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Abstract
In social animals, kin relations strongly shape the social structure of a group. In female-

bonded species, maternal relatedness is likely to be mediated via familiarity, but evidence is

accumulating that non-human primates are able to recognize kin that they are not familiar

with and adjust their behavior accordingly. In playback experiments, female rhesus

macaques showed increased interest in ‘coo’ calls produced by unfamiliar paternal half-sis-

ters compared to ‘coo’ calls produced by unfamiliar unrelated females, suggesting that these

calls should have some common structural characteristics that facilitate the discrimination of

kin from non-kin. Here we analyzed ‘coo’ calls of 67 adult female rhesus macaques from four

groups and seven matrilines living on the island of Cayo Santiago (Puerto Rico). We tested

whether the call structure of closely maternal and/or paternal related females, as determined

from extensive pedigree data, differed from the call structure of unrelated females, while con-

trolling for familiarity (i.e., group-matrilineal membership and age difference) of subjects. In

contrast to our expectation, kinship did not predict similarities in ‘coo’ call structure, whereas

‘coo’ structure was more similar when produced by females of similar age as well as by

females with higher familiarity, suggesting that experience is more decisive than genetic

background. The high number of individuals in the analysis and the high accuracy of the

assignment of calls to individuals render a lack of power as an unlikely explanation. Thus,

based on the results of this study, kin recognition in rhesus monkeys does neither appear to

be based on the assessment of self-similarity, nor on the comparison among related subjects

(i.e., acoustic phenotype matching), but appears to be mediated by different or multiple cues.

Furthermore, the results support the notion that frequent social interactions result in increas-

ing acoustic similarity within largely innate call types (‘vocal accommodation’).
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Introduction
Gregarious primates form differential relationships across group members, with some of those
relationships being very close and enduring, persisting for months or even years [1]. Kinship is
one of the factors influencing the formation of those relationships [2], facilitating the acquisi-
tion of inclusive fitness benefits [3] via nepotism (i.e., the preferential treatment of close rela-
tives in pro-social interactions [4]) and/or optimal outbreeding (i.e., the balancing of fitness
benefits due to mating with close kin against the costs of inbreeding depression [5]).

A prerequisite of kin selection is that kin must be sufficiently distinctive from non-kin, as
well as recognized and preferentially treated. Consequently, mechanisms and cues facilitating
these processes should have evolved. Among the most likely mechanisms used to identify kin
are familiarity through prior association and phenotype matching in which a target phenotype
is compared with a template derived from either oneself or a known relative [6].

Like in other mammalian species, the disproportional investment of non-human primate
mothers into their offspring leads to a system in which maternal kinship and familiarity are
particularly closely related. It is hence not surprising that familiarity can be invoked to explain
most reports on maternal kin discrimination found in today's literature on non-human pri-
mates (e.g., [7–10]).

Disentangling familiarity and phenotype matching is challenging as it requires demonstrat-
ing kin recognition (i.e., the ability to identify, distinguish, and classify kin vs. non-kin [11]) or
kin biased behaviors (i.e., the differential treatment of kin and non-kin [11]) while controlling
either for familiarity or phenotype matching. Under natural conditions, it is difficult to elimi-
nate phenotype matching as an underlying mechanism, as this would require precluding any
learned or genetically based kin template. Two circumstances favor the existence of unfamiliar
(i.e., paternal) kin in order to control for familiarity under natural conditions. First, if male
annual reproduction is skewed toward one or a few males within one social group, these off-
spring will be paternal half-siblings born to different mothers. Hence, paternal siblings will be
less familiar than maternal siblings as they live in different social environments compared to
maternal siblings, which are familiar through their common mother. Second, if males disperse
at least once in their life while reproducing in more than one group, these paternally related
individuals will be even less familiar to each other than those born in the same group, particular
when considering the philopatric sex (in this case females), as they can be expected to never
reside in the same group. Taking advantage of such a situation, studies on two primate popula-
tions have been able to provide evidence for phenotype matching among unfamiliar kin (rhesus
macaques,Macaca mulatta: [12,13]; mandrills,Mandrillus sphinx: [14]).

