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Tree structures, showing hierarchical relationships and the latent
structures between samples, are ubiquitous in genomic and
biomedical sciences. A common question in many studies is
whether there is an association between a response variable mea-
sured on each sample and the latent group structure represented
by some given tree. Currently, this is addressed on an ad hoc
basis, usually requiring the user to decide on an appropriate num-
ber of clusters to prune out of the tree to be tested against
the response variable. Here, we present a statistical method
with statistical guarantees that tests for association between the
response variable and a fixed tree structure across all levels of
the tree hierarchy with high power while accounting for the over-
all false positive error rate. This enhances the robustness and
reproducibility of such findings.

subgroup detection | hypothesis testing | tree structures |
change-point detection

In the era of big data where quantifying the relationship
between samples is difficult, tree structures are commonly used

to summarize and visualize the relationship between samples
and to capture latent structure. The hierarchical nature of trees
allows the relationships between all samples to be viewed in a
single framework, and this has led to their widespread usage
in genomics and biomedical science. Examples are phylogenetic
trees built from genetic data, hierarchical clustering based on
distance measures of features of interest (for example, gene
expression data with thousands of markers measured in each
sample), evolution of human languages, and more broadly, in
machine learning where clustering and unsupervised learning are
fundamental tasks (1–7).

Often, samples have additional response measurements yi
(e.g., phenotypes), and a common question is whether there is a
relation between the sample’s latent group structure captured by
the tree T and the outcome of interest yi (i.e., whether the dis-
tribution of yi depends on its relative location among the leaves
of the tree T ). Testing for all possible combinations of groupings
on the tree is practically impossible as it grows exponentially with
sample size. Currently, users typically decide on the number of
clusters on an ad hoc basis (e.g., after plotting the response mea-
surement on the leaves of the tree and deciding visually which
clusters to choose), which are then tested for association with the
outcome of interest. This lack of rigorous statistical methodol-
ogy has limited the translational application and reproducibility
of these methods.

Here, we present a statistical method and accompanying R
package, treeSeg, that, given a significance level α, test for
dependence of the response measurement distribution on all lev-
els of hierarchy in a given tree while accounting for multiple
testing. It returns the most likely segmentation of the tree such
that each segment has a distinct response distribution while con-
trolling the overall false positive error rate. This is achieved by
embedding the tree segmentation problem into a change-point
detection setting (8–13).

treeSeg does not require any assumptions on the generation
process of the tree T . It treats T as given and fixed, testing the

response of interest against the given tree structure. Every tree
T , independent of how it was generated, induces some latent
ordering of the samples. treeSeg tests whether, for this partic-
ular ordering, the distribution of the independent observations
yi depends on their locations on the tree.

treeSeg is applicable to a wide range of problems across many
scientific disciplines, such as phylogenetic studies, molecular epi-
demiology, metagenomics, gene expression studies, etc. (3, 5,
14–16), where the association between a tree structure and a
response variable is under investigation. The only inputs needed
are the tree structure T and the outcome of interest yi for the
leaves of the tree. We demonstrate the sensitivity and specificity
of treeSeg using simulated data and its application to a cancer
gene expression study (1).

Results
For ease of presentation, we restrict to discrete binary response
measurements yi ∈{0, 1}. However, the procedure is equally
applicable to continuous and other observation types (Meth-
ods). If there is no association between the tree T and the
response measurement yi , then the observed responses yi would
be randomly distributed on the leaves of the tree, indepen-
dent of the tree structure T . However, if the distribution of
responses is associated with the tree structure, we may observe
clades in the tree with distinct response distributions. The
power to detect segments with distinct distributions depends on
the size of the clade and the change in response probability,
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Fig. 1. Illustration of the treeSeg method. Binary tree with 200 leaves and
three segments with distinct response distributions indicated by dark gray,
light gray, and white backgrounds. Outcomes for each sample are shown
on the leaves of the tree as gray or black vertical lines. Leaf responses
were simulated such that the black line has probabilities of 0.95, 0.47, and
0.05 for each of the dark gray, light gray, and white background sections,
respectively. Using α= 0.1, treeSeg has estimated three segments on the
tree with distinct response distributions indicated by the red diamonds on
the nodes of the tree. Blue squares constitute a 90% confidence set for the
nodes of the tree associated with the change in response distribution. Lower
shows the simulation response probabilities (black dotted line), the treeSeg
estimate (red line), and its 90% confidence bands (orange).

pi =P(Yi =1)=1−P(Yi =0), which means that one can only
make statistical statements on the minimum number of clades
with distinct distributions on the tree and not the maximum.

