
butions of Fig. 6(c) and 6(d) come from the trapping of the chaotic
orbits in the regular phase space. In the coordinate space, this means
that the particles get trapped in the cap and mimic the motion of the
regular phase space there until eventually escaping after some time.
This e�ect is often called “intermittency” and is known to occur in
mushroom billiards.36,37 Intermittent behavior in theMB can happen
in the stem as well, where orbits stay trapped bouncing between the
stem walls.

We, therefore, have to separate the elementary growth segment
into two di�erent “episodes:” the chaotic episode c and the laminar
episode `, where the particle is trapped in the cap. Notice that the
second intermittent behavior, trapping in the stem, does not lead to
a new type of dynamics, but is just prolonged chaotic episodes (sim-
ilarly to a large free �ight in the PSB). We show the two episodes in
Fig. 5(a). Numeric calculations shown in Figs. 6(e) and 6(f) show that
each episode has a di�erent average time, τc, τ`, respectively.

During the chaotic episodes, the picture is very similar to the
PSB. A collision with the cap head gives an instantaneous increase
to |δ0|, followed by an approximately linear increase until the next

collision with the cap head. Here, the linear increase approxima-
tion is valid because for the chaotic episodes1t & 2h + 2 − w. After
collidingwith the cap head, the particlemay return to the stem imme-
diately which initializes another chaotic episode. Occasionally, after
ending a chaotic episode, the particle will get trapped in the cap [see
Fig. 5(a), orange], starting a laminar episode. Even though there are
successive collisions with the cap head in this episode, the pertur-
bations do not increase exponentially. The successive instantaneous
increases are very quickly becoming insigni�cant [see Figs. 2(e)
and 2(f)] due to the fact that cap collisions have an initially focusing
e�ect which only becomes defocusing if the consecutive free motion
is long enough, which is not the case in the laminar episodes. There-
fore, the overall perturbation growth inside the cap trapping episodes
is “linear.”

Let nc and n` be the counts of chaotic and laminar episodes up to
time T. Notice that n` is strictly less than nc since a chaotic episode
always follows a laminar episode, but the inverse is only occasion-
ally true. In the limit T → ∞, we de�ne f` = n`/(n` + nc) to be the
frequency of the laminar episodes. We then write the function z as

zMB(1t) = (oc + sc1tc) + f`(o` + s`1t`), (26)

with oi being the o�set and si being the slope of the linear approx-
imation [we obtain these values with least squares �t to Fig. 6(c)
and 6(d)]. For the chaotic episodes s, o are constant vs h,w while for
the laminar episodes o depends strongly on w. Also, for the chaotic
episodes, o has a negative value (of around −0.8) which is expected
due to the focusing e�ect. We once again compute 〈log(z(1t))〉
simply by replacing 1t by its average values τc, τ` in Eq. (26).

The instantaneous change factor a is the same between the lam-
inar and chaotic episodes so we do not need to separate it. Notice
that for the laminar episode we only consider the �rst jump as
the instantaneous increase. Subsequent jumps that decrease rapidly
are encoded in the linear growth approximation. After comput-
ing 〈log(a)〉 numerically, we still need a value for κMB, the ele-
mentary growth segment average time, to apply our toy model
λ = (〈log(a)〉 + log(zMB(τc, τ`))/κMB. Numerically, we can estimate

κMB = τc + f`τ`. (27)

However, we can estimate κMB analytically as well, using Kac’s
lemma.31–33 The key to this is understanding that the mean elemen-
tary growth segment time is equivalent with the mean return time
to the stem bottom, since all phases in the end of the day have to go
there, since all phases are part of the chaotic phase space.

We present the full proof in Appendix B. The �nal expression is
given by

κMB(h,w) =
VCH(h,w)

2w
. (28)

We compare the analytic formula with the numeric result in Fig. 5(b)
and �nd the expected perfect agreement, since Eq. (28) is exact. In
Appendix C, we also present an analytic approximation for τc. Since
we know κMB and τc analytically, we also know the product f`τ` (but
we do not have an expression for f` or τ` individually).

We can now use our toy model to compare with λ, which we do
in Figs. 6(a) and 6(b). Again we �nd good agreement between the toy
model and the numerical simulation using the DPH framework. The
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FIG. 6. (a) and (b) Lyapunov exponents in the mushroom billiard (MB) vs the width w or height h of the stem. Solid lines are numeric results using the DPH framework, and
dashed lines are using the toy model. (c) and (d) Perturbation norm increases during the chaotic c and laminar ` episodes. (e) and (f) Parameters of the toy model vs w or h
(for constant h = 1 and w = 1, respectively); legend is shared.

model mildly diverges for very small w, probably because the mean
laminar time τ` diverges as seen in Fig. 6(e).