Among the cues facilitating kin recognition are olfactory, visual and auditory signals
(reviewed in [15,16]). For example, there is evidence that acoustic features vary with regard to
relatedness (based on kin [17–19], based on maternal and paternal kin [14]). The logic behind
greater acoustic similarity with increasing relatedness is that kin may share specific features of
their vocal pattern generators and/or morphological features in their sound apparatus affecting
acoustic characteristics of the produced vocal signal [20]. The challenge is to distinguish acous-
tic similarity due to genetic relatedness from acoustic similarity which may arise out of experi-
ence [21,22]. Although the acoustic structure of non-human primate vocalizations appears
largely innate, exposure to specific sound characteristics of others may lead to an increasing
acoustic similarity between subjects, a phenomenon termed ‘vocal accommodation’ [23]. Vocal
accommodation requires only little articulatory control because it affects mainly the phonation
qualities, like pitch, loudness and duration of utterances [24,25].

Studies on acoustic similarities that consider familiarity and genetic relatedness between
individuals are rare. Calls of Campbell’s monkeys (Cercopithecus campbelli campbelli) have
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been found to be more similar among more strongly bonded animals (measured by grooming
duration), independent of genetic relatedness [26]. In contrast, a recently published study on
mandrills reported an effect of both, kinship and familiarity, on contact call characteristics
[14]. Results of playback experiments, testing the effect of kinship and familiarity on the
response of conspecifics, support the finding of genetic relatedness being reflected in the acous-
tic structure of contact calls (rhesus macaque females: [12]; mandrill males and females: [14]).

Taking advantage of the demographically well monitored (nearly daily census records since
1956) and, in terms of pedigree information (genetic database implemented in 1992), most
comprehensive rhesus macaque population on Cayo Santiago (Puerto Rico, USA), we set out
to investigate whether information about relatedness is reflected in the acoustic structure of
their contact calls (‘coo’). Our dataset consisted of acoustic information for 67 adult females
that were either unrelated, patrilineal kin, matrilineal kin, or dyads related via both the mater-
nal and paternal kin-lines. In addition to information about relatedness, we included informa-
tion on the degree of familiarity between individuals. As measures of familiarity we used group
membership, matrilineal membership, and age difference. In order to distinguish same vs. dif-
ferent matrilines it is helpful to go back several generations to avoid misclassifications. In our
study population, information on matrilineal membership dates back to the very first females
that founded the colony about 70 years ago. Therefore, some females, although in the same
matriline, are related at a very low degree (r< 0.0625) (see methods for our definition of kin
and non-kin dyads). To examine the effect of familiarity, we used the interaction between
group membership, matrilineal membership, and age difference, as we assumed that individu-
als of the same group and matriline, as well as peers of the same group, interact preferentially
with each other [10,27,28].

In accordance with previous findings, we predicted genetic relatedness and/or our proxies of
familiarity (i.e., age difference, group- and matrilineal membership) to affect acoustic similarity
between individuals in a way that more familiar and more closely related individuals show
greater similarities (or smaller acoustic distance) in the acoustic structure of their contact calls.

Methods

Study site and subjects
We conducted the study on the rhesus macaque population living on Cayo Santiago, a 15.2 ha
island offshore of Puerto Rico. Rhesus macaques live in female bonded, multi-male-multi-
female groups, with males dispersing on average at 5 years of age [29]. Information on date of
birth, natal group and duration of group membership of all animals were available from the
demographic database of the Caribbean Primate Research Center (CPRC). This database is
based on records of nearly daily censuses conducted continuously since 1956. All individuals
were habituated to human observers and could be recognized on an individual basis using tat-
toos, ear notches or individual characteristics. During data collection (April to December 2009
and March to August 2010) approximately 1000 individuals belonging to 6 different social
groups inhabited the island, with group sizes ranging from approximately 100 to 300 individu-
als. Data reported here stem from 67 adult females (age range: 4 to 24 years, mean: 9.6 years)
belonging to 4 groups and 7 matrilines (mean = 2.75 matrilines/group, range: 1–4, mean num-
ber of females within matrilines = 62.27, based on census October 2009).

