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Abstract
Spatial correlations play an important role in characterizingmaterial properties related to non-local
effects. Inter alia, they can give rise tofluctuation-induced forces. Equilibrium correlations influids
provide an extensively studied paradigmatic case, inwhich their range is typically bounded by the
correlation length. Out of equilibrium, conservation laws have been found to extend correlations
beyond this length, leading, instead, to algebraic decays. In this context, herewe present a systematic
study of the correlations and forces influids driven out of equilibrium simultaneously by quenching
and shearing, both for non-conserved aswell as for conserved Langevin-type dynamics.We identify
which aspects of the correlations are due to shear, due to quenching, and due to simultaneously
applying both, and how these properties depend on the correlation length of the system and its
compressibility. Both shearing and quenching lead to long-ranged correlations, which, however, differ
in their nature as well as in their prefactors, andwhich aremixed up by applying both perturbations.
These correlations are employed to compute non-equilibrium fluctuation-induced forces in the
presence of shear, with orwithout quenching, thereby generalizing the framework set out byDean and
Gopinathan. These forces can be stronger orweaker compared to their counterparts in unsheared
systems. In general, they do not point along the axis connecting the centers of the small inclusions
considered to be embedded in thefluctuatingmedium. Since quenches or shearing appear to be
realizable in a variety of systemswith conserved particle number, including activematter, we expect
thesefindings to be relevant for experimental investigations.

1. Introduction

Long-ranged correlations (LRCs) play an important role in both the static and dynamic properties ofmany-body
systems [1–3]. For example, they can generate so-called fluctuation-induced forces [4]. The latter have been
studied and observed in the setting of electromagnetic fields [5, 6] or in classical systems [7–14]. A prominent
example, inwhich LRCs occur, is a systemnear a second-order phase transition. In anisotropic systems,
asymmetric objectsmay also experience Casimir torques [15].

In out-of-equilibrium systems LRCs aremore common [16]; they are typically related to conservation laws
(e.g. conserved particle number ormomentum), as demonstrated in various systems [17–21]. These non-
equilibriumLRCs, in turn, give rise to associated non-equilibrium fluctuation-induced forces. Such forces have
been studied theoretically for systemswith gradients in temperature [22–24] or density [25], quenched systems
[26, 27], stochastically driven systems [28], in systems under shear [29, 30], andwithinfluctuating
hydrodynamics [31].

Here, we aim at studying correlations and forces influid systems undergoing up to two non-equilibrium
perturbations simultaneously, i.e. shearing and quenching. In pursuit of correlationswhich extend far beyond
microscopic length scales, we resort to thewell-known coarse-grained dynamicalmodels: ‘modelA’ (describing
a non-conserved field) and ‘modelB’ (describing a conserved field) [2, 32].WhilemodelA can be applied, for
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instance, to uniaxialmagnetic systems,modelB describes binary alloys, spinodal dynamics of binary liquid
mixtures, as well as single-component fluids [32, 33]. Thesemodels have been applied extensively in describing
various dynamical situations, e.g. the approach of the critical point fromnon-equilibrium initial conditions
[34–37], the coarsening following a temperature quench [38, 39], or for driven systems at criticality [40, 41].
They have also been used to study shearing of near-critical fluids [42–48], leading to a large variety of
phenomena.

The use of suchmodels provides generic scenarios, whichwe expect to be relevant for physical systemswhich
allow for shearing and/or quenching. Shear is directly experimentally accessible [49]. Quenches can also be
realized, for instance by using effective interactions of particles which can be changed suddenly, e.g. by swelling
particles [50] or through externalfields [51]. Another type of quench concerns a sudden change of temperature,
which is a perturbation often employed in order to obtain supercooled liquids [52]. Such quenches of
temperature (or of noise strength)may be achieved experimentally also in activefluids [53–55], which inmany
respects can be described by the use of effective temperatures [27, 56, 57].

Themanuscript is structured as follows. In section 2we beginwith a detailed description of the system as
well as of themodel under consideration. Post-quench correlations in the absence of shear are briefly reviewed
in section 3. In section 4, this is followed by an analysis of the effect of conservation laws on steady state
correlations of weakly sheared systems. The case of dissipative dynamics is discussed in section 4.1, while
section 4.2 deals with conserved density fluctuations. The dependence of the (equal-time) correlation function
on space and time is computed formodelB in section 5.Using the formal solution derived in section 5.1, this
quantity can be determined analytically in certain limits (section 5.2). Correlations between points advected by
the shearfield are discussed in sections 5.2.2 and 5.3 for various limiting cases. Section 6 presents a formalism for
computing non-equilibrium fluctuation-induced forces in the presence of quenching and shearing. This
extends the framework of [36] to include shear.While this formalismholds for various geometries which do not
couple to the shear flow, such asfilms formed by parallel plates, it is employed in section 6.2 in order to compute
forces between small inclusions embedded in steadily sheared systems, as well as for dynamic post-quench forces
(PQFs) under shear (section 6.3). In table 1we provide a glossary of commonly used quantities.

2. Physical system andmodel

2.1. Coarse-grainedmodel: equilibriumproperties
Aiming at the analysis of correlations in classicalfluids, which extend far beyondmicroscopic length scales, we
employ classicalfield theory based on the Landau–Ginzburg theory for a scalar order parameter fieldf [1, 2].
With a one-component fluid inmind,f describes density fluctuations x t x t x t, , ,f r r= - á ñ( ) ( ) ( ) , where

Table 1.Glossary of the quantitiesmost frequently used in the present study.

