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Efficient transfer of sensory information to higher (motor or associa-
tive) areas in primate visual cortical areas is crucial for transforming
sensory input into behavioral actions. Dynamically increasing the level
of coordination between single neurons has been suggested as an
important contributor to this efficiency. We propose that differences
between the functional coordination in different visual pathways
might be used to unambiguously identify the source of input to the
higher areas, ensuring a proper routing of the information flow. Here
we determined the level of coordination between neurons in area MT
in macaque visual cortex in a visual attention task via the strength of
synchronization between the neurons’ spike timing relative to the
phase of oscillatory activities in local field potentials. In contrast to
reports on the ventral visual pathway, we observed the synchrony of
spikes only in the range of high gamma (180 to 220 Hz), rather than
gamma (40 to 70 Hz) (as reported previously) to predict the animal’s
reaction speed. This supports a mechanistic role of the phase of high-
gamma oscillatory activity in dynamically modulating the efficiency of
neuronal information transfer. In addition, for inputs to higher cortical
areas converging from the dorsal and ventral pathway, the distinct
frequency bands of these inputs can be leveraged to preserve the
identity of the input source. In this way source-specific oscillatory activ-
ity in primate cortex can serve to establish and maintain “functionally
labeled lines” for dynamically adjusting cortical information transfer
and multiplexing converging sensory signals.
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Complex neural tasks such as converting sensory information
into appropriate motor actions and the associated decision

processes require carefully and dynamically coordinated neural
activity in networks of cortical areas (1–5). Many studies have
shown that the response variability of the contributing pop-
ulations of sensory neurons play a central role in determining the
variations of behavioral response (6–18), as well as perceptual
decisions (19–21). Local field potentials (LFPs)—signals repre-
senting the extracellular neural activity in a local volume of brain
tissue—provide a measure for activities mediated by relatively
localized neuronal pools (22, 23). These signals, extracted from
the low-frequency (<500 Hz) components of extracellular neural
signals, reflect mainly the collective synaptic activities across
local neural populations (23, 24), predominantly induced by the
local spiking activity (25). Recent research has shown that LFP
signals could provide useful information on how neural activities
are linked to behavior (12, 14, 16, 17, 26). These studies have
demonstrated that the power of gamma and high-gamma (50 to
200 Hz) LFPs, as well as multiunit neural activities, in area MT
of primate visual cortex are linked to behavioral outputs in a
trial-by-trial manner (14, 16). Moreover, the strength of gamma
synchrony induced among MT neurons reflects the size of

correlation between neural activity and behavior (12). Interestingly,
it has also been shown that the degree of gamma-band synchroni-
zation among activated V4 neurons can predict the speed of be-
havioral responses (17). Many studies thereby have linked multiunit
activities, as well as the neural oscillations captured by LFPs, to
behavior. However, it is not clear, especially for area MT (an area
with strong projections to motor cortical areas), how single neurons
are temporally coordinated relative to either an area’s input neural
activity or its overall population activity, to modulate behavior.
Temporal coordination of single neurons in a neuronal en-

semble is often measured by the coupling of spiking activities to LFP
oscillations (27–31). Such a coupling has been observed over many
cortical regions, such as visual areas (28, 32–34), the prefrontal
cortex (35), motor cortex (29), and hippocampus (30, 36–38).
Here, we have taken advantage of the coupling between

single-unit activities and the LFP phases to study how the tem-
poral coordination of single neurons in area MT of rhesus
monkeys may be associated to the animal’s behavior. Our results
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indicate that, while an animal performs a visual change detection
task, the coupling of spikes to high-gamma LFP oscillations
(>180 Hz) in the dorsal visual pathway predicts the animal’s
behavioral responses. This suggests that efficient sensory in-
formation processing is aided by a high degree of coupling be-
tween the input from an upstream area to a cortical area’s
output. Given a similar observation, but in a different frequency
band [gamma oscillations (40 to 70 Hz)] along the ventral visual
pathway, we propose that downstream cortical areas may use
these distinct frequency bands to distinguish input from the two
pathways using these “functionally labeled lines.”

Results
To study the neural mechanisms underlying visuomotor behavior,
we trained three monkeys to perform a change detection task (SI
Appendix, Fig. S1). Each monkey had to touch a lever and main-
tain its gaze on a central fixation point to start a trial. Next, an
eccentric spatial cue briefly appeared on the screen to mark the
upcoming target stimulus’ location. Then, two (monkeys H and T)
or four (monkey C) coherently moving random dot patterns
(RDPs) were shown and the monkey was rewarded with a drop of
juice if it released the lever immediately after the target RDP
underwent a short color/direction change. All animals correctly
reported the target change in more than 85% of those trials which
were not terminated because the gaze deviated from the fixation
point. Single-unit activity and LFPs were recorded simultaneously
from area MT of the three monkeys while they performed the
task. Each animal’s hit trials were sorted into two subsets
according to its reaction time to the target change [response time
(RT)] distribution. To this end, the trials were sorted based on
their RTs in an ascending order and subdivided into four parti-
tions based on the thresholds corresponding to 25% quantiles. An
equal number of trials were selected from the first and last par-
titions to create a “fast” and “slow” subgroup of trials. Here we
measure the interneuronal synchronization by calculating the
coupling of neural spikes to the phase of different LFP frequen-
cies [spike-phase coupling (SPC)] (35, 39). SPC is computed for
the neural activity in a 1,000-ms time window following the stim-
ulus onset before the target change (see SI Appendix, Fig. S2 for
details). Our analyses demonstrate that SPC in high-gamma fre-
quencies (180 to 220 Hz) is locally enhanced during fast trials.