Vocal recordings
We recorded ‘coo’ calls uttered in the same behavioral context (i.e., group progression [7], see
Fig 1A–1D). Vocalizations were recorded ad libitum throughout the day using a Marantz PMD
661 recorder (D &M Professional, Longford, U.K.) and a Sennheiser directional microphone
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(Sennheiser, Wedemark, Germany; K6 power module and ME66 recording head with Rycote
Modular Windshield System and a RycoteWindjammer, Rycote Ltd., Stroud, U.K.). Rhesus
macaques utter ‘coo’ calls as single calls as well as in bouts. For analysis, we only selected one call
per bout, or calls that were uttered singly. Because the macaques on Cayo Santiago are well habit-
uated, including to the use of acoustic recording equipment, we could make recordings at very
close range (mean ± SD: 1.79 ± 1.05 m). Recordings were transferred to a computer and saved at
16-bit accuracy and a sampling frequency of 44.1 kHz. Only high quality recordings, i.e., not dis-
turbed by background noise, were selected and entered into our structural analysis. In total 620
‘coo’ calls of 67 females (14 to 4 per individual, mean = 9.2) entered the acoustic analysis.

We acknowledge that it would have been interesting to also investigate structural similarities
between male contact calls. This was, however, not possible, because males emitted fewer ‘coo’
calls than females (Pfefferle et al. unpublished data) providing us with an insufficient number
of appropriate vocalizations.

Parentage assignment
For parental assignment we used the long-term genetic database for this population, currently
encompassing 3735 individuals (details in [12,30]). In brief, blood samples were collected from
most animals of the population with extensive sampling efforts since 1992. Genetic sampling
of individuals is routinely conducted by the CPRC during annual trapping. Animals are
trapped and anesthetized using an intramuscular injection of Hydrochloride Ketamine (10 mg/
kg body weight), and blood samples are drawn via femoral venipuncture by CPRC veterinari-
ans. Two samples with a maximum of 2 ml of blood each were obtained (for more details [30]).

We analyzed data from 67 females, whose mothers (N = 49 unique mothers, as some sub-
jects shared the same mother) listed in the demographic database were genetically confirmed.
Maternity information was used in subsequent paternity analyses, for which all males older
than 1250 days (based on earliest age at reproduction [31]) and present on the island at least
200 days prior to the birth of a given individual (based on mean days ± SD gestation length:
166.5 ± 7.4; [32]) were considered as potential sires. On average mother-sire-offspring trios
were typed on 29 common loci. Paternity was assigned for all 67 females using a combination
of exclusion and likelihood methods. In all cases the assigned sire had no mismatch with the
respective mother-offspring pair while all other potential sires were excluded by at least two

Fig 1. Spectrograms of rhesus female coo calls.Coo call of subject A and B have a relatively high
similarity (i.e., a low F-value of 0.97), whereas the coo calls of subject C and D have a low similarity (high F-
values of 6.71). F-values for the other combinations: A vs. C = 4.5, A vs. D = 3.7, B vs. C = 4.63, B vs.
D = 3.81.

doi:10.1371/journal.pone.0161133.g001

Rhesus Macaque Calls Reflect Familiarity, Not Kinship

PLOS ONE | DOI:10.1371/journal.pone.0161133 August 31, 2016 4 / 16



loci, resulting in a total of 38 unique sires. Relatedness between individuals was additionally
confirmed at 95% confidence level by the maximum likelihood method (CERVUS 3.0, [33]) for
all, but five cases for which relatedness was confirmed at 80% confidence level.

To calculate the degree of relatedness among dyads, we also aimed to assign the maternal
and paternal grandparents. For 41 of the 49 unique dams we could determine a mother
(N = 28 unique identities), i.e., maternal grandmothers of the offspring, confirming the demo-
graphic data (i.e., nearly daily observations by the CPRC from birth until weaning) in all cases.
In the remaining cases (N = 8) no genetic sample from the maternal grandmother was avail-
able. Based on the 38 unique sires, we genetically identified 23 unique paternal grandmothers.
In 15 cases no genetic sample from the paternal grandmother was available. However, given
that in the entire study population only 80 (2.47%) of all behaviorally-determined mothers
(N = 3247) were not subsequently confirmed genetically, we feel confident in using the behav-
iorally-assigned (grand)mothers in these cases. Based on the 49 unique dams, we could deter-
mine 31 unique maternal grandfathers, excluding all other potential grandfathers at two or
more loci. Relatedness between dams and maternal grandfathers was confirmed at 95% confi-
dence level by the maximum likelihood method (CERVUS 3.0, [33]) for all, but one case for
which relatedness was confirmed at 80% confidence level. For the 38 unique sires, we identified
23 unique paternal grandfathers, excluding all other candidates by at least two mismatches.
Relatedness between sire and paternal grandfather was confirmed at 95% confidence level
using the maximum likelihood method (CERVUS 3.0, [33]) for all, but one case for which
relatedness was confirmed at 80% confidence level.