Quantity Description Definition in

A Bm Mobility coefficient formodelA/B section 2.1

ξ Inherent (equilibrium) correlation length of the fluid section 2.1

m ‘Mass’ / compressibility coefficient section 2.1

D Diffusion coefficient: D mA
2m x= (modelA) or D mBm= (modelB) equation (14)

ġ Shear rate of imposedflowwith v ey xg= ˙ section 2.2

T T,I Temperatures before (t 0< ) and after (t 0 ) the quench, respectively section 3

Dtt =ℓ Diffusion-induced length scale section 2.2.3

Dl g= ˙ Shear-induced length scale section 2.2.3

x t,f ( ) Fluctuations of the density x t,r ( ) about itsmean value x t,rá ñ( ) section 2.1

x tC ,( ) Equal-time correlation function of x t,f ( ) in the bulk equation (13)
x∣ ∣ Distance between points in bulk; observation length scale for correlations equation (13)
x x t,0 ( ) Vector between twofixed or two co-moving points in the shear flow, respectively section 5.2.2

a u( ) For any vector u u u xu a, ,x= º^ ^( ) ∣ ∣ ∣ ∣ section 5.2.2

xxW =a a( ˆ)( ) α-component of the unit vector x x x=ˆ ∣ ∣ equation (23)
t Dt 2* = ℓℓ Dimensionless diffusive time across the distance x L, 0Îℓ {∣ ∣ ∣ ∣} equation (17)
L Vector connecting two stationary (L L0= ) or co-moving (L L t= ( )) inclusions in

shear flow

section 6

,l x˜ ˜ ,l x rescaled by x∣ ∣ (correlation functions) or L0∣ ∣ (forces) equation (24), section 6
F tA B  ¥( )/ Steady-state force (inmodelA/B) between two inclusions in shear flow section 6.2

F L t,s 0( ) Post-quench force (PQF) between two stationary inclusions separated by L0 section 6.3.2

F L t t,c m,g- ( ( ) )˙ PQFbetween two co-moving inclusions in a sheared fluid section 6.3.3

F L t t,c m,0- ( ( ) ) PQFbetween inclusions following the co-moving trajectory L t( ), butfluid is unsheared section 6.3.3

2
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x t,r ( ) is the (snapshot)number density distribution. In the case of binary liquidmixtures (in themixed state),
x t,r ( ) corresponds to a local concentration of the particles. The vector x is a d-dimensional position vector,

and t denotes time. Thermodynamically far fromphase transitions, aGaussianHamiltonianH is expected to
capture the leading influence of thefluctuations. Thuswe consider

xH x
m

d
2 2

, 1d 2 2ò
k

f f=  +
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

which induces a (bulk) correlation length mx k= . In thermal equilibrium and for d 2> , theHamiltonian
in equation (1) gives rise to the following two-point correlation function [2]:
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where S 2d
d d1 2 1

2
p= G+ +( )( ) is the surface area of a d-dimensional unit sphere.T is the temperature and kB is

the Boltzmann constant. For systems far away fromphase transitions, ξ is small so that the lower line in
equation (2), i.e. x x∣ ∣ applies. In this regime, the correlation function decays exponentially as a function of
x x . Note that equations (1) and (2) apply to systemswith short-ranged interaction potentials. (Herewe do not
consider the presence of long-ranged forces such as van derWaals forces, which asymptotically give rise to an
algebraic decay of correlation functions).Within theGaussian approximation,m in equation (1) can be
expressed in terms of the isothermal compressibility V P VT Tc = - ¶ ¶( ) [33, 58, 59] (V is the system
volume):

m
1

, 3
T0

2r c
= ( )

where 0r is themean bulk density.

2.2.Dynamical descriptionwith shear
2.2.1. Equations ofmotion
The dynamical description employed here is based on theHamiltonian given in equation (1) and on Langevin
equations for thefieldfwithinmodelA andmodelB [32]. Thesemodels consider non-conserved and conserved
dynamics, respectively. As far as shear is concerned, we consider a simple shear velocity profile v , so that any
feedback effects of the fieldf onto the velocity profile (e.g. via local changes of the viscosity), as well as
fluctuations of v , are neglected. These assumptions render the resulting equations linear inf and thus
analytically tractable, thereby avoiding nonlinear couplings as, e.g. introduced inmodelH [1]. The resulting
equations are expected to be valid if thefluctuations off are small, i.e. far away from the critical point and for
shallow quenches. Using v ey xg= ˙ with shear rate v yxg º ¶ ¶˙ [49], the Langevin equation reads

xy
x

m t, , 4t
2f g

f
m k f h¶ +

¶
¶

=  - +˙ ˆ ( ) ( ) ( )

where thewhite noise obeys the spatio-temporal correlations

x x x xt t k T t t, , 2 . 5Bh h m d dá ¢ ¢ ñ = - ¢ - ¢( ) ( ) ˆ ( ) ( ) ( )

Themobility operator m̂ encodeswhetherf is conserved or not:

A

B

, model ,

, model .
6A

B
2

m
m
m

=
- 

⎧⎨⎩ˆ ( )

Wenote that the coefficients A Bm carry different dimensions. Defining the Fourier transform  as

k k k x xf f k f2 d exp id d òp= = -( ) [ ]( ) ( ) ( · ) ( ), equations (4) and (5) can be expressed in Fourier space:

k k k k

k k k k
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t t k T t t

, , , , ,

, , 2 2 , 7
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wherewe have introduced the operator

kO k k m, 8k x k k
2

i yg m k¶ º ¶ - +ˆ ( { }) ˙ ( ) ( )

and represented xm̂ ( ) from equation (6) in terms of its spectrum
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The quantity of our interest is the time-dependent structure factor kC t,( ). It is defined as

k k k k kt t C t, , 2 , . 10d df f p dá ¢ ñ º + ¢( ) ( ) ( ) ( ) ( ) ( )

kC t,( ) depends on time because the system is out of equilibrium. It is evaluated at equal times, and evolves
according to

k k kC t O C t k T, 2 , , 2 , 11t k B ki m¶ = ¶ +( ) ˆ ( { }) ( ) ( )

which has the general solution

k kC t C t k T s, e , 0 2 d e , 12k ktO
B

t
t s O

k
2 ,

0

2 ,ki kiò m= = +¶ - ¶( ) ( ) ( )ˆ ( { }) ( ) ˆ ( { })

where kC t, 0=( ) is the structure factor at t=0. Importantly, kO , ki
¶ˆ ( { }) comprises powers of ki and ki

¶ with
i d1 ...= , and therefore the exponentsmust be expanded using the Zassenhaus formula [60]. Expressions such
as in equation (12)have been discussed in the literature—see, e.g. [42–47]. (Wenote that there are discrepancies
of a factor of 2 among the latter references regarding the coefficients of the terms in equation (11). According to
our derivation, equation (11), which follows directly from the Langevin equation (7),fixes these constants via
equation (8)). However, our aim is to obtain explicit expressions in position space: using equations (10) and (12),
the time-dependent equal-time correlation function

x xC t t t, , 0, 13f fº á ñ( ) ( ) ( ) ( )

can be found by Fourier inversion.Here x∣ ∣ is the distance in the bulk between two points the correlation of
which is being considered.