SPC in High Gamma Accelerates Behavior. The SPC allows us to
quantify the coupling of neural spikes to the LFP phase. The
magnitude of SPC lies between [0, 1]; it equals 1 when spikes
occur only at a certain phase of LFP, while it is 0 when spikes
distribute in time independently of the LFP phase. To compare
the SPC between fast and slow trials, we first equalized the
number of spikes across the two trial sets to eliminate any sta-
tistical dependence of the SPC on spike count. To this end, we
focused on those trials with an enough number of spikes and
randomly selected an equal number of spikes among them. Trials
with a small number of spikes were removed to maximize the
number of spikes for our analyses for each monkey (Methods). By
this, we came up with 67, 22, and 23 neurons for animals H, T,
and C, respectively. Second, we filtered the LFPs into non-
overlapping 5-Hz-wide frequency bands with their lower bounds
between 1 and 245 Hz. Third, we selected a subset of trials with
no significant difference between the LFP power of the fast and
slow trials in each frequency band [median significance ρ> 0.9,
two-sided rank-sum test across 50 frequency bands (1:5:250 Hz)
for the three monkeys; see SI Appendix, Fig. S3 for number of
selected trials per frequency band]. This made us confident that
differences of signal-to-noise ratio do not bias our comparison of
fast and slow trials. Fourth, we applied a Hilbert transform on
the filtered LFPs in each frequency band to compute the in-
stantaneous phases. Finally, the SPC was calculated for each trial
by averaging unit-length vectors with the same phase as the LFP

at the time of spikes and measuring the length of the resultant
vector in each frequency band. Fig. 1 A–C shows the SPC in each
frequency band separated by RT. x axes represent the upper
bound of the frequency bands and the y axes indicate the SPC for
fast and slow trials (blue and red, respectively). These results
clearly show that the single-unit activity in fast trials is more
strongly locked to the LFP phase compared with slow trials, es-
pecially in the high-frequency range (180 to 220 Hz) (Fig. 1, blue
vs. red traces; see SI Appendix, Fig. S4 for the time-resolved
SPC) (ρ< 0.0006 two-sided sign test, controlled for multiple
comparisons using Bonferroni correction). Moreover, this SPC
difference is not caused by either sudden changes in LFP/spike
rate (SI Appendix, Figs. S5 and S6), a correlation between spiking
and high-gamma power (see SI Appendix for details), differences
in the distribution of interspike intervals (SI Appendix, Fig. S7),
the specific trial selection performed to equalize spectral powers
(see SI Appendix for details), or LFP pattern differences between
the two behavioral conditions (SI Appendix, Fig. S8). Also, re-
moving the temporal pattern of spike trains eliminated the SPC
difference (SI Appendix, Fig. S8). Further investigation of in-
terneuronal synchrony indicated that spiking activity of neigh-
boring neurons was synchronized significantly more in the high-
gamma frequency range (180 to 220 Hz) for the fast rather than
the slow trials (ρ< 0.0075, permutation test; see SI Appendix,
Supplementary Information Text and Fig. S9 for details). Fig. 1D
illustrates the distribution of the high-gamma LFP phase at the
time of spikes (preferred phase) for fast and slow trials pooled
across the three monkeys. Here we calculated the preferred
phase for each trial by computing the circular average across the
high-gamma phases simultaneous to the spikes (Methods). These
histograms indicate that spikes selectively occur within a certain
phase range in fast trials, while they are distributed randomly in
slow trials (ρ< 10−8, fast trials; ρ> 0.07, slow trials; Rayleigh
test). We further found a significant difference between the two
distributions’ circular median [ρ< 10−4, circular Kruskal–Wallis
test (40)]. Along the same lines, to visualize the exaggerated
phase locking in fast trials, we calculated the spike triggered
average of the high-gamma LFP (STAHG) in the fast and slow
trials for monkey H (Fig. 1E, blue vs. red curves, respectively; see
also SI Appendix, Fig. S10 for monkeys T and C). To compute
STAHG in a given trial, the LFPs were first high-gamma-band-
filtered and next a ±30-ms segment of the LFPs surrounding
each spike were extracted and averaged across spikes for each
trial. The STAHGs were next averaged across trials (Methods).
The average STAHG for fast trials shows a larger difference
between the maximum and minimum magnitude (“peak-to-peak
difference”) compared with the slow trials. This suggests that
spikes occur more selectively around the peak phase of the high-
gamma LFP in fast (as shown by the black vector in the blue
histogram, Fig. 1D) compared with slow trials. This locking of
spikes to high-gamma LFP is similarly observed in the wide-band
LFP (before applying any narrow band filtering; SI Appendix,
Fig. S11).

SPC Influences Behavior Locally. We next investigated whether the
behavioral RT depends selectively on the SPC of the neurons
representing the target change or alternatively it depends equally
on the SPC of neurons across the visual cortex. Therefore, we
separately analyzed the trials where the target stimulus was
shown inside or outside the receptive field (RF). For this analysis
we focused on the data from animals H and T for which the
target was shown in both locations [for animal C there was not a
sufficient number of trials for the target-out condition (see the
original task description in ref. 41)]. Following an equalization of
the trials for the target position and RT conditions, we calculated
the SPC in each condition. To measure how much SPC discrimi-
nates RTs, we calculated the area under the receiver operating
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characteristic (ROC) curve (AUC) between the SPCs of fast and
slow trials, for each target position condition (Methods). Fig. 2
shows the AUCs for those high-gamma frequencies which dis-
criminate the reaction times (as shown in Fig. 1 A–C) for monkeys
H and T. Comparison of the two target-position conditions shows
that AUCs of the target-in condition are significantly larger than
that of the target-out condition (ρ< 0.05, permutation test) (see
SPCs in the target-out condition in SI Appendix, Fig. S12). This
suggests that a neuron’s coupling to the high-gamma LFP phase
contributes to visuomotor processing preferably for those stimuli
which selectively drive the neuron, rather than any stimulus re-
gardless of its properties.