Determination of the degree of relatedness
Pedigree information up to the grandparental generation was subsequently used to calculate the
degree of relatedness (r) between dyads (N = 2178 dyads based on 67 individuals). For those
individuals having one or more ancestors in common, we added relatedness from the maternal
and paternal linages. In order to be defined as a kin dyad [r = 0.0625–0.5] (i) at least 10 of the 12
possible ancestors (i.e., 2 pairs of parents plus 4 pairs of grandparents) had to be identified, and
(ii) at least one of the ancestors had be shared. This definition was met for 307 dyads (hereafter
‘kin dyads’, N = 134 with 12, N = 101 with 11, and N = 72 with 10 known ancestors, for infor-
mation about the distribution of r-values see Table 1). It is important to note that r-values reflect
the minimum value of relatedness, i.e., a dyad may have been more (but not less) closely related
than indicated by our r-value (see [34]). In contrast, to be defined as a non-kin dyad, we stipu-
lated that up to the grandparent generation i) all 12 ancestors of a given dyad had to be identi-
fied and ii) none of them had to be shared by the individuals constituting the dyad (i.e., non-kin
dyads shared no ancestor up to the grandparent generation). For those dyads (N = 726) we

Table 1. Number of dyads with respective relatedness values in the three defined categories.

r-value same group, same
matriline

same group, different
matriline

different group, different
matriline

0 296 181 249

0.0625 69 24 7

0.1250 80 23 7

0.1875 4 0 0

0.2500 45 15 5

0.3125 4 1 0

0.3750 2 0 0

0.5000 21 0 0

doi:10.1371/journal.pone.0161133.t001
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assumed that the grandparents in the pedigree were themselves unrelated to one another. If this
assumption would be incorrect and two grandparents were related at r = 0.5 (i.e., the highest
probable level), we would have had underestimated the level of kinship in this dyad by
r = 0.03125, creating only minor noise in the kinship values [34]. Only dyads that met either our
kin or non-kin category entered the data set for the final analyses, which consisted of 1033
dyads of 67 females (i.e., N = 1145 dyads had to be excluded per definition above).

Structural analysis of ‘coo’ calls
To obtain an appropriate range for the estimation of acoustic features of ‘coo’ calls with an
improved frequency resolution, we reduced the sampling frequency from 44.1 to 11.05 kHz
and calculated a 1024 pt Fast Fourier Transformation (FFT) (frequency range = 5.5 kHz, fre-
quency resolution = 11 Hz, time resolution = 2.9 ms). We submitted the resulting frequency
time spectra to the custom software program LMA 2010 (developed by K. Hammerschmidt
[35]) that extracts different sets of features from acoustic signals.

To estimate the individual specificity of ‘coo’ calls we calculated the following acoustic fea-
tures: First, we used an autocorrelation function for each time segment (time frame of FFT) in
a given ‘coo’ call to estimate the fundamental frequency (F0) and features related to F0.
Depending on the number of peaks and the periodicity of the autocorrelation function each
time segment was classified as noisy (no peaks could be detected), complex (some peaks could
be detected, but they were not periodic), or tonal (periodic peaks). If a time segment was classi-
fied as tonal we determined the F0. We visually controlled the results via a harmonic cursor
method implemented in LMA 2010 [36]. In addition to F0 and tonality we calculated features
describing the harmonic-to-noise ratio (HNR) and peak frequency (PF) from the tonal time
segments. Second, to describe the general energy distribution of single ‘coo’ calls we calculated
the statistical distribution of frequency amplitudes across the spectrum. In a first step we calcu-
lated the overall energy of each time segment of a call. Subsequently, we determined the fre-
quency at which the distribution of the amplitude in the frequency spectrum reached the first,
second, and third quartile of the total distribution. In this way we were able to describe energy
changes within a call independent of structural assumptions. Furthermore, we characterized
the main energy of the entire ‘coo’ calls by calculating the peak frequency (i.e., frequency of
highest amplitude), frequency range and global energy peaks within the frequency spectra [36].