2.2.2. Quenching at t=0
Weconsider the dynamics defined by equations (4) and (5) subject to a quench at time t=0; this amounts to a
sudden change of one ormore of the parameters in these equations. For instance, this parameter can be the
temperatureT. Such a description in terms of instantaneous changes of parameters is based on the assumption
that processes at small length scales relax on short time scales, so that themesoscopic parameters rapidly attain
their new values. Thus, in the general solution given by equation (12), thefirst term on the rhs depends on the
parameter values before the quench (in the following denotedwith subscript I), while the second termon the rhs
depends on the parameter values after the quench (for which no subscript is used).

Physically, the parameters in equations (4) and (5) are in general not independent; for example, a change in
temperaturemay also change the coefficentm via equation (3). However, we treat these quantities as being
independent, thereby allowing for awide variety of quenching scenarios.

Regarding equation (2), we note that, in the absence of shear, the correlation function depends on the ratio
kBT/m and on the correlation length ξ. Therefore a quench induces a non-equilibrium, transient dynamics if
one of these parameters is changed.

2.2.3. Important length scales
It is useful to introduce the collective diffusion coefficientD [61], which follows from equation (4):

D
m A

m B

, model ,

, model .
14A A

B

2m k m x
m

=
=⎧⎨⎩ ( )

We recall that, inmodelA,D vanishes in the limit 0x  , because in the absence of correlations, the relaxation
mechanismofmodelA is local and not diffusive.D gives rise to two length scales:

D Dtand . 15tl g= =ℓ˙ ( )

Hereλ is the length scale onwhich shear and diffusion have comparable effects, i.e. regionswith x l∣ ∣ are
diffusion-dominated, while regionswith x l∣ ∣ are shear-dominated. The quantity tℓ is the typical distance
covered by diffusionwithin the time t.

Thus the Langevin equation (4) depends on the length scales x , ,t lℓ∣ ∣ , and ξ, where x∣ ∣ is the observation
scale of a given observable. Regarding notation, we shall employ vectors x when referring to points in the bulk,
and vectors L when denoting vectors connecting external objects immersed in the fluid (e.g. for computing
forces between certain objects in section 6).

3.Quench in the absence of shear

Here, we briefly recall themainfindings of [26, 27], inwhich quenches in the absence of shear were studied.
Direct Fourier-inversion of equations (12) for 0g =˙ yields, withinmodelB and to leading order in ξ, i.e. for

0k  , (indices I denote parameters before the quench),

4
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The dimensionless quantity

x xt Dt 17x t
2 2 2* = = ℓ∣ ∣ ∣ ∣ ( )∣ ∣

is obtained by rescaling time by the diffusive time scale across the distance x∣ ∣ (see equation (15)). (In addition to
equation (16), there is a contribution x xddµ - ¢( )( ) , whichwe have suppressed because it is not long-ranged; see
section IVB of [27] for further details). Equation (16) shows that a quench gives rise to non-equilibriumLRCs,
which, by virtue of their algebraic spatial decay, extend beyond the correlation length ξ. These LRCs are, to
leading order in ξ, independent of ξ. The rescaled time (compare equations (16) and (2)) illustrates that

Dtt =ℓ plays the role of a time-dependent correlation length. For long times, the correlation function in
equation (16) decays algebraically in time, as the system approaches the new equilibrium state.

The result withinmodelA is qualitatively different in that the range of the correlations is restricted by ξ, so
that for x x∣ ∣ , de facto no correlations are present. Therefore the conservation law associatedwithmodelB is
the key ingredient which explicitly gives rise to the aforementioned non-equilibriumLRCs.

4. Perturbative analysis ofweak shear in steady state

Having reviewed the quenching process without shear in section 3, we proceed by analyzing the case of shear
without quenching, i.e. the case of a steadily sheared system.

4.1. Non-conserved densityfluctuations:modelA
Since solving equation (11) for arbitrary ġ is challenging, we treat shearing perturbatively, i.e. we expand the
correlation function according to

C C C , 180 1 2g g= + +˙ ( ˙ ) ( )( ) ( )

with C 0( ) and C 1( ) evaluated at 0g =˙ , i.e. without shearing. Such aweak-shear expansion is valid if the length
scale Dl g= ˙ in equation (15) is the largest one to be considered, i.e.

x , , . 19tl x ℓ{∣ ∣ } ( )

Thus equation (18) is valid for small observation scales x∣ ∣, short times t, and small correlation lengths ξ [62].
This results from the fact that, at a given shear rate, the relative velocity of two points can bemade arbitrarily
large by increasing their distance.

Since herewe consider steady states (i.e. times long after the quench), tℓ in equation (19) is replaced by tℓ ,
where τ is the time scale for the relaxation of density fluctuations in the system.

The structure factor kC t,( ) obeys the differential equation (11)with k Am m= , and the steady state can be
obtained from the limit t  ¥. C 0( ) is found as [2]

kC t
k T

k m
, . 20B0

2k
 ¥ =

+
( ) ( )( )

Fourier inversion of equation (20) yields equation (2) above.
The contribution linear in ġ follows from re-inserting equation (20) into equation (11), yielding

C Ck

k m k
1 0x

A
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m k +
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In d=3, this can be Fourier-inverted, yielding

x x
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∣ ∣ ˜ ˜ ∣ ∣
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Here

x x 23xW =a a ∣ ∣ ( )( )

is theα-component of the unit vector x x x=ˆ ∣ ∣. In d=3, for instance, sin cos , sin sinx yJ j J jW = W = ,
and cosz JW = , in terms of the polar (azimuthal) angle 0, 2j pÎ [ ] ( 0,J pÎ [ ]).We have also introduced the
rescaled lengths

x xand . 24x x l l= =˜ ∣ ∣ ˜ ∣ ∣ ( )
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(In section 6, wherewe shall study external objects (initially) separated by a vector L ,0 Wa refers to the angles of
L0, and the quantities x̃ and l̃ are understood to be scaled by L0∣ ∣ instead of x∣ ∣).

Equation (22) illustrates that shear induces a correction to equation (2), which, just as the equilibrium result,
decays exponentially on the length scale ξ, so that shear amounts to a quantitative, but not qualitative correction.
Note, however, that the algebraic prefactors of e 1 x- ˜ for C 0( ) and C 1( ) are given by x 1-∣ ∣ and x 3-∣ ∣ , respectively.
Furthermore, this correction vanishes for x  ¥. It is worth noting that formodelA this limit does not

contradict equation (19), because mAl x m g= ˙ is proportional to ξ.