Fig. 1 illustrates our method and its output for a simulated
dataset. The responses yi are displayed on the leaves of the tree
as black and gray lines in Fig. 1. The tree T is made of three seg-
ments with distinct distributions over the responses indicated by
dark gray, light gray, and white backgrounds in Fig. 1. Given a
confidence level 1−α (e.g., 1−α=0.9, 0.95), the treeSeg pro-
cedure estimates the most likely segmentation of the tree into
regions of common response distributions such that the true
number of segments is at least as high as the estimated number
of segments with probability of 1−α.

Our method employs many likelihood ratio (LR) statistics
simultaneously to test for changes in the response distribution
on all levels of tree hierarchy and estimates at what level, if any,
there is a change. The multiple testing procedure of treeSeg is
based on a multiscale change-point methodology (11) tailored to
the tree structure. The significance levels of the individual tests
are chosen in such a way that the overall significance level is the
prespecified α. As well as the maximum likelihood estimate, our
method also provides confidence sets (at the 1−α level) for the
nodes of the tree associated with the change in response distribu-
tion and a confidence band for the response probabilities pi over
the segments (Methods and SI Appendix have theoretical proofs).
In the example of Fig. 1, using α=0.1, treeSeg estimates three
segments in the tree T , indicated with Fig. 1, red diamonds on
the nodes of the tree, recovering the true simulated changes in
response distributions. In Fig. 1, blue squares on the tree indicate
the 1−α confidence set for the nodes on the tree associated with

the change in responses yi . The red line in Fig. 1, Lower shows
the maximum likelihood estimate of the response probabilities pi
for each segment, which accurately recovers the true simulated
probabilities shown as the black dotted line. The orange band in
Fig. 1, Lower shows the 1−α confidence band of the response
probabilities.

The treeSeg method can handle missing data and make
response predictions on new samples. Computationally, treeSeg
scales well with sample size: for example, a test simulation for a
tree with 100,000 samples (number of leaves in the tree) and no
response association took around 110 min to run on a standard
laptop. Details on treeSeg’s implementation are in SI Appendix.

Simulation Study. We confirmed the statistical calibration and
robustness of treeSeg using simulation studies. We found that,
for reasonable minimal clade sizes and changes in response dis-
tribution, treeSeg is able to detect association between response
and tree structure reliably (SI Appendix, Figs. S11–S16). More
importantly, treeSeg almost never detects segments that are not
present (it can be mathematically proven that the inclusion of a
false positive segment only happens with probability≤α) (Meth-
ods), and the nominal guarantee of 1−α is exceeded in most
cases. For instance, in a simulation study of 1,000 randomly
generated trees (200 leaves) with no changes in response distri-
bution, treeSeg (using α=0.1) correctly detected no association
in 98.6% of the runs.

The treeSeg algorithm uses a fixed ordering of the leaf nodes
according to the tree structure T . In principle, any such order-
ing is equally valid as long as this is made independent of the
response variables. In our implementation in SI Appendix, we
apply a standardized ordering of the nodes so that treeSeg’s out-
put is independent of any user-specified ordering. Furthermore,
we provide simulation results showing that treeSeg is robust to
random changes in node ordering and consistently infers the cor-
rect number of segments on the tree (SI Appendix, section 2.B
and Figs. S17–S25). In SI Appendix, section 2.B.1, we provide
some discussion on signal-dependent branch orderings that may
yield a higher detection power compared with others. We also
present a procedure for aggregating results across random order-
ings to ensure that the output is independent of any specific tip
ordering (SI Appendix, section 1.E). SI Appendix has full details
on simulation studies.