Spike–High-Gamma Coupling Is Dissociated from Spectral Leakage of
Spike into LFP.An important concern in terms of the link between
spikes and high-gamma LFP is that lower-frequency components
of a spike’s waveform may leak into neighboring LFP (14, 42).
This leakage could cause an artificial coupling between spikes
and the LFP phase. To investigate if our calculation of SPC
simply reflects this leakage or an actual coupling between spikes
and the synaptic activity captured by LFP we took the three
approaches discussed below.
SPC strength does not decrease relative to the distance between spike-
providing and LFP-providing electrodes. To test if the SPC we observed
is due to the spectral leakage of spikes onto LFP we investigated if
the coupling of spikes to high-gamma LFP depends on the dis-
tance between the spike-providing and LFP-providing electrode.
In case of a spurious SPC, the magnitude of coupling has been shown

to decrease with an increased distance between spike-providing and
LFP-providing sites (43). We calculated the average STAHG across all
trial types by taking the spikes and LFPs from the same or separate
electrodes. Fig. 3A plots the peak-to-peak amplitude difference of the
average STAHG (as a measure of spike–LFP coupling) with the spikes
and LFP from a single electrode (interelectrode distance= 0) or pairs
of electrodes with different distances in between (STAHG for each
interelectrode distance is shown in SI Appendix, Fig. S13B). As shown
in the figure, these peak-to-peak amplitude differences do not de-
crease (and even slightly increase, 0.01 < P < 0.05, Pearson corre-
lation) by the increase of interelectrode distance, confirming that the
observed SPC is not an artifact of a spectral leakage from spikes onto
LFPs (SI Appendix, Fig. S13C). Nevertheless, one potential reason for
the large amplitude difference of STAHG for interelectrode distances
of 3–4 (compared with that of distances 0–2) could be the low data
size (average trial numbers: 11 for distances 3–4 vs. 169 for distances
0–2), leading to a large variability across repetitions of STAHG cal-
culation and an unreliable measurement of the average STAHG.
Behavioral dependence of SPC is dissociated from the spike–LFP leakage.
To evaluate if it is the spectral leakage of spikes onto LFP that
induces the dependence of SPC on RT, we selected two subsets
from the fast trials which are significantly different in their high-
gamma SPC (Fig. 3B) (ρ= 0.00031, two-sided rank-sum test
across the peak-to-peak amplitude difference of the STAHGs)
(Methods). We next calculated the spike-triggered average LFP
(STALFP) for each of the trial subsets by averaging the LFP
segments in a ±10-ms time interval surrounding each spike [the
interval with the maximally observed SPC strength in high

Fig. 1. SPC for trials with fast and slow RTs. (A–C) SPC of the fast and slow trials across different frequency bands with a width of 5 Hz spaced by 5 Hz, for
monkeys H, T, and C. x axes indicate the upper bound of these frequency bands, and y axes represent the SPC values. Stars mark the frequencies with a
significant difference between fast and slow trials (ρ < 0.0006 two-sided sign test, corrected for multiple comparisons using the Bonferroni method). (D) The
histogram of spike-triggered high-gamma (180 to 220 Hz) phases across trials for the two trial types pooled across all of the three monkeys (ρ < 10−8, fast
trials; ρ > 0.07, slow trials; Rayleigh test). The black lines show the average phase across trials. (E) The spike-triggered average of high-gamma frequencies
(180 to 220 Hz) for the two types of trials for monkey H’s data. Error bars represent the SEM. Red and blue represent the slow and fast trials, respectively. n
indicates number of neurons analyzed for individual animals.
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gamma (SI Appendix, Fig. S11; also see refs. 14 and 42)] (Fig.
3C). We quantified the overall leakage of spikes onto LFP by
computing the peak-to-peak amplitude difference of the STALFPs
and found no statistically significant difference between that of the
two trial subsets (ρ= 0.0588, two-sided rank-sum test). This sug-
gests that the magnitude of SPC in high-gamma frequencies is
independent of the spike’s leakage onto LFP.
Behavioral dependence of SPC. Finally, our documented dependence
of SPC on RT cannot be attributed to differences in the magnitude
of spike leakage, since we eliminated here for any differences in
spectral band power and spike number between the fast and slow
trials (Methods). This rules out any systematic difference in SPC of
the two trial types. Therefore, the high-gamma SPC difference
between the fast and slow trials reflects a difference of SPC be-
tween them, rather than a difference of spike leakage.

Functionally Labeled Lines Distinguish Input Source. Our data sug-
gest that the strength of coupling between spikes and the LFP
phase within the range of high-gamma (180 to 220 Hz) fre-
quencies predicts the behavioral speed. We speculate that this
coupling, which is a more reliable predictor of the animal’s re-
action time compared with spike rate (SI Appendix, Fig. S14),
might have a role in efficient information transmission to
downstream areas. A similar finding in area V4 (which is the only
study that has examined the role of oscillations in a detection
task within the ventral visual pathway) describes such a coupling
within a different frequency band of LFPs [gamma (40 to 70 Hz)]
(17). Since this frequency difference could not be attributed to
differences between the tasks/areas of the two studies (see SI
Appendix for details), here we hypothesize that the two pathways
in primate visual cortex use different frequency ranges to prop-
agate information, enabling downstream association areas to
distinguish the source of incoming spikes (Fig. 4 A and B).
There is no straightforward way for a neuron in a downstream

associative cortical area [such as the prefrontal cortex (PFC)]
receiving inputs from the ventral and dorsal pathways (e.g., V4 and
MT) to distinguish the source of incoming spikes. We hypothesize
that down-stream neurons (like PFC neurons) are at least of two
different types; in some the dendritic membrane potential fluctu-
ates within the range of gamma (40 to 70 Hz) frequencies and in
the other, within the range of high-gamma (180 to 220 Hz) fre-
quencies. Given that a neuron generates an action potential only
when its rest membrane potential (which is by itself oscillating)
passes the firing threshold, the neuron is more likely to fire when
the incoming spike coincides with the membrane potential’s peak
phase of the characteristic frequency. Assuming that the dendritic
oscillatory activity in each of the two neuron types is synchronized
to that of the corresponding upstream area (MT and V4 in this

case), each neuron will generate an action potential only in re-
sponse to those incoming spikes that are locked to the preferred
phase of the receiving neuron’s characteristic frequency. Corre-
spondingly, each of the two neuron types specifically extracts the
spikes originating from either MT or V4 (Fig. 4C). We used a
minimalistic model to show this to be physiologically plausible.
First, we assumed two PFC neurons where their membrane

potential oscillates (either via resonance or interneuronal cou-
pling) following a sinusoid ([0 1]) with a frequency of either 55
Hz (gamma) or 200 Hz (high gamma). This means that these
neurons are more likely to generate a spike when receiving an
input spike during the high excitability phases (i.e., peaks of the
corresponding oscillation). This phenomenon is known as “sto-
chastic resonance” in the modeling literature, where the spon-
taneous oscillation (here, gamma/high gamma) is taken as the
intrinsic resonating component of the membrane potential, and
input spikes are considered as the stochastic noise entering the
cell (ref. 44, chap. 6, and refs. 45 and 46). We further set these
model neurons to generate a spike when they reach a threshold
(0.8). Second, we generated 800 random spike trains (1,000-ms
length, 80 spikes) each containing spikes either fromMT, V4, both
or none (40 spikes to represent information from each of V4 and
MT, interleaved and 200 spike trains for each of the above four
conditions). Each of MT’s and V4’s spikes were randomly assigned
times, so they would be phase-locked to the high gamma’s or
gamma’s peak (as their preferred phase), respectively. For this, we
made sure that at least 80% of the generated spikes co-occur with
the oscillations’ peaks (see SI Appendix, Supplementary Information
Text and Fig. S15 for a demonstration of these data). Third, we fed
the generated spike trains into the two modeled PFC neurons and
measured the number of their output spikes in each of the four
conditions (Fig. 4D). As clearly shown in the figure, for a given