4.2. Conserved densityfluctuations:modelB
In the case ofmodelB dynamics, kC t,( ) obeys equation (11)with k mk B

2m m= . The expression for zero shear is
identical to equation (20), reflecting the fact that the choice of the dynamicmodel has no influence on the
equilibrium (Boltzmann) distribution. The term linear in the shear rate follows from the perturbative expansion

of equation (18), which in this case gives C Ck

k k m k
1 0x

B
y2 2= ¶

m k +
( )

( )
( ), i.e.
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As above, this expression can be Fourier inverted analytically for d=35, yielding
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We recall from equation (2) that equilibrium correlations decay exponentially for x x∣ ∣ . In stark contrast, the
correlations in equation (26) extend beyond ξ, decaying algebraically. Accordingly, shear is a qualitative
correction, in contrast to the abovefindings formodelA. In order to illustrate this further, we consider the limit
of small xx x=˜ ∣ ∣, i.e. 1x ˜ :

x
x

C t k T
m

,
3

2
. 27

x x

B
x y1

0

2 3

2g
p l

x ¥
W Wx

˙ ( ) ⟶
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˜ ( )( )
˜ ( ) ( )

The latter result exhibits again the aforementioned difference to equation (22) in that it is scale-free with respect
to x∣ ∣. However, it is also structurally distinct from equation (16) in that it carries ξ as a prefactor.

The expression in equation (26) diverges for x  ¥, which in this limit points to a non-analytic
dependence on ġ [62]. Indeed, equation (19) requires ever smaller values of ġ in order for equation (26) to
remain the leading term. This is in contrast tomodelA, for whichλ increases with ξ.

It is worth noting that an explicit computation for dilute colloidal suspensions yields long-ranged pair-
correlation functions under shear [63], with the same power law x1 3~ ∣ ∣ as in equation (27) (in the absence of
hydrodynamic interactions).

5.Quench and shear

In sections 3 and 4 the effects of quenching and shearingwere discussed separately. Here, we shall analyze their
combined effects. Since inmodelAno post-quench LCRs are found, we restrict our studies tomodelB
throughout. As before, quantities before the quench are denotedwith subscript I, and parameters after the
quench carry no subscript.

The core results of this section are equations (33) and (35), which provide the time dependent post-quench
correlation functions in the presence of (weak) shear to zeroth and quadratic order in xx ∣ ∣, respectively. In
particular, equation (33)will be used to compute forces (see section 6).

5.1. Formal solution
The formal solution given in equation (12) yields

k k k kC t t C t T k T s t s k t s, , 0; 2 d , 28I B B

t

0

2òm= X + X - -g g g g( ) [ ( )] ( ( ) ) [ ( )] ( ) ( )˙ ˙ ˙ ˙

wherewe have introduced the advectedwave-vector

k t k k t k k, 2 , 29x y x zg= +g ( ) ( ˙ ) ( )˙

5
Wemake use of the Fourier sine transform for a spherically symmetric function kf f k=( ) ( ), k kfe dk r1

2
i 3

3ò =
p

( )
( )

·

kk f kdkr

kr

2

2 0
2 sin

2 òp

¥
( )

( )
( ) and the fact that k x k xk k g gx y x y

1 1 = -¶ ¶- -[ ( )]( ) [ ( )]( ).
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and the function

k t t k k m t k k m k

k t m k k t k k t k

exp 2 2 2

4

3
2 2 8

16

5
. 30

B x y

x y x y x

2 2 2

2 2 2 2 2 3 3 3 4 4 4

m k g k

g k g k g k

X = - + + +

+ + + + +

g
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

[ ( )] ( ) ˙ ( )

˙ ( ( )) ˙ ˙ ( )

˙

Anexpression similar toΞ in equation (30)has beenobtained in [61] for the initial spinodal decompositionof
sheared suspensions (see equation (9.46) in [61]), implying that, under shear, spinodal decomposition and relaxation
after a quench are governedby similarwave vector dependent time scales. Thefirst termon the rhs of equation (28)
represents the relaxationof the initial equilibriumcorrelations,with kC T k T k m, 0; I B I I I

2k= +( ) [ ]. In the
absence of a closed solutionof the Fourier inversionof equation (28), we shall analyze this expression in various
limits. For x x = ¥∣ ∣ , equation (28) canbe inverted analytically, as discussed in section 5.2. Subsequently,we shall
provideperturbative expressions forfinite but large values of x x∣ ∣ in section 5.3.

5.2. Explicit solution in the limit x x = ¥∣ ∣
5.2.1. Correlations between spatially fixed points
In the limit of a large observation length scale relative to ξ, i.e. x x  ¥∣ ∣ , the terms k2k in the time integral in
equation (28) (see also equation (30)) can be dropped, and the integral can be carried out explicitly.Wefind
(with D mBm= )

kC t
k T

m

k T

m

k T

m

Dt k t k k t k

,

exp 2 2
4

3
. 31

B B I

I

B

x y x
2 2 2 2g g

= + -

´ - + +

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( )

( ˙ ˙ ) ( )

This expression can be Fourier-inverted, yielding a result which is valid in any order of the shear rate (for
x x  ¥∣ ∣ , we drop the first term in equation (31), which amounts to a local contribution xddµ ( )( ) ):

xC t
k T

m

k T

m Dt t
,

exp

8 1 3
. 32

x x

B I

I

B

txy t y

Dt Dt

d

3 6 3

24 8

2 2 2

2 2 2 2 2

2 3

p g
= -

-

+

g g
g

- + +
+

^

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ) ˙
( )

∣ ∣ ˙ ˙ [ ∣ ∣ ]
˙

Here x^ is the component of x perpendicular to the flowdirection ex.We note thatChas precisely the
functional formof the probability density of a particle diffusing in shearflow (compare, e.g. [61]). Equation (32)
differs, however, in that here the time is twice as large. This is becauseC follows equation (11), which carries an
extra factor of two compared to the diffusion equation. (This is a generic observationwhen comparing dynamics
of a stochastic variable and its correlation function). The prefactor in equation (32) shows that this long-ranged
contribution is absentwithout a quench. xC t,( ) in equation (32) illustrates how the quench-induced
correlations provided in equation (16) are distorted by shear.We rewrite equation (32) in terms of the time scale

xt Dt 2* = ∣ ∣ (see equation (17)), the length scale xl l=˜ ∣ ∣, and the angular variables xW º Wa a
( ) (see

equation (23)):

x

x

x

x

C t

k T m k T m t t

,
exp

8 1 3

exp

8 1 3

, , ,

, , .
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4
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4
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d
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y
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2
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*
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-
=