The treeSeg procedure is conditioned on the input tree and
thus, independent of the particular way that the tree is gener-
ated. In real applications, the input tree structure T is usually
just a noisy version of some true neighborhood structure T̃ of
interest. Therefore, whenever the noise in the input tree T is
reasonably small such that T and T̃ essentially describe the same
neighborhood structure, treeSeg’s output is robust to this noise
(SI Appendix, section 1.F has further illustration).

Application to Cancer Data Example. We illustrate the application
of the method on a breast cancer gene expression study (1) where
data are publicly available. Following the original study, we used
correlation of gene expression data as a distance measure between
samples to build a hierarchical clustering tree. In the original
study, based on visual inspection, the authors divided the sam-
ples into two clusters, observing differences in the distributions
of various clinical responses between the two clusters.

In contrast, treeSeg only requires a significance level α as
input and searches for associations between responses and the
tree on all levels of hierarchy while accounting for multiple test-
ing. Our results are shown in Fig. 2. Using an α=0.05, for one
of the responses treeSeg delineated the tree into two clusters
with distinct response distribution as in the original study. How-
ever, treeSeg reports different patterns of association between
the tree and the other five responses, including one that has no
association with tree structure.

9788 | www.pnas.org/cgi/doi/10.1073/pnas.1912957117 Behr et al.
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Fig. 2. Application of treeSeg to a cancer gene expression study (1). Gene expressions for 98 breast cancer samples were clustered based on correlation
between samples. Six clinical responses were collected for the samples (A) BRCA mutation, (B) estrogen receptor (ER) expression, (C) histological grade, (D)
lymphocytic infiltration, (E) angioinvasion, and (F) development of distant metastasis within 5 y. In each panel, the treeSeg estimation (at α= 0.05) for
clades with distinct response distribution and their probabilities are indicated by the red diamonds on the tree and the red lines below the tree, respectively.
The orange band shows the 95% confidence band for the response probabilities pi for the estimated segments. In E, there is no association between the
tree and the response (angioinvasion), and in F, some of the samples have missing observations for the response (distant metastasis within 5 y).

The treeSeg algorithm can be applied to any tree structure
and is not restricted to trees generated using hierarchical clus-
tering. An application to a maximum likelihood phylogenetic
tree generated from pathogen sequence data is in SI Appendix,
section 3.

Discussion
The only tuning parameter for the treeSeg method is a signifi-
cance level α. Depending on the application, the user can decide
which value of α is appropriate or screen through several val-
ues of α (e.g., α=0.01, 0.05, 0.1, 0.5). A small α gives a higher

confidence that all detected associations are, indeed, present in
the data (with probability of at least 1−α). A larger α allows us
to detect more clusters but increases the risk of including false
positive clusters.

The confidence statement for detected clades and response
probabilities that accompany treeSeg’s segmentation account for
multiple testing at the level of 1−α. This allows for precise
uncertainty quantification when detecting associations between
tree structure and the responses. We highlighted treeSeg’s
potential with an example from a gene expression study but
note its ubiquitous applicability in various settings and its

Behr et al. PNAS | May 5, 2020 | vol. 117 | no. 18 | 9789
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potential to be used across many fields of science. Our method
treeSeg is implemented as an R package available on GitHub
(https://github.com/merlebehr/treeSeg) and accompanied by a
detailed Jupyter notebook with reproductions of all figures in this
text.

Methods
Model Assumptions. For illustration purposes, we focus on binary traits Yi ∈
{0, 1}. SI Appendix, section 1.B shows how treeSeg generalizes for arbitrary
continuous and discrete data. We assume a fixed given rooted tree T with
n leaves that captures some neighborhood structure of interest. For the n
samples (the leaves of the tree), independent binary traits Yi , i = 1, . . . , n,
with success probability pi , are observed: that is,