As was the case in the MPSB, the average elementary growth
segment time κ is inversely proportional to λ and directly propor-
tional to the chaotic phase space volume VCH. This shows that phase
space restrictions have an immediate impact in the value of the Lya-
punov exponent even for billiardswith intermittent dynamics. Notice
that in theMB bothVCH and λ increase asw increases. This is simply
due to the dependence of VCH on w, as well as the direct dependence
of κMB on 1/w [this, for example, was not the case in Eq. (1) for the
MPSB].

IV. DISCUSSION

To summarize, we have examined the value of the Lyapunov
exponent λ in chaotic billiards. We were able to create a concep-
tually simple model that approximates λ very well. The model is
based on how perturbations evolve in billiards “on average” and
helps to understand how each part of the dynamics contributes to
the perturbation increase. The simple model is written as Eq. (12),
which is

λ =
1

κ

(

〈log (a)〉 + 〈log (z(1t))〉
)

,

where a the instantaneous change of |δ0| at a collision with a curved
boundary and z(t) the continuous change of |δ0| in between colli-
sions with curved boundaries. κ is the average elementary growth
segment time equal to the mean collision time between curved
boundaries. The approximations that lead to the toy model were the
following. First, we assumed that the chaotic phase space is ergodic
and time averages can be replaced by phase space averages and that
for 1t, log(a), log(z(1t)), their averages are �nite and greater than
0. We then made the simplifying assumption that the norm of the

perturbation vector increases continuously in between successive
chaos-inducing collisions (i.e., in each elementary growth segment)
as a “univariate” function of the time interval z(1t).

We used Eq. (12) to �nd an analytic expression for λ in the
periodic Sinai billiard (PSB). We have also shown that Eq. (12) can
be used to analyze the Lyapunov exponent in the magnetic peri-
odic Sinai billiard (MPSB), and by approximating the numerical
curves identi�ed the main contributions. We could follow the same
approach for the mushroom billiard (MB), even though the process
is complicated in this case by intermittent dynamics. In both billiards
with mixed phase space, we connected the chaotic phase space vol-
ume with λ through κ and showed that λ has a leading contribution
given by the inverse of the chaotic phase space volume (for theMPSB,
we used the chaotic “portion” instead of volume, because the total
phase space volume does not depend on B).

To strengthen our point that a prominent contribution to the
parameter dependence of the Lyapunov exponent in billiard is given
by the inverse chaotic phase space volume, we present one �nal bil-
liard, called the inverse stadium billiard (ISB) shown in Fig. 7(a),
originally studied by Vörös et al. in Ref. 30. In this billiard, a particle
is propagating inside the stadium on straight lines, but after passing
the boundary of the stadium, it is subjected to a constant magnetic
�eld, which brings the particle back inside the stadium, as depicted
in Fig. 7(a). In the limit of in�nite magnetic �eld, the ISB recovers the
fully chaotic Bunimovich stadium, for �nite magnetic �elds it has a
mixed phase space. Here, we do not want to analyze the ISB in any
detail but only point out that also in this billiard the parameter depen-
dence of its Lyapunov exponent is closely following the inverse of the
chaotic phase space volume as shown in Figs. 7(b) and 7(c).

We want stress how di�erent the mechanisms are that lead to
chaos in the three di�erent billiards. In the MPSB, it is dispersing as
well as the magnetic �eld. InMB, it is defocusing, and, in the ISB, it is
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FIG. 7. The inverse stadium billiard (ISB). (a) An example orbit in the ISB (stadium
width and length are 0.5). Outside the stadium, the particle undergoes circular
motion with radius 1/ω. (b) The boundary map (see Appendix B) of the ISB, com-
puted forω = 10. In the middle, one can see stability islands, which seem to have
a fractal boundary. (c) Lyapunov exponent λ and chaotic volume VtextCH vs ω,
both normalized to their maximums for comparison. λ is obtained with a modified
version of the DPH framework using tangent space evolution matrices derived by
Vörös et al. in Ref. 30. VCH is the volume of the billiard flow of the chaotic orbits
and is calculated by weighting the area of the ergodic region (obtained numeri-
cally) on the boundary map with its mean time to next collision. We only consider
orbits that do intersect the billiard boundary of the ISB.

even more involved. Yet, in all three cases, we �nd what is suggested
by our toy model: the Lyapunov exponent has a leading contribution
that is inverse to the chaotic phase space volume.