-

+

=
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+

+ +

+

l l

l
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l
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p

- W W + W +W

+

+ + + +
+

W W - W - + W -

W W

- -
^

-

^
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⎜ ⎟⎛
⎝

⎞
⎠

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
ℓ ℓ

ℓ

ℓ

( )

∣ ∣ ( ) ( ) ˜

( ) ( )

˜ ˜ { ∣ ∣}

˜ ˜ { ∣ ∣}
( )

ℓ
ℓ ℓ

ℓ

˜ ˜ ( ) [ ]
˜ ( )

( ) ( )( ) ( ∣ ∣ ) ( )

( ) ∣ ∣ ∣ ∣
( )( )

∣ ∣ ( )

( ) ∣ ∣ ∣ ∣ ( )

Here, in thefinal step, we have expanded the expression for x,tl  ℓ{ ∣ ∣} (i.e. linear response in ġ ) and
x,tl  ℓ{ ∣ ∣} (strong shear), and used y z

2 2 2W = W + W^ in d=3. At zero shear ( 0g =˙ ), the correlations of
equation (16) are recovered. In steady state, xC t,  ¥( ) vanishes. Equation (33) shows that the correlation
between two points after a quench depends on the orientation of the vector connecting them (relative to the
shear velocity v). Equation (33) is illustrated infigure 1 for certain choices of parameters, where the functional
form in the second line of equation (33)was used.
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5.2.2. Correlations in the frame co-moving with shear
It is instructive to consider two points which are advected by shear flow, i.e. separated by the vector
x x v x et t y t x0 0 0g= + = +( ) ˙ , because this is the natural trajectory of a particle inflow. The corresponding
post-quench correlations in the co-moving frame (as indicated by subscript ‘c-m’) can be inferred from
equation (32); for d=3we find

x

C

Dt t t t

exp

8 1 3

exp

8 1 3
. 34

x x
d

k T

m

k T

m

t

Dt t

a t

t tc m
3

3

8 1 3

3 2 2 2

1 3

8 1 3

3 2
0

3 2 4B I

I

B

0
2 2 2

0
2

2 2

2 4

2 4

* *

*

* *

p g p l-
=

-

+
=

-

+

g
g

l

l-
=

+
+

+

+

^ ( )( )
( ) ˙ ( ) ∣ ∣ ( ) ˜

( )
( )

∣ ∣ ˙ ∣ ∣
( ˙ )

( ) ˜

[ ( ) ˜ ]

Here x y z,0 0 0=^ ( ) labels the components ofx0 perpendicular to the shear direction ex, with x xa 0 0º ^∣ ∣ ∣ ∣. In
the last line, t* is an abbreviation for xt Dtx 0

2
0
* = ∣ ∣∣ ∣ (see equation (17)), i.e. we rescale time by the time scale of

diffusion across the initial separation x 00 ¹∣ ∣ .
Figure 2 compares equation (34)with the following expressions:

(i) The two-point correlation function of equation (16), i.e. for the systemwithout shear and evaluated at a
distance x0∣ ∣between the two points, as given by the curvewith l = ¥˜ .We note that, especially at early times,
the correlations of equation (34) can be larger than the ones of the corresponding quiescent system, even though
the correlations are taken between points at larger distances. Themaximumof the curve can be tuned by

choosing a 0, 1
x

x
0

0
= Î

^

[ ]∣ ∣
∣ ∣

. However, at late times shearing speeds up the decay of correlations.While

Figure 1.The post-quench correlation function fromequation (33) (see, inparticular, the 2nd line) inunits of k T m k T mB I I B
3l-( )

for d=3 and z=0, i.e. x y z, 0= =^ ( ) (see also equation (32)). Since xDtt =ℓ ∣ ∣ and Dl g= ˙ , the four different surfaces
represent different values of t tg l= ℓ˙ . At later times (i.e. larger values ofℓt), the amplitude of the correlation function is stretched
by shear (relative to the symmetric format early times). The vertical axis is truncated, because the limit 0t ℓ is (infinitely) sharply
peaked.

Figure 2.The post-quench correlation function between two points following co-moving trajectories (i.e. their connecting vector is
x x et y t; x0 0g g= +( ˙ ) ˙ ), in units of xk T m k T mB I I B 0

3-( ) ∣ ∣ . Panel (a) [(b)] reports the results in linear [logarithmic] scales. Solid
lines represent equation (34) in the case that themedium is sheared, whereas dashed curves correspond to two points following the
same trajectory x t( ), but in an unshearedmedium (obtained by setting 0g =˙ in equation (32), and evaluating the result at
x x t ; g= ( ˙ )). Thus both the solid and the dashed curves depend on x0l l=˜ ∣ ∣with Dl g= ˙ , but in different ways. For l = ¥˜
(zero shear), the solid and the dashed lines coincide, as both reduce to the case of spatiallyfixed points in an unshearedmedium

(equation (16)). For l ¹ ¥˜ , themaximumofC depends on a 0, 1
x

x
0

0
= Î

^
[ ]∣ ∣

∣ ∣
. For a 0= , the dashed curves correspond to the case

with l = ¥˜ , as x xt t,0= "( ) , for x 00 =^ . In panel (b), labelled arrows and thin black curves show the late-time asymptotes (i)

t

1

16 2 3 2*p( )
, (ii)

t

3 2

16

2

3 2 5 2*

l

p

˜

( )
, and (iii) a t

t

exp 8

16 2

2 2

3 2

*

*

l

p

-( ˜ )
( )

. All solid curves for l ¹ ¥˜ decay asymptotically as t ;5 2*µ -( ) differences at early

times are shown in the inset. For further details seemain text after equation (34).
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equilibrium correlations decay as t 3 2* -( ) , the curve corresponding to equation (34) decays as t 5 2* -( ) (see
figure 2(b)).

(ii)The correlation function of an unshearedfluid after a quench (see equation (16)) evaluated at the distance
x t∣ ( )∣. This result, which still depends on ġ (and thus l̃) via x t( ), illustrates the effect ofmoving the observation
points along a ‘shear trajectory’, in contrast to shearing themedium itself. These correlations are in general
weaker than those resulting from equation (34), and exhibit a qualitatively different behavior in that they decay
exponentially at late times. The latter occurs because, for any finite a, the two pointsmove apart faster than the
diffusion of the correlations. For a 0 , the correlations between co-moving points in the unsheared system
collapse onto the curve corresponding to l = ¥˜ , because in this limit x xt t0 "( ) , i.e. the stationary case is
recovered. Generically, correlations aremaximal for a=0 both in sheared and unsheared systems.