Yi ∼ Bern(pi) ⇔ P(Yi = 1) = 1− P(Yi = 0) = pi , [1]

independently for i = 1, . . . , n, where Bern(p) denotes a Bernoulli distribu-
tion with success probability p. The aim is to estimate the underlying success
probabilities p1, . . . , pn from the observations Yi . Without any additional
structural information on the success probabilities, we cannot do better
than estimating pi = Yi . However, taking into account the tree structure,
we can assume that the success probabilities are associated with the tree
such that samples on the same clade of the tree may have the same suc-
cess probabilities. Our methodology is based on a testing problem, where
the null model assumes that all isolates have the same success probability,
say p0, and the alternative model assumes that some of the clades on the
tree have different success probabilities (p0 + c∈ [0, 1]). In the following,
we denote an internal node (which demarcates a clade on the tree) with a
distinct success probability as an active node.

For simplicity, we will assume in the following that the tree
T is binary. Extensions to arbitrary trees are straight forward. We
use the following notation. For a binary, rooted tree T = (V , E), we
assume vertices V = {1, . . . , n, n + 1, . . . , 2n− 1} and edges E = {(i, j) : i, j∈
V with i, j connected}. The leaves are labeled VL = {1, . . . , n}, the inner
nodes are labeled VI = {n + 1, . . . , 2n− 1}, and the root is labeled 2n− 1.
For a node i∈V , its set of offspring leaves in VL is denoted as Off(i).
For a node i∈V , the subtree of T with root i is denoted as T(i). An
illustrative example for this notation is shown in SI Appendix, Fig. S28. More-
over, for an inner node i∈VI with offspring leaves Off(i) = {i1, . . . , im}⊂
{1, . . . , n} and for some ε∈ (0, 1), we denote the left ε-leaf neighbor-
hood of i as NL(i, ε) = {i1−bnεc, i1−bnεc+ 1, . . . , i1 + bnεc− 1, i1 + bnεc}
and analog, the right ε-leaf neighborhood of i as NR(i, ε) = {im−bnεc, im−
bnεc+ 1, . . . , im + bnεc− 1, im + bnεc}.

We consider the following statistical model.
Model 1. For a given binary, rooted tree T = (V , E) as above, assume
that one observes for each of the leaves i∈VL independent Bernoulli
random variables Yi ∼ B(pi), 1≤ i≤ n, where the vector of suc-
cess probabilities p = (p1, . . . , pn) is an element of S =S(T) :={(

p0 +
∑k

j=1 cj1i∈Off(vj )

)
1≤i≤n ∈ [0, 1]n : vj ∈V , p0, cj ∈R, 0≤ k≤ 2n− 1

}
.

For an element p∈S, we denote the set of nodes V(p) := {v1, . . . , vk}
as a set of active nodes and k(p) = k as the number of active nodes. To
ensure identifiability of active nodes, we further assume that, for each active
node vj , j = 1, . . . , k, there exists at least one offspring leaf i∈ 1, . . . , n
that has the same success probability as vj . This just excludes the trivial
case where the influence of one active node (or the root) is completely
masked by other active nodes. Equivalently, this means that we assume that
#supp(p) =#{pi : i = 1, . . . , n}= k + 1. We provide a simple example in SI
Appendix, Fig. S30.

We stress that the set V(p) is not necessarily unique (SI Appendix, Fig.
S29 has an example). That is, for a given vector p∈S, there may exist
two (or more) sets of active nodes {v1, . . . , vk} and {v′1, . . . , v′k} such that
pi = p0 +

∑k
j=1 cj1i∈Off(vj )

= p′0 +
∑k

j=1 c′j 1i∈Off(n′j ). To overcome this ambi-

guity, we will implicitly associate with each p∈S(T) a set of active nodes
V(p) of size k(p). When a specific vector p∈S(T) has more than one pos-
sible sets of active nodes V′, V′′, . . ., we assume several copies of p in
S(T), one associated with each of the sets V′, V′′, . . .. In the following, we
explore the tree structure to estimate the underlying success probabilities
pi and hence, their segmentation into groups of leaves where observations
within a group have the same success probability and observations between
different groups have different success probabilities.