To estimate the relationship between the individual acoustic structure of their ‘coo’ calls and
their genetic relatedness we used the pairwise distances of a stepwise discriminant function anal-
ysis given as F-values (DFA, SPSS19). This method has been applied in different studies examin-
ing the relationship between acoustic structure and genetic or geographic distance of populations
[37–39]. In a first step, the stepwise procedure identifies the combination of acoustic features
that allows an optimal discrimination between all subjects by excluding all acoustic parameters
that do not improve the discrimination (correlating parameters with no additional explanatory
value). This also leads to a reduction of collinearity of acoustic features. In a second step, the dis-
criminant function estimates the F-values of pairwise distances between individuals. To estimate
the similarity between individuals, we entered all 112 acoustic features into a stepwise DFA,
using subject identity as grouping variable. The selection criterion for acoustic features was to
enter them in the discriminant function when p� 0.05, and remove them when p� 0.1. We
used the F-values of the last step to describe the similarity between female ‘coo’ calls.

Statistical analysis
To analyze whether the acoustic distance (expressed as F-values of the DFA, see above)
between individuals was influenced by their degree of relatedness, we fitted a linear mixed
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model (LMM) [40]. We controlled for different levels of familiarity by including group mem-
bership (born into same vs. different group), matrilineal membership (born into same vs. dif-
ferent matriline) and age difference (a continuous variable indicating the birth difference in
years) as predictors into our model.

Due to the dependency of group- and matrilineal membership, we merged these two fac-
tors into one comprising three levels: different group and different matriline, same group and
same matriline, and same group but different matriline. Hereafter, this factor is called ‘group-
matrilineal membership’. Based on previous evidence, we predicted that relatedness and/or
familiarity influenced acoustic distance; hence, we assumed an interaction between the degree
of relatedness and familiarity (i.e., group-matrilineal membership and age difference). There-
fore, we included the three-way interaction between these three predictors (and also all two-
way interactions this encompasses) into our full model. To keep type I error rates at the nomi-
nal level of 0.05, we added all possible random slopes [41,42], including those accounting for
the interactions, to the model. To include random slopes for the factor group-matrilineal
membership we manually dummy coded it and entered the two derived dummy variables and
also their products with the respective other terms (to include random slopes for the interac-
tions) into the random slopes components of the model. However, we did not include the cor-
relations between random slopes and random intercepts in order to reduce computation time
and since it is known that neglecting them does not compromise type I error rates [42]. As
random effects, we entered the identities of the two subjects of a dyad. Prior to fitting the
model we checked all predictors, as well as the response (i.e., acoustic distance) for their distri-
bution and, as a consequence, square root transformed age difference and acoustic distance to
achieve a more symmetrical distribution, as well as normally distributed and homogeneous
residuals (verified by visual inspection of a qq-plot of the residuals and residuals plotted
against fitted values). Afterwards we z-transformed all continuous predictors (i.e., degree of
relatedness and age difference) to a mean of zero and a standard deviation of one to achieve
comparable estimates and a more easily interpretable model with regard to the interactions
[43,44]. The model was fitted in R v.3.2.0 using the function ‘lmer’ provided by the package
'lme4' [45]). We checked for model stability by excluding subjects one at a time from the data
and comparing the estimates derived for the obtained data sets with those obtained from the
model based on all data. This indicated that no heavily influential case existed. Additionally,
we randomized the assignment of subjects to the two random effects and compared the range
of the estimates derived from the random assignments. This revealed some moderate uncer-
tainty in the case of the full model, namely for the three-way interaction, but the final model
appeared to be robust (see below). Generalized Variance Inflation Factors (VIF, [46,47]) were
derived using the function ‘vif’ of the R-package car [48] applied to a standard linear model
excluding the interactions and random effects. Results indicated no collinearity issue (largest
VIF = 1.1; [46,49–51]).

As an overall test of the effect of the predictors (degree of relatedness, age difference, group-
matrilineal membership, and their interactions) on the acoustic distance [52], we used a likeli-
hood ratio test (LRT) comparing the full model (including all interactions) with a null model
comprising only the intercept and the random effects using the R function ‘anova’ with argu-
ment test set to ‘Chisq’. Since we were particularly interested in the outcome of the three-way
interaction (see our prediction above), we first inspected the results of the full model. Because
the interpretation of the main effects is only possible after removal of all non-significant inter-
action terms, we checked whether the model including the three-way interaction term differed
from the model without this three-way interaction using LRT. We then removed any non-sig-
nificant interactions, to infer about the results for the main effects. Our dataset included 1033
dyadic similarity measures with dyads being composed of a total of 67 individuals.
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Ethics statement
This study was approved and carried out in strict accordance to the rules and requirements of
the Caribbean Primate Research Center and the Institutional Animal Care and Use Committee,
Medical Sciences Department, University of Puerto Rico (protocol No. 4060105).