5.3. Perturbative solution for non-zero x x∣ ∣ withweak shear
In this subsectionwe evaluate kC t,( ) from equation (28) in order to include effects of a nonzero correlation
length ξ, especially regarding the change of ξ during a quench. The expression in equation (28) can be
determined analytically in the limit of small shear and large x x∣ ∣ . For d=3wefind

x
x

x x

C t
k T

m

k T

m
h t h t h t h t
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h t
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=
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Above, t t x* *= ∣ ∣ (see equation (17)), Ix x xD = - reflects any change in correlation length during the quench,

and n n
I
nx x xD º - . Further, we use xl l=˜ ∣ ∣ for l , ,x l xÎ D{ }.

Equations (35) and (36) reveal explicitly the origin of the various contributions due to quenching and
shearing. Thefirst line of equation (35) is generated by a change of the ratio kBT/m during the quench (denoted
by the superscript ‘Q’), expanded in terms of small shear and a large length ratio x x∣ ∣ . This contributionmostly
alignswith the discussion in section 5.2, extended by includingfinite values of x x∣ ∣ .

Thefirst term in the second line is the only onewith a nonzero long-time value. This termdescribes a system
with shear (denoted by a superscript ‘S’) starting at t=0 in the absence of a quench. It thus relaxes to the result
of equation (27), with h tlimt

S
,

3

22 ** =g x p¥ ( )˙ . The second term in the second line represents relaxation

(denoted by a superscript ‘R’) after a quench of the correlation length ξ itself, as captured by xD . Concerning the
nomenclature for the functions h, subscripts denote the order of perturbation in shear and correlation length,
respectively.

Figure 3 shows the time dependence of the various amplitudes. Panel (a)provides linear scales, while panel
(b) displays the long-time behavior on logarithmic scales.We see that the steady-state contribution h tS

, 2 *g x ( )˙ is

approached algebraically at late times. All shear-dependent contributions exhibit a dependence on the
orientation of x .

Finally we point out the difference between quenching the ratio kBT/m and quenching the correlation length
ξ (under the proviso that in an experiment these quantities can be quenched independently): at leading order
(in t*), a quench of ξ only renders correlationswhich decaymore rapidly in time than the corresponding
correlations due to quenching the ratio kBT/m. (This is easily inferred from the exponents of the algebraic
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long-time tails infigure 3.)The spatial algebraic prefactors of the various contributions in equation (35) also
differ, so that (forfixed ξ andλ), the contributions h Q

0, 2µ x and h Q R
,0ġ are shorter-ranged than those h Q

0,0µ

and h Q S R
, 2g x˙ .

6.Non-equilibrium forces between two small inclusions in a shearfield

Long-ranged correlations give rise tofluctuation-induced forces between objects which confine thefluctuations
[4]. Such forces occurring after a quench have been analyzed, for instance, in [26, 27, 34–36]. In the spirit of the
above discussions, we now investigate post-quench forces between inclusions in shear.We start by generalizing
the formalismof [36] for the computation of time-dependent non-equilibrium forces after a quenchwith shear,
and then apply these results perturbatively to the case of inclusions which couple weakly to the fluid, using the
correlation functions computed above.

The given analysis of inclusions in shearflow assumes that the presence of inclusions does not affect the
shearflowprofile. Indeed, such perturbations of theflow are expected to affect higher orders of the perturbative
expansion presented here.

6.1. Nonequilibrium forces with quench and shear: extending the framework of [36]
6.1.1. General derivation
In the context ofmodelA andmodelB dynamics, Dean andGopinathan derived a formalism for computing
non-equilibrium forces which emerge between immersed objects after a quench in systems described by bilinear
Hamiltonians of the form [36]

x x x L xH x x
1

2
d d , , . 37d dò f f= ¢ D ¢ ¢( ) ( ) ( ) ( )

The force F t H tL fá ñ = -á ñ( ) [ ( )] (averaged over noise realizations) is computed from the instantaneous
configuration off, and L is the relevant vector separating the external objects (e.g. two plates or twofinite-sized
inclusions). In appendix A, we extend this formalism in order to include shearflow. Themain result is that the
Laplace transformof the time-dependent (non-equilibrium) force following a quench can be computed from an
effective equilibrium theory:

F s
k T

s
Zln , 38L

B
sá ñ =  D g( ) [ ( )] ( )(˙ )

where f s f t s t f td e ts
0

 ò= =
¥ -( ) [ ( )]( ) ( ) denotes the Laplace transformof f (t). Equation (38) states

that the non-equilibrium force is given by the equilibrium force corresponding to an s-dependent
Hamiltonianwith s R 2s

1D = D +g g -( )( ˙ ) ( ˙ ) , where R R S 1= + Dg -( ˙ ) . Here, x x x x xR , A Bm d¢ = - ¢( ) ˆ ( ) ( )
and x x x xS y, xg d¢ = ¶ - ¢( ) ˙ ( ) corresponds to the advection term in the Langevin equation (4). This
s-dependentHamiltonian leads to the following s-dependent partition sum:

Z e . 39x x x x
s

x x Ld d , ,d d
s2ò òfD =g f f- ¢ D ¢ ¢b g

( ) ( )(˙ ) ( ) ( ) ( )( ˙ )

Accordingly, the force is obtained by taking the gradient with respect to the separation L, as stated in
equation (38).

Figure 3.ModelBwith quench and shear: dimensionless amplitudes (equation (36)) of the various contributions to the correlation
function given in equation (35), displayed on linear (a) and logarithmic (b) scales as functions of xt Dt 2* = ∣ ∣ . The contributions with
superscriptQ arise fromquenching k T m;B thosewith superscriptR come about upon quenching ξ; h S

, 2g x˙
captures the distortion of

small inherent correlations ( 0x ¹ ) by shear. For further details see themain text next to equations (35) and (36).

10

New J. Phys. 21 (2019) 073029 CMRohwer et al



Weemphasize that equation (38) rests on the assumption that the external objects do not alter the shearflow.
This is expected to be valid in the case of plates oriented parallel to shear, or for the small inclusions whichwill be
investigated below.

Remarkably, at times long after the quench, the force in equation (38) adopts exactly the equilibrium form,

F t k T Zlim ln , 40LB s s0 ¥ =  D g
( ) [ ( )] ( )(˙ )

butwith a shear-dependent pseudo-partition sum. In equation (40) and inwhat follows, we suppress the implied
average for brevity (compare equation (38)).