Because generally chaos in billiards arises via dispersing and
defocusing collisions with curved boundary segments,34 the Lya-
punov exponent is necessarily inversely linked with the mean return
time to these boundary segments. Furthermore, Kac’s lemma dic-
tates that the mean return time of the chaotic trajectories to these
boundaries is directly proportional to the chaotic phase space
volume. For this reason, we hypothesize that, for most chaotic bil-
liards with mixed phase space, the Lyapunov exponent has a leading
contribution inverse to the chaotic phase space volume.

This should straightforwardly carry over to higher dimensions
as well, since Kac’s lemma, the DPH framework, as well as our toy
model, does not depend in any way on the dimensionality of the bil-
liard. So far, we did not �nd signi�cant di�erences between billiards
with sharply divided phase space (like the MB and the MPSB) and
a fractal phase space structure (like the ISB). To conclude whether
there are fundamental di�erences between sharply-divided and frac-
tal phase spaces, one will have to do more research. What we want to
point out is that for fractal phase spaces, it is much harder to estimate
the volume of the chaotic set.

APPENDIX A: EVOLUTION OF PERTURBATION

VECTOR IN A MAGNETIC FIELD

In their paper, Dellago, Posch, and Hoover give two main equa-
tions to compute the evolution of perturbations in the tangent space
along a piecewise smooth �ow de�ned by the autonomous ODE
system,

0̇ = F(0). (A1)

During smooth propagation, the perturbation vector δ0 along the
trajectory 0 evolves according to

˙δ0 =
∂F

∂0

∣
∣
∣
∣
0

· δ0. (A2)

If smooth propagation is interrupted at discrete times tj(0) by a dis-
continuous jump, represented here by a di�erentiablemapMj(0), the
perturbation vector after the jump is given by

δ0′ =
∂Mj

∂0

∣
∣
∣
∣
0

· δ0i +
(

∂Mj

∂0

∣
∣
∣
∣
0

· F(0i) − F(M(0))

)

δτc, (A3)

where δτc = tj(0 + δ0) − tj(0). For the case of elastic re�ection
with an obstacle,Mj can be written as

0
′ = Mj(0) =

(

I2×2 02×2

02×2 I2×2 − 2(n ⊗ n)

)

· 0. (A4)

Here, n is the normal vector of the obstacle at the collision point,
I2×2 and 02×2 are the 2 × 2 identity and zero matrices, respectively,
and (a ⊗ b)jk = ajbk is a second-order tensor.

1. Propagation

In magnetic billiards, particles propagate in circular arcs. To
get the simplest possible set of equations of motion describing
this mode of propagation, it is useful to introduce a phase angle
θ = arctan(py/px). For uniform circular motion, this phase angle
grows linearly in time as the system rotates with constant angular
velocity ω. This can be exploited to determine ṗ using the chain rule,

ṗ =
dp

dt
=

dθ

dt
·
dp

dθ
= ω ·

dp

dθ
. (A5)

Using ‖p‖ = 1, one can easily calculate the explicit relation between
p and θ ,

px = cos(θ)

py = sin(θ)
⇒

dpx

dθ
= −py,

dpy

dθ
= px,

(A6)

and combine the results of Eqs. (A5) and (A6) to receive the equations
of motion

F(0) =
(

p
ω · Rp

)

where R =
(

0 −1
1 0

)

. (A7)

Using Eq. (A2), we can now state the equations of evolution for a
perturbation vector δ0 using the Jacobian J of F,

˙δ0 = J · δ0 =
(

02×2 I2×2

02×2 −ω · R

)

δ0. (A8)

Chaos 29, 093115 (2019); doi: 10.1063/1.5099446 29, 093115-9

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Using an exponential ansatz, we can compute the general solution of
this system and receive a �nal result of

δ0(t) = B · δ0(t0),

B =







I2×2
ρ sin(ωt)

−ρ (cos(ωt) − 1)
ρ (cos(ωt) − 1)

ρ sin(ωt)

02×2
cos(ωt)
sin(ωt)

− sin(ωt)
cos(ωt)






, (A9)

where ρ = 1/ω is the cyclotron radius.