Fig. 3. Spike–LFP coupling in high gamma is not due to the “leakage” of
spike waves into the LFP. (A) The peak-to-peak amplitude difference of av-
eraged STAHG for electrode pairs with different distances. The averaged
STAHG was computed using the spike and LFP coming from the same (dis-
tance = 0) or separate electrodes (distances 1–4). The small and large circles
indicate the peak-to-peak amplitude difference of the averaged STAHG for
each repetition and the average across repetitions, respectively. (B) The av-
erage STAHG for the two extreme subsets of fast trials (FASTLow vs. FASTHigh)
(ρ = 0.00031, two-sided rank-sum test). (C) The average STALFP (spike-
triggered LFP based on raw LFPs) for FASTLow and FASTHigh trials, showing
no significant difference between their peak-to-peak amplitude differences
(ρ = 0.06, two-sided rank-sum test). These analyses were done for monkey H.

Fig. 2. Neural discrimination of RT based on high-gamma SPC for targets
inside and outside the RF. The y axes represent the area under the ROC curve
when comparing fast and slow trials over the two target position conditions
for monkeys H and T. x axes show the lower bound of the frequency bands
under study. The black lines show the frequency bands with a significant dif-
ference in the neural discrimination of RT between target-in and target-out
trials (ρ < 0.05 permutation test, corrected for multiple comparisons).
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spike train received fromMT and V4 together, the combination of
outputs from the PFCmodel neurons could discriminate the origin
of the incoming spikes (whether incoming spikes originate from
MT, V4, both, or none).
To measure the robustness of the model’s performance in

distinguishing the above four conditions across different firing
thresholds and SPC strengths we used a support vector machine
(SVM) classifier [LIBSVM toolbox (47)] to discriminate the four
classes of incoming spikes from incoming spikes from V4, MT,
V4 and MT, and none, based on the spike trains generated by the
PFC’s gamma and high-gamma detector neurons. We generated
200 trials for each of the four classes and calculated the spike rate

generated by the two types of PFC neurons. We used 70% of the
total trials (560 trials) for training the SVM and the remaining trials
for test. Fig. 4E shows the classification performance (y axis) across
different firing thresholds (x axis) and different SPC strengths. Our
model shows a considerable accuracy even under noisy conditions
where the firing threshold and SPC had the lowest values. Our
model therefore indicates that the functionally labeled lines using
characteristic oscillation frequencies may help associative areas
distinguish neural inputs from different upstream areas.
In conclusion, we showed here that SPC in high-gamma fre-

quency band is a predictor of the behavioral response speed in
detecting the visual target change (i.e., a higher high-gamma SPC

Fig. 4. Using “functionally labeled lines” to distinguish information coming via the dorsal vs. ventral visual pathway. (A) Schematic description of our
“functionally labeled lines” hypothesis. We propose that the dorsal and ventral visual pathways use different characteristic frequencies, enabling higher-
order association areas (such as the PFC) to distinguish the information coming from each pathway. (B) A PFC neuron that is targeted by axons originating
from the ventral and dorsal pathways (V4 and MT, respectively, for instance) is not capable of distinguishing the source of individual incoming spikes, if it is
confined to a simple summing compartment of inputs. (C) Suggested by empirical data, each visual pathway propagates information using spikes that are phase-
locked to a different frequency range. We suggest that this mechanism enables the downstream neurons to filter out the incoming spikes based on the frequency
they are phase-locked to. We hypothesize that PFC neurons have either of the following distinct properties: Some oscillate in their dendritic potentials within the
range of gamma (40 to 70 Hz) (named “gamma detector neurons” here) and the others in the range of high gamma (180 to 220 Hz) (named “high-gamma
detector neurons”). Assuming that the dendritic oscillatory activity in each of the two neuron types is synchronized to that of the corresponding upstream area
(MT and V4 in this case), each neuron will pass its threshold voltage, generating an action potential only in response to those incoming spikes that are locked to
the preferred phase of the neuron’s characteristic frequency. Correspondingly, each of the two neuron types specifically extracts the spikes originating from either
MT or V4. (D and E) Wemodeled the four conditions where incoming spikes are phase-locked to gamma only (representing input only from V4), high gamma only
(representing input only fromMT), both (representing input from both areas), and none (representing input from none of the areas). As shown in D, the response
of the PFC’s gamma detector and high-gamma detector neurons (x and y axes, respectively) together clearly distinguish each of the four conditions, indicating the
source of the incoming spikes (MT or V4). Assessing the accuracy of distinguishing these four conditions by an ideal observer (E) shows that PFC neurons could
identify the source(s) within a wide range of physiological parameters [firing threshold (x axis) and SPC strength (colors)].
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induces a faster response by the monkey). Our results suggest a
local neural mechanism for controlling an efficient visuomotor
processing in the dorsal visual pathway. Given that the ventral
visual pathway uses a different frequency band than the dorsal
pathway, we propose that higher cortical areas might take ad-
vantage of this difference to functionally label lines coming via
the dorsal vs. the ventral visual pathway.