Multiscale Segmentation. The procedure that we propose extends (11) from
totally ordered structures to trees and is a hybrid method of estimating and
testing. A fundamental observation is that one can never rule out an addi-

tional active node. This is because a node could be active but change the
success probability of its offspring nodes only by an arbitrarily small amount.
On the other hand, if in a subtree, successes are much more common than
in the remaining tree, it is possible to significantly reject the hypothesis that
all leaves in the tree have the same success probability.

For a given candidate vector p̃∈S, our procedure employs on each sub-
tree T(i) where p̃ is constant, with p̃≡ p̃(Off(i)), an LR test for the hypothesis
that the corresponding observations all have the same success probability
p̃(Off(i)). The levels of the individual tests are chosen in such a way that
the overall level of the multiple test is α for a given prespecified α∈ (0, 1).
A statistical hypothesis test can always be inverted into a confidence state-
ment and vice versa. Therefore, we can derive from the above procedure
a confidence set for the vector of success probabilities p = (p1, . . . , pn). We
require our final estimate p̂ = p̂1−α to lie in this confidence set. That is, we
require that, whenever p̂ has constant success probability on a subtree, the
respective LR test accepts. Within all vectors p∈S that lie in this confidence
set, we choose one which comes from a minimum number of active nodes,
and within this set, we choose the maximum likelihood solution. Thereby,
our procedure not only provides an estimate but also, provides a confidence
statement for all quantities (11). More precisely, the following asymptotic
confidence statements hold true.

1) With probability at least 1−α, the true underlying signal p∈S origi-
nates from at least k̂ active nodes, where k̂ is the number of active nodes
of p̂ (Theorem 1).

2) treeSeg yields a set of nodes C1−α, such that the active nodes of p, V(p),
are contained with probability at least 1−α in C1−α (Corollary).

3) treeSeg yields a confidence band for the underlying signal p, denoted as
p

1−α
and p1−α, such that with probability at least 1−α it holds that

p
1−α
≤ p≤ p1−α simultaneously for all i = 1, . . . , n (Theorem 3).

Moreover, the coverage probability of the confidence sets allows us to
derive (up to log factors) optimal convergence rates of the treeSeg estimator
as the sample size n increases (11). In particular, we show the following.

4) For fixed overestimation bound α∈ (0, 1), the probability that treeSeg
underestimates the number of active nodes k vanishes exponentially as
n increases (Theorem 2).

5) The localization of the estimated active nodes is optimal up to a leaf
node set of order log(n) (Theorem 4).

In the following, we will give details of the method and of the statements
1 to 5. The proofs of Theorems 1 to 4 and Corollary are similar to the totally
structured setting (11). Necessary modifications are outlined in SI Appendix.

For an arbitrary given test vector p̃ (which may depend on Y), we define
the multiscale statistic (11, 17–19)

Tn(p̃, Y) = max
1≤ i≤ j≤ n
p̃|[i,j] const.

√
2T j

i (Y
j
i , p̃i)− pen( j− i + 1), [2]

where Y j
i = (Yi , . . . , Yj) and pen(x) :=

√
2 log(e/x). Here, T j

i is the local log
LR test statistic (20) for the testing problem

H : pi = . . .= pj = p̃|[i, j] vs. K : pi = . . .= pj 6= p̃|[i, j].

The calibration term pen(·) serves as a balancing of the different scales in a
way that the maximum in Eq. 2 is equally likely attained on all scales (11, 17)
and guarantees certain optimality properties of the statistic [2] (17). Assum-
ing a minimal segment scale λ∈ (0, 1) of the underlying success probability
vector p: that is,

Sλ = {p∈S with const. segments’ length at least nλ}, [3]

it can be shown that Tn(p, Y) converges in distribution to a functional of the
Brownian motion (11), which is stochastically bounded by

M := sup
0≤s<t≤1

(
B(t)− B(s)
√

t− s
−
√

2 log
e

t− s

)
. [4]

Thereby, the minimal scale λ may depend on n such that nλ/log(n)3→∞
as n→∞ (11). As the distribution of M does not depend on the true under-
lying signal p, its quantiles can be obtained by Monte Carlo simulations and
are in the following denoted as q1−α: that is,
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lim
n→∞

sup
p∈Sλ

P(Tn(p, Y)> q1−α)≤ P(M> q1−α) =α. [5]