2. Collisions

The derivation of the collision map for δ0 is largely analogous
to the process used by DPH to derive their result for nonmagnetic
billiards. The equations of motion are assumed as stated in Eq. (A7).
For Eq. (A3), we require the Jacobian matrix ofMj, which is

∂Mj

∂0
=
(

I2×2 0
A B

)

, (A10)

where

A = 2 ((n ⊗ p) + 〈p,n〉 1I2×2)
∂n

∂q
,

B = I2×2 − 2 (n ⊗ n).

By inserting Eqs. (A7), (A4), and (A10) into (A3), we �nd

δ0′ =
(

I2×2 0
A B

)

δ0 +
[(

I2×2 0
A B

)

·
(

p
ω · Rp

)

−
(

p − 2 (n ⊗ n) p
ω · RBp

)]

δτc. (A11)

It is now helpful to continue calculations for δq′ and δp′ separately.
For the position component δq′, equation (A11) can be written as

δq′ = δq + [p − p + 2 (n ⊗ n) p] δτc

= δq + 2 δτc (n ⊗ n) p. (A12)

For the momentum component δp′, we get

δp′ = A δq + B δp + δτc [pA + ωS] , (A13)

where

S := BR − RB = 2

(

−2n1n2 n21 − n22
n21 − n22 2n1n2

)

.

This can be simpli�ed by using the fact that (b ⊗ a)c = 〈c, a〉 b and
introducing the quantity δqc = δq + δτc p, which represents the real
space di�erence vector between the collision points of satellite and
reference trajectories,

δp′ = δp − 2 〈δp,n〉n − 2
∂n

∂q
(〈p, δqc〉n

+ 〈p,n〉 δqc) + δτc ω Sp. (A14)

Using geometric considerations outlined by DPH, we can now
rewrite the penultimate term to get

δp′ = δp − 2 〈δp,n〉n − 2γR

〈δq, e〉
cosφ

e′ + δτc ω Sp, (A15)

FIG. 8. (a) Geometric derivation of δτc. As all spatial perturbations are small, it is
sufficient to approximate the obstacle as a straight line. In this example, the satel-
lite particle collides after the reference particle. (b) Decomposition of momentum
into normal and tangential components.

where φ is the angle of incidence, γR is the local curvature of the
obstacle, and e and e′ are unit vectors orthogonal to p and p′,
respectively.

3. Collision delay time

The quantity δτc in Eqs. (A3) and (A11) can be interpreted as
the time delay in between the collisions of the reference trajectory 0

and its satellite 0 + δ0.
It can be computed by determining the signed distance from the

satellite to its collision point measured along its trajectory at the time
tj(0) of the collision of the reference particle. As we are considering
the linearized dynamics of the perturbation and Eq. (A3) is valid only
to the �rst order of δ0, we will ignore all higher orders of δ0 in the
subsequent calculations.

Furthermore, we will denote vector components in the normal
direction of the obstacle by a subscript n, i.e., an = 〈a,n〉. Similarly,
the tangent component of a vector will be denoted by a subscript t.

Geometrically, one can immediately derive the following two
relations from the two triangles highlighted in Fig. 8(a):

ρ sinφ = 〈δq,n〉 − 〈c,n〉 (blue triangle), (A16)

ρ sin θ = 〈c,n〉 (red triangle), (A17)

where c is a vector between the obstacle and the cyclotron centre, as
shown in Fig. 8(a). Eliminating the factor 〈c,n〉 yields

sin θ =
〈δq,n〉

ρ
− sinφ. (A18)

By construction, θ cannot exceed π

2
in the absolute value. Therefore,

we can safely apply the arcsine function to Eq. (A18), receiving an
expression for θ ,

θ = arcsin

(
〈δq,n〉

r
− sinφ

)

. (A19)

We can now use this to compute the angle α corresponding to the arc
the particle has to travel during δτc.
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Using Fig. 8(a), we can determine an expression for α

α = φ + θ

Eq. (A19)= φ + arcsin

(
〈δq,n〉

r
− sinφ

)

. (A20)

This can be further simpli�ed by expressing φ in terms of the satellite
particle’s momentum [compare Fig. 8(b)],

α = arcsin

(
pt + δpt

‖p + δp‖

)

︸ ︷︷ ︸

K

+ arcsin

(
〈δq,n〉

r
−

pt + δpt

‖p + δp‖

)

︸ ︷︷ ︸

L

. (A21)