Discussion
The synchronization of neural assemblies has been reported
across brain areas for different species (28, 48–55). However, the
functional role of this synchrony in the context of cognitive
processes has remained elusive. Here, we studied the role of
interneuronal synchrony in the generation of behavioral re-
sponses by rhesus monkeys. Our results show, first, that the
magnitude of neural synchrony in high-gamma (180 to 220 Hz)
frequencies predicts the monkey’s speed in reporting the change
of a target stimulus and that the coupling of spikes to the high-
gamma LFP’s phase predicts the behavioral RTs. This suggests
that the likelihood of spikes to occur at a specific phase of LFP
(the preferred phase) is more pronounced in trials with fast
compared with slow responses (see Fig. 5 for a schematic illus-
tration). Second, the magnitude of this synchrony indicates how
efficient neurons process the stimulus presented inside their
receptive field. These suggest that in rhesus monkey visual cortex
neuronal synchrony for frequencies as high as the high-gamma band
may be functionally important in visuomotor behavior. Third, as-
sociative cortical areas could distinguish the source of incoming
inputs, using the characteristic transmission frequency range of each
input, supporting previous reports of a similar mechanism for the
communication between other brain regions (37, 56). For instance,
a study of the entorhinal–hippocampal system has indicated that
different frequency bands within the broadband gamma (25 to 140 Hz)
in CA1 were differentially phase coupled to the entorhinal cortex
and CA3, suggesting that CA3 uses the slow (∼25 to 50 Hz) and
entorhinal cortex uses the fast (∼65 to 140 Hz) frequency com-
ponents to communicate with CA1 (56).
One measure of synchrony between neurons is spike–LFP

coupling (39, 57), which has been shown to capture the synchrony
of a single neuron to the synaptic activity in the surrounding
population (58) in multiple brain areas (29, 30, 32, 33, 35, 37, 59).

This coordination has been proposed as the core solution to the
problems of consciousness and binding—how visual features
encoded in different brain regions are integrated to form a unified
percept (54, 60, 61). Several studies have indicated that the neural
activity–behavior correlation can be mediated by changes of firing
rate (6, 8, 16, 19) or the spectral high-gamma power (14, 16, 42).
Along these lines, some have documented a correlation between
spiking activity and broadband high-gamma power for frequency
ranges of 40 to 100 Hz (62) or 40 to 130 Hz (63), in a range of
cortical areas, especially in humans (64). Our results demonstrate
that the coupling of spikes to the phase of high-gamma oscillations
(SPC) is a predictor of behavioral speed, independently of the
population firing rate or spectral high-gamma power. Moreover,
previous studies have documented that gamma oscillations are
linked to stimulus properties (size, speed, or contrast) (14, 65–67).
Since our experiments did not involve systematic changes of
stimulus sensory properties, either across trial types or within our
analysis window in a given trial, the observation of high-gamma
SPC’s variation with RT cannot be attributed to such sensory
properties. Furthermore, our observation of a SPC–behavior link
for different animals with different task properties, and in-
dependent of stimulus properties (size and number) (Methods),
suggests that high-gamma SPC is a generalizable oscillatory
neural component underlying visuomotor change detection.
We found for one of our monkeys that spikes slightly preceded

the peak phase (rather than the trough) of the high-gamma cycle.
The peak phase has been reported to correspond to the highest
magnitude of information (as well as the lowest noise correla-
tion) within the gamma cycle (34). Given the similarity of the
preferred phase between low and high gamma frequency ranges
(50 to 200 Hz; supplementary figure 5 of ref. 43), we expect that
the peak phase in high gamma similarly corresponds to the
highest sensory information. Nevertheless, future studies need to
examine this.

The Role of Neural Response Variations in Creating Neural Synchrony.
Previous studies on the neural mechanisms underlying behavior
have revealed at least two components to the trial-to-trial neural
variability in the activity within a sensory area. The first is a
“shared component” attributed to the top-down or bottom-up
synaptic input to the sensory population; the second is an “in-
dependent component” that is not induced by either the up-
stream or downstream areas, presumably arising from the
stochastic nature of spiking of individual sensory neurons, or the
interaction within the local cortical circuit of the sensory area
(13, 68, 69). This independent component is suggested as a core
determinant of the behavioral latency (13). Based on our ob-
servations, we suggest the following hypothesis as to how the
local neural activity shapes behavior: Given that phase locking of
single neurons to the LFP reflects the degree of interneuronal
synchrony, the more synchronous the MT neurons are, the
higher the likelihood of influencing the downstream neuron’s
output, and consequently the more efficient the propagation of
relevant information toward downstream visuomotor areas (both
associative and higher-order visual areas) (28). This locking of
the timing of single neurons to the LFP phase (reflecting the
surrounding population’s state) would enhance the gain of the
downstream neuron, suggesting that the behaviorally relevant
information is processed locally and then transferred to down-
stream areas. In other words, the synchrony of neurons engaged
in stimulus processing decreases the stochastic activity or additive
noise, and therefore the weight of the “independent neural com-
ponent.” This enhances the “shared component” reflecting the
stimulus information representation with downstream associative/
integrative areas (an increase of the shared/independent ratio).
Together, these two neural processes enhance the transfer of in-
formation and its integration in associative/decision-making areas,
improving behavioral outcomes.

Fig. 5. The role of high-gamma synchrony in visuomotor behavior. Visual-
ization of differential high-gamma phase synchrony for fast vs. slow be-
havioral responses. Spikes in three sample imaginary trials with fast (Top)
behavioral responses show how the single neuron activity is coordinated in
time (x axis), being locked relative to a specific preferred phase of the si-
multaneously recorded high-gamma LFP (Right). Conversely, the spikes
recorded in trials with long RTs (Bottom) are distributed in time irrespective
of the preferred LFP phase. We hypothesize that higher SPC leads to faster
behavioral responses, via either coordination of MT input to its output
neural activity or enhancing the efficacy of the neural projections from MT
to downstream areas (Discussion).
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Similar to our approach, a previous study (17) showed that the
synchrony of V4 neurons in the gamma band (40 to 70 Hz)
predicts the RT in reacting to an upcoming visual change, with a
more powerful gamma band synchrony, correlated with a faster
RT. They suggested therefore that the ventral visual pathway
relays the relevant information via gamma synchrony (corre-
sponding to a time window of ∼17 ms). However, our data show
for MT that RTs are significantly linked to the high-gamma
synchrony (180 to 220 Hz) [corresponding to a shorter time
window (∼5 ms)] but not significantly linked to gamma band
synchrony. This suggests that dorsal and ventral visual pathways
use different time windows for interacting with their (similar)
downstream areas, possibly to avoid any collision of information
propagated into the destination area by the two streams, enabling
the downstream area to maintain information on the source of each
stream (Fig. 4). It could be argued that the observation of different
frequencies in the two pathways is due to differences between
studies done in different laboratories. Although we believe the re-
sults to be robust across differences in firing rates and monitor re-
fresh frequencies (see SI Appendix for details), other sources of
variation (such as interindividual differences, different recording
hardware, and different analysis techniques) could conceivably af-
fect the determination of the main frequencies. Duplication of the
findings of Womelsdorf et al. (17) or of our findings in other lab-
oratories as well as studies with simultaneous recording from the
dorsal and ventral visual cortex in the same animal would be ways to
determine the robustness of the distinct frequencies in the two
visual pathways.
It is also possible, given that LFPs are a correlate of the synaptic