For a given confidence level α∈ (0, 1) or equivalently, a threshold value q =

q1−α in Eq. 5, we first define an estimator for the number of active nodes k
in Model 1 via

k̂(q) := min
p∈S

k(p) s.t. Tn(p, Y)≤ q. [6]

After the number of active nodes k is estimated, we estimate p as the
constrained maximum likelihood estimator

p̂(q) := argmaxp∈H(q)

n∑
i=1

lpi (Yi), [7]

where lp(y) is the log likelihood function of the binomial distribution and

H(q) := {p∈S : k(p) = k̂(q) and Tn(p, Y)≤ q}. [8]

Note that the maximum likelihood solution in Eq. 7 is not necessarily unique.
On the one hand, this is due to the nonuniqueness of the active nodes. On
the other hand, this might happen with positive probability by the discrete-
ness of the Bernoulli observations Y . In that case, treeSeg just reports the
first available solution, with all other equivalent solutions listed in the confi-
dence set. Clearly, if we choose q as in Eq. 5 for some given confidence level
α∈ (0, 1), the estimator k̂(q1−α) asymptotically controls the probability to
overestimate the number of active nodes as summarized in the following
theorem.
Theorem 1. For fixed minimal scale λ> 0 and significance level 1−α∈
(0, 1), let Sλ be as in Eq. 3, q1−α be as in Eq. 5, and k̂(q) be treeSeg’s
estimated number of active nodes in Eq. 6. Then, it holds that

lim
n→∞

sup
p∈Sλ

P(k̂(q1−α)> k(p))≤α. [9]

We stress that, in Theorem 1, it is possible to let λ go to zero as n increases
(11); recall the paragraph after Eq. 4. In particular, from the construction of
k̂ in Eq. 6, it follows that Tn(p, Y)≤ q implies k̂(q)≤ k, and thus, for the set
H(q1−α) in Eq. 8, one obtains that

P (p∈H(q1−α))≥ P (Tn(p, Y)≤ q1−α)− P
(

k̂(q1−α)< k
)
. [10]

By Eq. 5, it follows that the first term on the right-hand side,
P (Tn (p, Y)≤ q1−α), is asymptotically lower bounded by 1−α. Moreover,

as we show in Theorem 2, the underestimation error P
(

k̂(q1−α)< k
)

van-

ishes exponentially fast as sample size n increases. From this, it follows that
the set H(q1−α) constituents an asymptotically honest confidence set (11)
for the whole vector p from which confidence sets for the active nodes and
confidence bands for p as in statements 2 and 3 follow (Theorem 3 and
Corollary).

Any bound on the underestimation error necessarily must depend on the
minimal segment scale λ in Eq. 3 as well as a minimal pairwise difference
δ ∈ (0, 1) of success probabilities in different active segments. That is, for
p∈Sδ , we assume δ <minpi 6=pj

∣∣pi − pj
∣∣ and let

Sδ,λ =Sλ ∩Sδ. [11]

With this, one obtains that the underestimation probability decreases expo-
nentially (11) in n [for fixed δ,λ and significance level 1−α∈ (0, 1)] as the
following theorem shows.
Theorem 2. For fixed minimal scale λ> 0, minimal probability difference
δ > 0, and significance level 1−α∈ (0, 1), let Sλ,δ be as in Eq. 11, q1−α be
as in Eq. 5, and k̂(q) be treeSeg’s estimated number of active nodes in Eq. 6.
Then, it holds that

sup
p∈Sλ,δ

P(k̂(q1−α)< k(p))≤ C1 e−C2 n, [12]

where C1 and C2 are positive constants, which only depend on α,λ, δ.
Again, it is possible to let α,λ, and δ go to zero as the sample size n

increases (11). The proof of Theorem 2 is similar as for totally ordered struc-
tures (11). We outline necessary modifications in SI Appendix. From Theorem
2 and [10], we directly obtain that H(q1−α), indeed, constitutes a 1−α
asymptotic confidence set for the segmentation p.