Results
The stepwise parameter selection of the DFA resulted in the inclusion of 49 (out of 112) acous-
tic features for an optimal individual differentiation. With these features, calls could be
assigned to the correct individual (N = 67) in 68.5% of cases (chance level = 1.49%, approx. 50
times above chance), indicating a high degree of individual differentiation. The five most
important acoustic features to describe similarity of coo calls, and, hence, to discriminate
between rhesus macaque females, were: mean F0, call duration, maximum F0, amplitude ratio
between F0 and 3rd harmonic, and the 3rd quartile of the distribution of frequency amplitudes.
Importance and description of all 49 acoustic features is given in S1 Table. Fig 1A–1D shows
spectrographic examples of female coo calls with high and low structural similarity.

We found strong evidence that the full model differed from the null model (LRT comparing
the full with the null model: Χ2 = 67.54, P< 0.001, df = 11), suggesting that the set of predictor
variables had a clear influence on the acoustic distance (see Table 2). Fig 2A–2C shows the
acoustic distance in relation to relatedness and age difference for the three levels of group-
matrilineal membership. The corresponding three-way interaction between relatedness, group-
matrilineal membership and age difference revealed no marked effect on the acoustic distance
of rhesus ‘coo’ calls (LRT: Χ2 = 0.454, df = 2, P = 0.797). Furthermore, none of the three two-
way interactions had a substantial effect on acoustic distance (relatedness:group-matrilineal
membership LRT: Χ2 = 0.252, df = 2, P = 0.882; relatedness:age difference LRT: Χ2 = 1.382,
df = 1, P = 0.240; group-matrilineal membership:age difference LRT: Χ2 = 0.543, df = 2,
P = 0.76).

The inspection of the retained main effects yielded no effect of relatedness on acoustic dis-
tance (Table 3). Group-matrilineal membership, however, influenced acoustic distance such
that dyads that lived in the ‘same group and same matriline’ revealed a significantly smaller

Table 2. Results of the full model testing the effect of relatedness, matrilineal-groupmembership and
age difference on acoustic distance between dyads.

Estimate SE t-value

(Intercept) 1.403 0.054 26.019

relatedness -0.020 0.037 -0.556

same group-same matriline -0.116 0.046 -2.511

same group-different matriline -0.054 0.047 -1.130

age difference 0.190 0.037 5.079

two way interactions:

relatedness: same group-same matriline 0.003 0.038 0.081

relatedness: same group-different matriline 0.016 0.043 0.359

relatedness: age difference 0.039 0.045 0.880

same group-same matriline: age difference 0.011 0.038 0.295

same group-different matriline: age difference 0.012 0.040 0.296

three-way interaction:

relatedness: same group-same matriline: age difference -0.030 0.045 -0.661

relatedness: same group-different matriline: age difference -0.024 0.054 -0.453

doi:10.1371/journal.pone.0161133.t002

Rhesus Macaque Calls Reflect Familiarity, Not Kinship

PLOS ONE | DOI:10.1371/journal.pone.0161133 August 31, 2016 8 / 16



Fig 2. Acoustic distance vs. relatedness and age difference, plotted for the three levels of group-
matrilineal membership. Acoustic distance plotted against relatedness and age difference for the three
different levels of group-matrilineal membership: (A) same group & same matriline, (B) same group &
different matriline, (C) different group & different matriline. The grid indicates the predictions of the model,
while circles indicate actual data points. The area of a circle represents the number of data points plotted, and
the color indicates whether the data points fall above (black) or below (white) model prediction.

doi:10.1371/journal.pone.0161133.g002
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acoustic distance than dyads living in ‘different groups and different matrilines’ (Table 3,
Fig 3). The acoustic distance of dyads living in the ‘same group and different matriline’ fell in
between the two other categories, such that the characteristics of dyads living in the ‘same
group and the same matriline’ were not significantly different from dyads living in the ‘same
group and different matriline’ (Table 3, Fig 3). Likewise, dyads from ‘different groups and
matrilines’ did not differ significantly in their acoustic distance from dyads living in the ‘same
group and different matrilines’ (Table 3, Fig 3).