input to an area (here area MT), a stronger coupling between the
shared component of variation (reflected by the high-gamma dy-
namics) and a neuron’s output accelerates the behavioral re-
sponse. This implies that the stronger the input to MT impacts its
output, the faster the behavior would be. However, the mecha-
nisms strengthening this impact of inputs on single neurons’ out-
put remains a question for future studies.

The Origin of Cortical High-Gamma Oscillations and Their Functional
Role in Cortical Processing. Previous investigations, mostly in ro-
dents and humans, have extensively studied the neural basis of
high-gamma oscillations and their links to cognitive functions.
These findings suggested that intrinsic properties of interneurons
generate high-gamma oscillations during transient ripples in rat
(70–72) as well as human hippocampus (73, 74). It has frequently
been suggested that interneurons contribute to the generation of
these high-gamma oscillations in LFPs (48, 65, 75–78). Also, it
has been observed that the high-gamma oscillation observed
during sensory cortical activation reflects the population activity
of inhibitory fast-spiking interneurons. This activity then imposes
a rhythmic inhibition on excitatory pyramidal cells to also dis-
charge in phase with the population rhythm, but at a lower rate
(78). Furthermore, previous studies have shown that the ripple
activities (or high-gamma oscillations), produced by local cortical
circuits (76, 79), play a functional role in high-level cognitive
functions, such as planning (80), decision making (81), and
memory consolidation (82). For instance, Kucewicz et al. (83)
showed that network oscillations in gamma frequencies (50 to
125 Hz) and above (>125 Hz) occur within the primary visual
cortex, limbic, and higher-order cortical regions at the time of
memory encoding and recalling.
Despite the role of high-gamma range neural activities in ro-

dents and humans, it has frequently been suggested that they do
not play a prominent role in monkey sensory cortex (especially visual
cortex) (12, 84, 85) (but see ref. 78), instead proposing that these
frequency components are due to a “spike bleed-through.” Our re-
sults, however, show that this is not the case for macaque visual
cortex [compare the blue curve in Fig. 1E with the high-gamma
ripples observed in hippocampus (see figure 2 of ref. 70)], suggest-

ing a mechanism for these oscillations similar to that in other mam-
mals (as pointed out above). Nevertheless, these high-frequency
fluctuations are widely observed to be locked to low-frequency
(<20 Hz) oscillations (2, 86), leaving for future studies the ques-
tion of to what extent synchrony in high frequencies independently
controls behavior (87).
Furthermore, the physiological high-gamma oscillations show

different properties compared with that of the pathological high-
gamma oscillations observed in epilepsy patients. Pathological
oscillations have a higher mean spectral amplitude, longer mean
duration, and lower mean frequency than physiologically in-
duced oscillations (88). Nevertheless, intracranial recordings
even from epilepsy patients have shown the physiologically in-
duced high-frequency oscillations during behavioral task exper-
iments (89).
In summary, our empirical and modeling data suggest, first,

that the magnitude of neural synchrony in high gamma frequencies
(180 to 220 Hz) predicts the speed in reporting an upcoming
change of a target stimulus. Second, this synchrony reflects the
responsiveness of a neuron only to the stimulus presented inside
the receptive field, suggesting an important role of high-gamma
neural synchrony in the dorsal visual pathway’s neural circuitry for
the efficient processing of sensory information. Third, higher cor-
tical areas could make use of the different characteristic frequen-
cies used within the dorsal and the ventral pathways to build and
maintain “functionally labeled lines” for controlling information
transmission and multiplexing converging sensory signals (Fig. 4).

Methods
Animal Welfare. The scientists in this study are aware of and are committed to
the great responsibility they have in ensuring the best possible science with
the least possible harm to any animals used in scientific research (90). All
animal procedures in this study were approved by the responsible regional
government office (Niedersaechsisches Landesamt fuer Verbraucherschutz
und Lebensmittelsicherheit) under permit numbers 33.42502/08-07.02 and
33.14.42502-04-064/07. The animals were group-housed with other macaque
monkeys in facilities of the German Primate Center in Goettingen, Germany
in accordance with all applicable German and European regulations. The fa-
cility provides the animals with an enriched environment, including a multitude
of toys and wooden structures (91, 92), natural as well as artificial light, and
exceeds the size requirements of the European regulations, including access to
outdoor space. Surgeries were performed aseptically under gas anesthesia us-
ing standard techniques, including appropriate perisurgical analgesia and
monitoring to minimize potential suffering (93). The German Primate Center
has several staff veterinarians that regularly monitor and examine the animals
and consult on procedures. During the study the animals had unrestricted ac-
cess to food and fluid, except on the days where data were collected or the
animals were trained on the behavioral paradigm. On these days the animals
were allowed unlimited access to fluid through their performance in the be-
havioral paradigm. Here the animals received fluid rewards for every correctly
performed trial. Throughout the study the animals’ psychological and veteri-
nary welfare was monitored by the veterinarians, the animal facility staff, and
the laboratory’s scientists, all specialized in working with nonhuman primates.
The three animals participating in this study were healthy at the conclusion of
our study and were subsequently used in other studies.