Theorem 3. For fixed minimal scale λ> 0, minimal probability difference
δ > 0, and significance level 1−α∈ (0, 1), let Sλ,δ be as in Eq. 11, q1−α be
as in Eq. 5, and H(q1−α) be as in Eq. 8; then,

lim
n→∞

sup
p∈Sλ,δ

P (p∈H(q1−α))≥ 1−α.

As a corollary, we also obtain a confidence set of the active nodes.
Corollary. For fixed minimal scale λ> 0, minimal probability difference
δ > 0, and significance level 1−α∈ (0, 1), let Sλ,δ be as in Eq. 11, q1−α
be as in Eq. 5, and H(q1−α) be as in Eq. 8; then,

lim
n→∞

sup
p∈Sλ,δ

P (V(p)⊂{v ∈V(p̃) : p̃∈H(q1−α)})≥ 1−α.

Theorems 1 and 2 reveal treeSeg’s ability to accurately estimate the num-
ber of active nodes in Model 1. For any (arbitrarily small) α∈ (0, 1), we can
control the overestimation probability by 1−α (Theorem 1). Simultane-
ously, as the sample size n increases, the underestimation error probability
vanishes exponentially fast (Theorem 2). The next theorem shows that
treeSeg does not just estimate the number of active nodes correctly with
high probability but that it also estimates the location of those active nodes
with high accuracy. To this end, note that, for any active node v ∈V(p) and
any ε≥ 1/n, the leaf nodes of its left ε-leaf neighborhood NL(v, ε) have
nonconstant success probability. The same is true for the right ε-leaf neigh-
borhood NR(v, ε). Now assume that treeSeg estimates the number of active
nodes correctly k̂ = k, which is the case with high probability by Theorems 1
and 2. Then, p̂ being nonconstant on both NR(v, 1/n) and NL(v, 1/n) for any
true active nodes v ∈V(p), implies a perfect segmentation. Thus, the follow-
ing theorem shows that treeSeg, indeed, yields such a perfect segmentation
up to a leaf node set of size O(log(n)). That is, conditioned on the correct
model dimension k̂ = k, treeSeg’s segmentation is perfect up to at most an
order of log(n) misclassified leaf nodes.
Theorem 4. For fixed minimal scale λ> 0, minimal probability difference
δ > 0, and significance level 1−α∈ (0, 1), for any p∈Sλ,δ it holds true that

p̂|
NL

(
v,

C3 log(n)
n

) and p̂|
NR

(
v,

C3 log(n)
n

)

are not constant, for all v ∈V(p), with probability at least 1− C1 e−C2 n,
where C1, C2, C3 are positive constants that only depend on α,λ, δ.

Theorem 4 follows directly by translating change-point location esti-
mation accuracy results for the totally ordered case (11) to the tree
setting.

A natural question is whether the localization rate in Theorem 4 is opti-
mal. In particular, one can compare this result with the totally ordered
setting, where the minimax optimal change-point estimation rate is known
to be of the same order [possibly up to log(n) factors]. One would expect
that the additional tree structure leads to a strictly better segmentation
rate. It turns out, however, that without making further assumptions on
the tree the rate in Theorem 4 cannot be improved in general (SI Appendix,
Theorem 6). More precisely, for an arbitrary number of observations n, there
always exist trees that do not contain any additional information other than
the ordering of the tips. In that case, the tree structured setting is essentially
equivalent to a regular change-point setting, and thus, treeSeg cannot yield
any better performance.

On the other hand, when one imposes additional structural assumptions
on the tree, it can be shown that treeSeg yields a perfect segmentation
with high probability SI Appendix, Theorem 7. Essentially, when a tree struc-
ture is such that the segmentation from different sets of actives nodes is
either the same or differs by some nonvanishing fraction γ ∈ (0, 1) (more
precisely, this is captured by the γ-spreading property in SI Appendix,
Definition 1), then treeSeg will recover those active nodes exactly with
high probability. A simple example of trees that provide such additional
structure are perfect trees, where all tip nodes have the same depth. In
summary, treeSeg efficiently leverages the tree structure to overcome the
minimax lower bound from a simple change-point estimation problem
whenever the tree allows this. We provide more details in SI Appendix,
section 1.D.