We can now linearize Eq. (A21) to receive our �nal result forα. As the
individual terms are somewhat complicated, but very similar, we will
treat them separately. The �rst-order Taylor expansion of leftmost
term is

K ≈ arcsin

(
pt

‖p‖

)

+ ζ(δpt), (A22)

where ζ is of the form a · δpt + b · δpn with a, b given by the respec-
tive partial derivatives. Expanding the rightmost term in (A21) yields
the similar result of

L ≈ arcsin

(

−
pt

‖p‖

)

− ζ(δpt) +
1

√

1 − p2t
·
〈δqi,n〉

r
. (A23)

This simpli�es the �nal result for α signi�cantly. Using the antisym-
metry of the arcsine function, we can see that most of (A22) and
(A23) cancel out, leaving only

α =
1

√

1 − p2t
·
〈δq,n〉

r
. (A24)

Finally, we have to multiply Eq. (A24) with the cyclotron radius r,
then divide the resulting arclength by

∥
∥p
∥
∥ to get δτc.

As ‖p‖ = 1 per convention, we can substitute
√

1 − p2t =
∣
∣pn
∣
∣.

However, we know that pt < 0 as the reference particle must have
been moving toward the obstacle to collide with it. Therefore, we can
further simplify our result to obtain

δτc = −
〈δq,n〉
〈p,n〉

. (A25)

This is the same result as for linear propagation in Ref. 24 [Eq. (18)],
since higher orders of δ0 were neglected.

Combining Eqs. (A12), (A15), and (A25), we receive the �nal
result

δ0′ =
(

δq − 2 (δq · n)n

δp − 2 (δp · n)n − 2γr
〈δq,e〉
cosφ

e

)

− ω
(δq · n)

(p · n)

(

0
S · p

)

. (A26)

APPENDIX B: MEAN RETURN TIME TO STEM

In this section, we will derive an analytic expression for the
mean return time to the stem bottom in a mushroom billiard. Using
Kac’s lemma,31–33 which states that for volume-preserving maps, the
mean number of iterations nS required to return to a compact subset
S of phase space is given by

nS =
µ(A)

µ(S)
, (B1)

where µ(·) is the volume of a set and A is the subset of phase space
accessible to orbits originating in S.

To transform the billiard �ow into a map, we discretize time in
small steps 1t, implicitly considering the limit of 1t → 0. We now
choose the set S of momenta and positions de�ned by

S = {q ∈ Y , py > 0}, (B2)

where Y is a box of width w and height ε at the bottom of the stem.
One should be careful about the choice of S. The simplistic approach
of choosing the cap semicircle as the returning set (since the ele-
mentary growth segments are delimited by collisions with curved
boundaries) will not yield the correct result. That is because themean
return time to the cap semicircle inherently includes contributions
from both the periodic orbits of the MB and the laminar episodes of
the elementary growth segments, which we have already shown to
correspond to “free �ight”-like motion.

The phase space volume of S is µ(S) = πwε in the limit of
1t → 0. As the chaotic phase space component of mushroom bil-
liards is ergodic,19we know that the measure of the subset A of phase
space accessible from S is given by the volume of chaotic phase space
VCH = VTOT − VREG.

Applying Kac’s lemma to get themean iterations to return to the
stem and multiplying by 1t, we get a result for the mean return time
κS(h,w, r) to the set S,

κS(h,w) =
VCH(h,w)

πεw
1t. (B3)

To eliminate 1t, we divide by κS for w = 2 to get

κS(h,w) =
VCH(h,w)

VTOT(h, 2)

2

w
κS(h, 2). (B4)

As this equation no longer depends on ε, we can now take the limit
ε → 0. The reason to use w = 2 here is because the MB becomes the
stadium billiard for w = 2 (and thus is fully chaotic with no regular
components with measure > 0).