Surprisingly, we found that members of a dyad that had a similar age (i.e., smaller age differ-
ence) showed smaller acoustic distance/greater acoustic similarity (Table 3, Fig 4). This effect
was independent of familiarity, i.e. whether subjects lived in the same or different matriline(s)
or group(s), respectively. To check whether this result was due to subtle effects of relatedness,
we repeated the analysis using calls from unrelated females only. As before, the analysis
revealed no effect of familiarity on acoustic distance (LRT of full model including group-

Table 3. Results of the reducedmodel (without the non-significant three- and two-way interactions) testing the effect of relatedness, matrilineal-
groupmembership and age difference on acoustic distance between dyads.

Estimate SE df Χ2 p value

(Intercept) 1.417 0.051

relatedness -0.012 0.009 1 1.704 0.192

age difference 0.198 0.022 1 53.913 <0.001

group-matrilineal membership: 2 8.774 0.012

same group- same matriline vs. different group- different matriline -0.128 0.043 1 8.527 0.003

same group-different matriline vs. different group-different matriline -0.067 0.044 1 2.203 0.138

same group-different matriline vs. same group-same matriline 0.057 0.034 1 2.776 0.096

doi:10.1371/journal.pone.0161133.t003

Fig 3. Acoustic distance vs. group-matrilineal membership. Acoustic distance plotted for the three levels
of the factor group-matrilineal membership, i.e., dyads of individuals of different matriline and different
groups, same matriline and same group, same group, but different matriline. Results of the post-hoc
comparison between the three levels indicated by ‘n.s.’(p > 0.05) or * (p < 0.001). Numbers above the x-axes
labels indicate the number of dyads represented in the respective level. The horizontal lines represent the
median, boxes the quartiles and vertical lines depict the percentiles at 2.5% and 97.5%.

doi:10.1371/journal.pone.0161133.g003
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matrilineal membership interacting with age difference vs. reduced model excluding this inter-
action: Χ2 = 1.788, df = 2, P = 0.409). Thus, the greater acoustic similarity of dyads of similar
age appeared to be due to overall changes with age, such that younger adult females collectively
sounded different from older adult females (note that a dyad of greater age difference ulti-
mately consisted of a younger and an older female).

Discussion
Investigating contact calls of females of varying degrees of relatedness and familiarity (i.e.,
group-matrilineal membership and age difference), our analysis suggests familiarity but not
relatedness to reflect acoustic distance within dyads. Specifically, females of similar age or
females that grew up in the same group and matriline showed significant similarities in their
‘coo’ call structure. Such an effect of familiarity on call structure has been described previously.
For instance, Snowdon and Elowson [53] reported that Pygmy marmosets (Cebuella pygmaea)
modified their call structure when paired with new partners. Furthermore, free-living Camp-
bell’s monkeys shared higher vocal similarity among closely bonded individuals, compared to
individuals that hardly interacted [26]. That such a familiarity effect can also lead to similarities
in vocal structures at the group level is suggested by a study on wild chimpanzees (Pan troglo-
dytes) revealing temporal and structural differences in the same call type (the ‘pant hoot’)
between two groups [54,55]. Furthermore, when presented with alarm calls of their own vs.
another population, Barbary macaques (Macaca sylvanus) responded significantly longer
toward the calls from the other groups [56]. Vocal accommodation seems very likely to explain
the effect of familiarity found in this study, because non-human primates have only limited
control over their vocal production [20,57].

In contrast to an effect of a high degree of familiarity, we could not detect significant simi-
larities in ‘coo calls’ in relation to the degree of relatedness. This is a surprising result because
a playback study conducted on the same population using the same call type showed that,
independent of familiarity, females responded more often to ‘coo’ calls of paternal half-sisters
than to ‘coo’ calls of unrelated females, suggesting acoustic phenotype matching [12]. On
Cayo Santiago, however, inter-group encounters do occur, mostly around feeding sites.