Experimental Task and Recordings. Three adult male monkeys (macaque) were
trained to attend toward one of two (monkey H and T) or four (monkey C)
coherently moving RDPs while ignoring the others (SI Appendix, Fig. S1). They
initiated each trial by pressing a lever and simultaneously maintaining their
gaze on a fixation spot centered on the screen. Subsequently, a cue was
presented to signal the location of the upcoming target stimulus. The cue
was either a static RDP presented in the same position of target stimulus for
455 ms (monkey H) or 500 ms (monkey T) or a moving RDP with the same
location and direction for 600 ms (monkey C). Immediately after (for monkey T)
or followed by a short blank period (for monkeys H and C), the moving
RDPs were shown inside/outside the RF of the neuron under study, and the
monkeys had to release the lever immediately after the target underwent a
transient change. The change event for monkeys H, T, and C was a brief
change in the direction, direction/color, or direction/speed, respectively,
which occurred at a random time between 680 to 4,250 (monkey H), 400 to
2,500 (monkey C), or 500 to 3,550 ms (monkey T) following the stimulus onset.
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For monkey H, the target and distractor’s direction were the same, chosen
randomly from eight possible directions (0 to 360° with steps of 45°). For
monkey T, the RDPs moved toward either the preferred or null direction of the
recorded neuron, and for monkey C the direction of motion for the RDP inside
the RF was picked randomly from 12 possible directions (0 to 360° with
steps of 30°). The monkeys were rewarded with a drop of juice for re-
leasing the lever within the RT windows 150 to 650 ms (monkey H), 100 to
650 ms (monkey T), and 150 to 650 ms (monkey C) following the target
change. In trials where the animals reported the distractor change, the trial
was terminated without a reward. The animals correctly reported the
target change at similar high rates, despite the differences in some task
parameters, indicating similar levels of task difficulty. The hit rates were
86% (animal H), 90.3% (animal T), and 89% (animal C) of those trials which
were not terminated because of an eye movement. All three animals
performed a change detection task, maintaining fixation of a central point
while covertly attending to a peripheral stimulus until it underwent a
transient and abrupt change. Our selection of different task parameters
(timing and stimulus properties) between the three animals ensured that a
similar neural signature across monkeys cannot be attributed to a partic-
ular value for these parameters.

Single-unit activity (online sorted using Plexon’s online sorter applica-
tion) and LFP were recorded extracellularly from the area MT using a five-
channel multielectrode recording system (Mini-Matrix, Thomas Recording,
and Plexon data acquisition system, Plexon Inc.). For two of the monkeys
(H and T), five parallel electrodes (with an interelectrode distance of
300 μm) and for the third monkey (C) one electrode was advanced into the
brain tissue to isolate direction selective MT neurons with overlapping RFs. We
recorded from 112 (monkey H), 30 (monkey T), and 27 (monkey C) sites in area
MT. For more details on each of the animals’ behavioral task, performance, and
recording details see ref. 94 for monkey H, ref. 95 for monkey T, and ref. 41 for
monkey C.

Neural-Behavioral Analysis. In the following, the details of our analyses are
explained. All analyses were accomplished using MATLAB (MathWorks).

Trial-Selection Procedure. We focused on those trials where the monkeys
correctly reported the target change. Regardless of the attention condition,
the trials were sorted based on their RTs in an ascending order and subdivided
into four partitions based on the thresholds corresponding to 25% quantiles.
An equal number of trials were selected from the first and last partitions as
fast and slow trials, respectively. The single-unit activity and LFP recordings in
the fast and slow trials were selected for the next analysis. Our analyses were
carried out over 590 to 1,590 ms (monkey H), 650 to 1,650ms (monkey T), and
400 to 1,400 ms (monkey C) after stimulus onset, to ensure we are far enough
from the stimulus-evoked responses due to the onset of motion stimuli (see SI
Appendix, Fig. S2 for details). For all analyses, the power line 50-Hz noise
was eliminated from LFPs using a Butterworth notch filter.

Analysis of SPC. SPC measures the phase synchronization between LFP and
single-unit activities recorded from a single electrode. To eliminate any
potential bias to spike rate, we randomly downsampled the spikes to equalize
the spike numbers across trials [using a thinning (decimating) procedure (57,
96–98)]. Those trials with a small number of spikes were removed, to max-
imize the number of spikes for our analyses for each monkey. To this end,
we calculated a threshold based on the average spike number within the
analysis period for neurons from each monkey and discarded those trials
with a spike count smaller than this threshold (39 for monkey H, 31 for
monkey T, and 15 for monkey C). The SPC results did not qualitatively differ
for other threshold values close to (±10) the thresholds we used. After
thresholding, our dataset contained 67, 22, and 23 neurons for animals H, T,
and C, respectively. Next, for those trials with more spikes than the thresh-
old, we randomly removed enough spikes to reach the threshold.

The LFPs were fed into an FIR filter bank consisting of 5-Hz-wide band-pass
filters ranging between 1 Hz to 250 Hz (without overlap). The EEGLAB
toolbox (eegfilt function) was used for LFP filtering. It provided a
narrowing roll off for stop-band using a filter order of 3 × (sampling_rate/
low_cutoff_frequency). To avoid dependence on spectral power in the SPC
analysis (98), a subset of the fast/slow trials with the same average spectral
power was selected subsequently after filtering the LFPs. The trial selection
was established using the histogram of band powers for fast/slow trials. To
this end, first, we calculated LFP band power for each trial per frequency
band (5-Hz bandwidth). Second, we calculated the histogram of LFP band
powers and picked up the same number of trials per histogram bin from the
fast and slow trials. The resolution of these histograms (bin size) was kept
equal for fast and slow trials, and it was selected so as to provide two subsets

of trials with no significant differences between fast and slow groups on
each frequency band [median significance ρ>0.9, two-sided rank-sum test
across 50 frequency bands (1:5:250 Hz) for the three monkeys]. To this end,
the difference between the minimum (zero) and maximum of a trial’s band
power was split into narrow bins for histogram calculation. The histogram
bin size was 10−4, 5 × 10−4, or 10−4 arbitrary units (animals H, C, and T, re-
spectively, for frequency bands lower than 150 Hz) or 2 × 10−5 arbitrary units
(for higher frequencies). There were on average three (for animals H and C)
or two trials (animal T) per histogram bin for shared bins of fast and slow
trials. With this, the number of selected trials was also equal in both classes
for each frequency band. Using this trial selection approach, initially there
were (725,725), (461,461) and (208, 208) (fast, slow) trials for animals H, T,
and C, respectively, out of which (251, 214), (192, 116), and (99, 138) trials
were selected after applying the spike thresholding procedure. SI Appendix,
Fig. S3 shows the number of selected trials in each frequency band for each
monkey, after applying the spike thresholding and power equalization
procedure. The selected trials were fed into a Hilbert transform to compute
the instantaneous phase of the oscillations. Eventually, the SPC was calcu-
lated for the resulting trials with the same spectral band power and spike
rate in both of the fast/slow trials. The SPC was computed for each trial by
calculating the magnitude of the circular average of instantaneous phases
simultaneous to the spikes:

SPC  ðfÞ= 1
n
j
Xn
j=1

eiωtj j,ω=   f  2πf j0≤ f ≤ 250 Hzg, -π ≤ω≤ π, [1]

where n, f, tj, and ω are the number of spikes, target frequency where LFP is
filtered to, spike times, and instantaneous phases, respectively, in a given
trial. The SPC magnitude lies between [0, 1], where 0 represents no coupling
between the spikes and LFP phase and 1 indicates the maximum coupling.

Given the small number of trials/spikes for monkeys T and C after applying
the spike thresholding and equalizing the spectral band powers, we averaged
the SPC calculated across 100 repetitions per frequency band to attain a
reliable measurement. Each repetition involved an independent random
spike selection with an equal spike count threshold. To estimate the statistical
significance of the SPC difference between the fast and slow trials in each
frequency band, we used the sign test with Bonferroni correction for multiple
comparisons. Additionally, for animals T and C, after finding the significant
frequencies in each repetition, we counted the number of repetitions where
each frequency’s SPC difference was significant. A simple clustering method
(K-means) was then applied on the set of the proportion values, to cate-
gorize them into two clusters with similar numbers. K-means categorizes
n observations ðx1,x2, . . . , xnÞ into kð≤ nÞ subsets S= fs1, s2, . . . , skg so as to
minimize the following objective function (99):

arg min
S

=
Xk
i=1

 
X
x∈Si

kx− cik2, [2]

where ci is a cluster center, calculated by the average of observation in Si.
Consequently, we considered the cluster of frequencies with the larger
proportion values, as the significant frequencies. Finally, we tested if the
two frequency clusters were significantly different in terms of their pro-
portion values (ρ< 10−5 for both monkeys, rank-sum test).

STAHG. This control analysis was applied only on monkey H’s data (which had
enough number of trials/spikes). An identical procedure to the one described
for the SPC analysis was performed to choose trials for this step. Conse-
quently, all chosen trials included the same number of spikes (39 spikes). We
further selected a subset of trials so that the LFP power (180 to 220 Hz) was
the same between the fast and slow trials.

To represent the dynamics of high-gamma frequency band (180 to 220 Hz)
over times around a spike event, all trials were fed to an FIR band-pass filter
(implemented by EEGLAB’s eegfilt function) to extract the high-gamma os-
cillation. Next, parts of the filtered LFP in a 30-ms time window surrounding
the spikes of a trial were averaged across trials to form the STAHG.

Histogram of the Average Instantaneous Phase.All trials having more than one
spike in the analysis time window were considered to visualize the phase
histograms. Moreover, the same number of trials was picked up from each of
the fast and slow group. The LFPs were fed into a set of FIR filters (eegfilt) to
pass the frequency range between 180–220 Hz (in 5 Hz wide frequency bands
separated by 5 Hz steps). The Hilbert transform was then applied on
the filtered LFPs to compute the instantaneous phases. Next, the phases
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simultaneous to a trial’s spikes were averaged circularly across the above
frequency bands:

φt = Arg 

(
1
n

Xn
j=1

ei   ω  tj
)
;   ω= f  2πf j  180≤ f ≤ 220  Hzg;   -π ≤ω≤ π, [3]

where φt is the circular average of high-gamma phase in a given trial
t. Histograms show the distribution of these trials’ corresponding circular
average phases ðφtÞ in an RT condition for trials pooled across the
three monkeys.

AUC Analysis. To perform the AUC analysis, SPC was calculated for the fast and
slow trial groups where the target was shown inside or outside the RF,
separately. After applying amoving average transformwith awindow length
of 4, the AUC for the discrimination of fast and slow trials was computed
across frequencies using the smoothed SPCs. AUC was estimated by using the
logistic regression.

To characterize the frequencies with a significant difference in neural
discrimination of RT between the target position conditions, we used a
permutation test: The target position conditions in each fast/slow trial group
were randomly shuffled 1,000 times. For each repetition per frequency band,
we calculated the difference between the neural discrimination across the
target position conditions. We next computed the proportion of repetitions
with larger differences compared with the original difference. Those fre-
quency bandswith a proportion smaller than 0.05 are reported as frequencies
with a significant influence of target position on neural discrimination of RT.
Here, we corrected for multiple comparisons by ensuring that it is not likely to
observe the significant frequency bands in succession (P < 0.001).

Analysis of STAHG Across Electrode Distances. After averaging the STAHGs,
calculated within ±6-ms intervals surrounding the spikes across trials, the

peak-to-peak amplitude difference was computed. The ±6-ms interval was
selected based on the low cutoff (180 Hz) of the band-pass FIR filter. To
reach a stable result, this analysis was averaged across 100 repetitions for
each interelectrode distance.

Testing for the Spectral Leakage of Spike Waveform into LFP. We selected a
subset of the fast and slow trials with at least 39 spikes in the analysis period
and an equal average band power in the high-gamma frequency range
(180 to 220 Hz). A similar routine as described for the SPC analysis was
employed for choosing trials based on the same average spectral power. We
next focused on the chosen fast trials. The STALFP as well as the STAHG were
calculated for each trial. The difference between the STAHG’s peak-to-peak
amplitudes of each trial was calculated within a ±8-ms interval around the
spikes. After sorting the trials based on these peak-to-peak differences, we
selected the first and last 87.5% as FASTLow and FASTHigh trials, respectively.
The peak-to-peak amplitude difference for the two STALFP groups was
computed for ±10-ms intervals surrounding the spikes. We selected this in-
terval based on the leakage component’s largest variation.

Availability of Data and Materials. The data underlying the result figures are
publicly available (100).
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