6.1.2. Two inclusions of finite size
Wenowapply this result todeterminenon-equilibriumforces between two inclusionswith volumesV1 andV2,
respectively, separatedbya vector L pointing fromthefirst to the second inclusion, in the limit of large separation
(L Vi

d1 ).Wemodel these inclusions in termsof local, quadratic contributions to theHamiltonian:

xH x
m

Hd
2 2

, 41d 2 2
incò

k
f f=  + +

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

with thefirst (bulk) term given in equation (1), andwhere

x xH
c

x
c

x
2

d
2

d 42
V

d

V

d
inc

1 2 2 2

1 2
ò òf f= +( ) ( ) ( )

represents the inclusions in terms of coupling constants c1 and c2. Accordingly, the above formalism can be
applied. Thus the inclusions aremodelled by a contrast of themass inside the inclusions relative to the bulk
valuem:

x
x

m
m c V
m

, ,
, elsewhere.

43i i=
+ Î⎧⎨⎩( ) ( )

For simplicity, we consider k T m 0B I I = , i.e. there are nofluctuations before the quench (corresponding, e.g. to
a low initial temperature). The quench gives rise to a non-equilibrium force which can be expressed in terms of a
pseudo-potential  , derived from a cumulant expansion of Htot (see appendix A):

L Lt
k T

s
C s

s m

k T
,

2

1
, . 44B

s t
B

1 2
1

2

 a a= 
-

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( ) ( )

Here L LC s C t s, ,=( ) [ ( )]( ) is the Laplace transformof the equal-time two-point correlation function in the
bulk, at separation L (see equation (A7)), and V c mi i ia = . The force on the first inclusion is

F L Lt t, , . 45L= -( ) ( ) ( )
In equation (45), thedisplacement vector L candepend explicitly alsoon time, for instance if one considers the force
betweenmovingobjects, as discussedbelow.This casewill be indicatedby L t( ),while L0 refers to spatiallyfixed
inclusions.

In the long time limit, one has

L
L

t
k T m C t

k T
,

2

,
, 46B

B
1 2

2

 a a ¥ =
 ¥⎡

⎣⎢
⎤
⎦⎥( ) ( ) ( )

so that the force in the steady state with shear can be inferred easily from the equal-time two-point correlation
function in the bulk, adopting the same form in terms of correlation functions as in equilibrium.

6.2. Forces in steady state under shear
Using equation (46) and the results of section 4, one can directly provide the non-equilibrium forces in the
steady state under shear. FormodelA, the correlations in equation (22) yield the following force vector:

F
L

t
k T

256

e
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2

. 47A
B

x y x

x y y
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1 2
2

0
7
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4 6
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p l x

x x
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W W - + W

W W - + W

- + W W W

x-

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( )

∣ ∣ ˜ ˜

[˜ (˜ ) ]

[˜ (˜ ) ]

(˜ )

( )
˜

Here L0 denotes the (stationary) vector joining the inclusions (compare L t( ) in subsection 6.3.3), the orientation
of which is captured by ;L0W º Wa a

( ) see equation (23). F tA  ¥( ) decays exponentially for 0x ˜ .
FormodelB, we use equation (27) in order to obtain the steady state force between the inclusions to leading

order in shear:
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Unlike FA, F 0B x (˜ ) vanishes according to a power law. Thus, inmodelB, shear gives rise to a qualitatively
relevant steady state force between the inclusions even for small correlation lengths. Strikingly, and in stark
contrast to equilibrium steady states, the conservation laws of the underlying dynamics strongly influence the
phenomena observed in shear-induced steady states.We also note that, in general, neither FA nor FB are parallel
to L ;0 this also differs from the equilibrium casewhere, by symmetry, the forces are necessarily along the
separation vector [26, 36].

6.3. Forces after quenches
In this subsectionwecompute time-dependent forces between the two inclusions after a quench.We focuson the limit
of vanishing ξ, inwhichnopost-quenchcorrelations areobservedwithinmodelA.Accordingly, the remaining analysis
proceeds in termsofmodelBdynamics; henceforth, the corresponding subscript ‘B’ for the forcewill bedropped.

6.3.1. Prerequisites
In order to compute the time-dependent force after quenching, the Laplace transformof the correlation
function is required. For two points in the bulk at large separations compared to the correlation length, i.e.
x 1x ∣ ∣ , the Laplace transformof equation (33) reads, in terms of an expansion for small shear rates:
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where xs s D2* = ∣ ∣ is the rescaled, dimensionless Laplace variable, and xW º Wa a
( ) (see equation (23)). Using

equations (44), (45), and (49), the force is expanded in terms of powers n of the shear rate:

F L Ft, , 50
n

n

0
å=( ) ( )( )

where the vector L connects thefirst inclusion to the second one. Equation (50) is obtained by evaluating the
relevant correlation functions at x L= . First we consider the force between two inclusions which are placed at
fixed positions (L L0= ). In a second step, we provide the force between two inclusions advected by the shear
flow (L L t= ( )).

6.3.2. Post-quench force between inclusions at fixed positions
Wenow consider the dynamics of the force given in equation (48). In accordancewith equation (50), at order n,
the force between the two (stationary) inclusions is

F
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f
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The subscript ‘s’has been introduced in order to distinguish the present case of stationary inclusions from the
co-moving inclusions considered in subsection 6.3.3. Regarding notation, we note that here (and in the
following subsections) the vector L0 sets the length scale relative towhichwe define L0l l=˜ ∣ ∣and the diffusive
time Lt DtL 0

2
0
* = ∣ ∣∣ ∣ (see equation (17)); henceforth this dependencewill not be indicated explicitly. The

components f tn *a ( )( ) of the vector f f f f, ,n
x

n
y

n
z

n= ( )( ) ( ) ( ) ( ) are dimensionless, time-dependent functions. The

first few orders of equation (50) can be computed explicitly:
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In the following, LLL
0, 0

0W º W =a a a ∣ ∣( ) denotes the angular part of the components of L0 (see equation (23)).
The functions f t2 *a ( )( ) aremore cumbersome and are given in equation (B1) in appendix B. Equation (51)
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displays the power law dependences of the forces on L0∣ ∣ andλ, with the limit L0l  ∣ ∣being implied
throughout (recall the discussion of weak shear in subsection 2.2.3).