Fig 4. Acoustic distance vs. age difference. Acoustic distance plotted against age difference in years (at
square root scale) within pairs of individuals (pooling the three levels of group-matrilineal membership). The
dashed lines represent the model estimate for acoustic distance as a function of age difference (bold-dashed
line) and the upper and lower confidence interval.

doi:10.1371/journal.pone.0161133.g004
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During such encounters, individuals might gain at least some knowledge about kin living in
other social groups, for instance, via linking visual cues known to reflect kinship (see [13])
with vocal cues. In such case, the recognition of kin found in our playback study [12] could
have been indirect, i.e., via the transfer of information about relatedness gained from one
modality, e.g., vision, to a second modality, here vocal. However, since group encounters are
mostly aggressive and, as such, are accompanied by agonistic vocalizations (e.g., barks,
screams) rather than contact calls (i.e., coo’s), the extent to which such information transfer
would be plausible is currently unknown and calls for more studies of this kind. Nevertheless,
the idea that non-human primates can use phenotype matching in the vocal domain gains
support in a recent playback study on mandrills, that also reported different response patterns
(i.e., body and head movements towards the loudspeaker) in relation to genetic relatedness
[14]. In the same study, the authors reported that kinship is reflected in the acoustic structure
of the species’ contact calls [14]. However, the vocal characterization of individuals was based
on call units rather than independently emitted calls, which precludes a direct comparison of
our results with this study.

There are many factors that may affect the phenotypic expression of vocalizations, possibly
masking vocal features that might reflect relatedness, one of which is vocal accommodation.
Currently, there is no possibility to exclude that our structural analysis might have missed the
acoustic feature(s) reflecting relatedness. However, the high number of females (67 subjects)
included in our analysis as well as the high assignment quality of independently emitted ‘coo’
calls to individual subjects, 50 times above chance, makes it unlikely that we lacked statistical
power to unravel possible structural similarities. In addition, the methodological procedure
used in this study to estimate the similarity of calls, was used successfully in other studies. For
instance, using the same score to calculate acoustic distance, a study on crested gibbons
(Namascus spp.) showed a high concordance between genetic relatedness, geographic distance
and acoustic structure of their songs [38]. In this study the acoustic distance score was suffi-
ciently sensitive to unravel the phylogenetic relatedness of song structure, not only at species
level but also at the level of a single population. A similar study on langurs (Presbytis spp.) com-
paring genetic relatedness, geographic distance and acoustic structure was likewise successful
[39], confirming the utility of this methodological approach.

The advantage of our study design is the inclusion of paternal kin, in addition to maternal
kin. Paternal kin are, due to the species migration regime, the only kin that potentially grew up
and lived in different social groups, and hence, could be as unfamiliar to each other as possible
in a natural setting. Given the prominent effect of familiarity on vocal structure, the number of
unfamiliar paternal kin we were able to include into our analysis (19 unfamiliar paternal kin
dyads vs. 249 unfamiliar non-kin dyads, see Table 1) compared to the number of familiar kin,
however, might have made it difficult for analytical procedures to disentangle relatedness from
familiarity (i.e., limited the power to detect on interaction between relatedness and familiarity).

Surprisingly, we found the effect of younger adult females sounding different from older
adult females to be independent of familiarity, suggesting morphological changes in the sound
apparatus as a likely source. So far, in adult females with a stable hierarchy, such changes have
only been reported after dramatic modifications in hormone levels, such as, e.g., after entering
menopause [58–60] or after hormone replacement therapy [61,62]. Since all our study subjects
were still cycling with none being under hormonal contraception, another possible explanation
for this effect are age related changes of tissue responsible for sound production (e.g., [63–66]).

In summary, our study provides evidence for familiarity, but not genetic relatedness, being
reflected in the acoustic structure of rhesus macaque contact calls. While this result does not
support phenotype matching as an underlying mechanism of kin recognition, it might be
rooted in vocal accommodation. Further studies should focus on acoustic similarities between
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unfamiliar kin only, i.e., should fully control for the prominent effect of familiarity on the
acoustic structure.

Supporting Information
S1 Table. Acoustic parameters used by the discriminant function analysis. Acoustic parame-
ters representing the best combination to discriminate the 67 rhesus macaque females. Wilks-
Lambda gives the reduction of total Wilks-Lambda by the entered variable.
(DOCX)

S2 Table. Dataset. Data file containing necessary data to perform LMM analysis.
(PDF)
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