We can �nd κS(h, 2) because of the ergodicity of the MB for
w = 2. Speci�cally, it holds that κS(h, 2) = nS(h) × τ with nS being
the mean amount of iterations to return to the stem and τ being
the mean collision time in the MB given by Eq. (3). We consider
the boundary map of the billiard (Birkho� coordinates), (ξ , sinφn),
with ξ being the coordinate along the boundary (i.e., the arc-length)
and φn being the angle of incidence with respect to the normal vector
at ξ . This coordinate system is a discrete mapping and Kac’s lemma
applies directly. Therefore, the mean iterations to return to the stem
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bottom are

nS =
2 |∂Q|
2 · 2

, (B5)

where |∂Q| is the perimeter the boundary (the explicit factor of 2
represents the contribution of sinφn). Using Eq. (3), we �nd

τ =
π · (2h + π/2)

|∂Q|
. (B6)

Combining Eqs. (B5) and (B6), we receive an expression for themean
stem return time in the fully ergodic case

κS(h, 2) =
π

2
(2h + π/2). (B7)

This expression can be simpli�ed by substituting the total phase space
volume as de�ned in Eq. (25), yielding

κS(h, 2) =
VTOT(h, 2)

4
. (B8)

Inserting this result into Eq. (B4), we receive

κMB(h,w) =
VCH(h,w)

2w
. (B9)

APPENDIX C: MEAN DURATION OF CHAOTIC

EPISODES

Achaotic episode in theMB as de�ned above consists of the par-
ticle travelling from the cap head directly into the stem and back up
to the cap head, without any other collisions inside the cap. To deter-
mine the mean duration τc of these episodes, we can geometrically
determine the average lengths of the trajectories, exploiting that all
trajectories are uniquely de�ned by the angle of incidence α and the
distance δ from the cap center at which they enter the stem.

To simplify the calculation, it is useful to split the trajectory into
themean length of cap transit 〈c〉 and themean length of stem transit
〈s〉, where τc = 2〈c〉 + 2〈s〉.

The stem transit length can be easily computed using simple
trigonometry and depends only on the angle α

s =
h

cos(α)
. (C1)

As the directions of particle momenta are equidistributed, we know
that α must be cosine-distributed. We can now integrate over α to
obtain the mean s, �nding

〈s〉 =
∫

h

cosα

1

2
cos(α)dα = πh. (C2)

Determining the cap transit length ismore di�cult as it depends
on both α and δ. Using the law of sines, we can derive

c =
r

cos(α)
cos

(

asin

(
δ

r
cosα

)

− α

)

. (C3)

To get an average result, this expression has to be integrated both over
δ and α, again using the fact that α is cosine-distributed. Unfortu-
nately, we were unable to solve the integrals analytically. Therefore,

we decided to approximate
∫

c dδ by a polynomial before performing
the second integration, yielding

〈c〉 ≈ 1 −
w2

36
−

w4

1200
− · · · . (C4)

APPENDIX D: PROOF OF EQ. (1)

We are interested in the �ow of the PSB but to apply Kac’s
lemma, we need a discrete system. Thus, we obtain a map of the �ow
8t by discretizing in time (similarly with Appendix B), f := 81tε ,
with 1tε ∼ ε. To prove Eq. (1), we will apply Kac’s lemma to a set S .

Let TS(B) = 1tε × nS(B) (where B is the magnetic �eld)
denote physical recurrence time instead of map iterations. LetW be
a circle of radius r + ε concentric to the disc of the PSB and de�ne
the phase space subset Sε such that

Sε = {x, v : x ∈ W and v · η(x) < 0}, (D1)

where η(x) is the vector normal toW . The mean collision time κ of
the PBS is exactly TS in the limit ε → 0.

To �ndµ(S ;B), the measure of set S , we �rst realize that it does
not depend on the magnetic �eld, µ(S ;B) = µ(S ; 0) = µ(S). This
is due to the in�nitesimal width of S , over which motion can always
be approximated by a straight line for all �nite magnetic �elds val-
ues (i.e., equalling the magnetic �eld free case). Then, using (B1) at
B = 0, we have

TS(B = 0) =
(

1tε

µ(Sε)

)

µ(A;B = 0) =
(

1tε

µ(Sε)

)

, (D2)

because the PSB without magnetic �eld is fully ergodic and thus
µ(A;B = 0) = µ(M) = 1 (here M denotes the entire phase space
whose measure we set for simplicity to 1). By substitution, we get
TS(B) = µ(A;B) × TS(0). For small enough magnetic �elds, all
chaotic orbits (and up to measure 0 only those) collide with the
discs. In the limit ε → 0, both 1tε and µ(Sε) go to 0 linearly with
ε; therefore, their ratio converges, i.e., TS → κ . Since by de�nition
µ(A) = gc, the portion of chaotic orbits in the PSB (because we set
the entire volume to have measure 1), we �nd that the mean colli-
sion time is given by the fraction of chaotic orbits as a function of the
magnetic �eld B, times the mean collision time at B = 0

κ(B) = gc(B) × κ(0). (D3)
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