ACKNOWLEDGMENTS. M.B. was supported by Deutsche Forschungsgemein-
schaft (DFG; German Research Foundation) Postdoctoral Fellowship BE
6805/1-1. Moreover, M.B. acknowledges funding of DFG Grant GRK 2088.
M.B. and A.M. acknowledge support from DFG Grant SFB 803 Z02. A.M. was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy EXC 2067/1-390729940.

Behr et al. PNAS | May 5, 2020 | vol. 117 | no. 18 | 9791

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 N
ie

de
rs

ae
ch

si
sc

he
 S

ta
at

s-
 u

nd
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 G
oe

tti
ng

en
 o

n 
N

ov
em

be
r 

7,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

13
4.

76
.1

62
.1

65
.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912957117/-/DCSupplemental


C.H was supported by The Alan Turing Institute, Health Data Research
UK, the Medical Research Council UK, the Engineering and Physical Sci-
ences Research Council (EPSRC) through the Bayes4Health programme Grant
EP/R018561/1, and AI for Science and Government UK Research and Inno-

vation (UKRI). We thank Laura Jula Vanegas for help with parts of the
implementation. Helpful comments of Bin Yu and Susan Holmes are grate-
fully acknowledged. We are also grateful to two referees and one Editor for
their constructive comments that led to an improved version of this paper.

1. L. J. van’t. Veer et al., Gene expression profiling predicts clinical outcome of breast
cancer. Nature 415, 530–536 (2002).

2. R. D. Gray, Q. D. Atkinson, Language-tree divergence times support the Anatolian
theory of Indo-European origin. Nature 426, 435–439 (2003).

3. P. B. Eckburg, Diversity of the human intestinal microbial flora. Science 308, 1635–
1638 (2005).

4. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning (Springer
Series in Statistics, Springer, New York, NY, 2009).

5. N. R. Faria et al., The early spread and epidemic ignition of HIV-1 in human
populations. Science 346, 56–61 (2014).

6. M. A. Ansari, X. Didelot, Bayesian inference of the evolution of a phenotype
distribution on a phylogenetic tree. Genetics 204, 89–98 (2016).

7. J. Fukuyama et al., Multidomain analyses of a longitudinal human microbiome
intestinal cleanout perturbation experiment. PLoS Comput. Biol. 13, e1005706 (2017).

8. N. R. Zhang, D. O. Siegmund, A modified Bayes information criterion with applica-
tions to the analysis of comparative genomic hybridization data. Biometrics 63, 22–32
(2007).

9. R. Killick, P. Fearnhead, I. A. Eckley, Optimal detection of changepoints with a linear
computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).

10. J. Sharpnack, A. Singh, A. Rinaldo, “Changepoint detection over graphs with the spec-
tral scan statistic” in Artificial Intelligence and Statistics, C. M. Carvalho, P. Ravikumar,
Eds. (Proceedings of Machine Learning Research, Scottsdale, AZ 2013), pp. 545–553.

11. K. Frick, A. Munk, H. Sieling, Multiscale change point inference. J. Roy. Stat. Soc. B 76,
495–580 (2014).

12. H. Chen, N. Zhang, Graph-based change-point detection. Ann. Stat. 43, 139–176
(2015).

13. C. Du, C. L. M. Kao, S. C. Kou, Stepwise signal extraction via marginal likelihood. J.
Am. Stat. Assoc. 111, 314–330 (2015).

14. M. A. Ansari et al., Genome-to-genome analysis highlights the effect of the human
innate and adaptive immune systems on the hepatitis C virus. Nat. Genet. 49, 666–673
(2017).

15. J. Lu et al., MicroRNA expression profiles classify human cancers. Nature 435, 834–838
(2005).

16. S. G. Earle et al., Identifying lineage effects when controlling for population struc-
ture improves power in bacterial association studies. Nature Microbiology 1, 16041
(2016).
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