At late times after the quench, the components of the force decay algebraically in time:
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From equations (51) and (52)we can construct themagnitude and the unit vector of each order contributing to
the force. Introducing Ln k TB

n n
1 2 0

7 2 2 a a l= -( ) (∣ ∣ ), wefind
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While the zeroth- and first-order shear corrections decay as t 5 2* -( ) at late times after the quench, the
second-order correction decaysmore slowly as t 1 2* -( ) . This is a remnant of equation (33), which shows that
higher orders in shear are important at late times. Shear thus appears to dominate forces at late times.However,
this regime is not accessible within the present approach. Indeed, equation (33) (evaluated at x L0= ) provides
the condition for the crossover between the regimes of weak shear at short times and strong shear at late times,
whichmust be satisfied for the expansion in equation (51) to hold.

Infigure 5we show the time-dependent components of the force at zeroth order in shear. This limit
corresponds to the result in [26] for the post-quench force in a homogeneous system.Due to diffusing
correlation fronts passing the inclusions [26] (also seefigure 1), the force changes sign at the reduced time

t
1

3
7 2 0.215. 55sgn* = - ( ) ( )

In the absence of shear, the force is parallel to the separation vector L0.With shear, the force ismodified. Figure 6
shows themagnitude of the first shear correction. This correction depends sensitively on the orientation of L0,
and ismaximal when L0 lies in the x–y plane, i.e. for 2J p= . Additionally, a larger separation along the y-axis
implies a corresponding larger difference in shear velocity. The sign of this correction depends, inter alia, on the
orientation of L0, i.e. on ,J j, and t*. Accordingly, the inclusionsmay experience an increase or decrease of the
force due to shear, depending on their orientation relative to the shear plane.

The angle between L0 and F L t,s 0( ) is determined by the unit separation and force vectors:

F Lcos 1, 1 . 56s s 0d = Î -ˆ · ˆ [ ] ( )

Using equation (52), equation (56) is expanded in terms of powers of the shear rate D 2g l=˙ :
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The lowest order represents the change of sign as it occurs in the absence of shear (see equation (55)). Due to
symmetry, sd does not carry afirst-order shear correction 2lµ -˜ . The second-order shear correction in sd
displays a singularity at t tsgn* *= , associatedwith the divergence of the normalization of the unit vectors in
equation (56), so that theweak-shear expansion becomes invalid. The angle between the force and the vector
connecting the inclusions depends on the orientation of L0 as well as on time, because the post-quench
correlations are distorted by shear and themagnitude of this distortion depends on the position of the inclusions
in the shearfield. Formally, one can compute the angle at long times from equation (56) by taking

F Llim ;t s 0*¥ ˆ · ˆ this renders6

6
Equation (58) does not follow from equation (57), because the operations of expanding in terms of powers of shear and taking the limit

t* ¥ do not commute.
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lim cos sgn . 58t x ys* d = W W¥ ( ) ( )

Thus thefinal angle of the force formedwith L0 appears to be independent ofmany details. However, the
detailed study of this regime of late times requires investigative tools which go beyond those employed here.

In summary, depending on the orientation of L0, the distortion of the post-quench correlations by shear can
either increase or decrease the strength of the post-quench force between the inclusions. In addition, the angle
between the separation vector of the inclusions and the force gains a dependence on time (due to the evolution of
sheared correlations) and on the orientation of the inclusions.

6.3.3. Post-quench force between two inclusions advected by shear flow
In a typical experimental setup, the inclusionmay be advected by the shearflow. In the followingwe shall study
this scenario for two cases. In addition to the force F L F L Lt t t t, ,c m, s 0º g- ( ( ) ) ( ( ) )˙ between advected

inclusions in the sheared fluid, we shall also compute the force F L F L Lt t t t, ,c m,0 s
0

0º - ( ( ) ) ( ( ) )( ) between
two inclusions following the same advected trajectories, but in a system inwhich the correlated fluid is not
sheared. (In both cases the subscript ‘c–m’ refers to co-moving inclusions.)This allows us to disentangle the
effects ofmotion of the inclusions and those of shearing the post-quench correlations in the fluid. In both cases,
the displacement vector is L t L eL ty x0 0,g= +( ) ˙ .We have neglected corrections to the trajectory of the co-
moving inclusions due to hydrodynamic interactions; see, e.g. equation (5.111) in [61]. As before, one has

L0l l=˜ ∣ ∣and Lt Dt 0
2* = ∣ ∣ . For the orders in shear, we obtain (see figure 7)
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The components g tn *a ( )( ) and h tn *a ( )( ) can be obtained from f tn *a ( )( ) as given in equations (52) and (B1). For
completeness, the explicit expressions for n 0, 1, 2= are provided in equations (B2)–(B5) in appendix B. In
those expressions, the quantity LL0, 0W ºa a ∣ ∣ and thus the angles are givenwith respect to the initial separation
vector. At zeroth order in ġ , both forces in equations (59) and (60)naturally reduce to the force between
stationary inclusions in an unshearedmedium.

At the various orders of the shear expansion, the forces in equations (59) and (60) can also be decomposed
intomagnitudes and unit vectors. The results of this procedure are shown infigure 7 for thefirst- and second-
order corrections to Fc m,0-∣ ∣and Fc m,g-∣ ∣˙ . These corrections clearly display a dependence on the initial
orientation of L t( ) (i.e. the orientation of L0 described in terms ofϑ andj). The corrections are alwaysmaximal
for 2J p= , i.e. if L0 lies in the x–y plane.Wefind that, at late times, Fc m,0

1
-∣ ∣( ) and Fc m,

1
g-∣ ∣˙

( ) approach the same
asymptotes (see equation (61)). Indeed, the shear corrections of the forces acting on the co-moving inclusions
relaxmore slowly at long times than the shear-free contribution. Explicitly wefind (compare equation (54))
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Weconclude that atfirst order in shear, the force at late times is affectedmore strongly by themotion of the
co-moving particles than by the shearing of the post-quench correlations. However, in the intermediate regimes,
the two contributions differ with respect to their time-dependence. In turn, at second order, the correction to
F t 1c m *- ∣ ( )∣differs for the unsheared and the sheared system. This indicates that the combined effect of
shearing and co-motion is visible at second order in shear at late times. Furthermore, shear corrections for the
co-moving particles (for both the unsheared and the sheared system) relaxmore slowly at late times than those of
the stationary inclusions (compare equations (54) and (61)). For both the unsheared and sheared system,
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successive orders in the shear corrections are longer-lived, decayingwith ever increasing powers of t*. As
mentioned before, this indicates that the shear expansion is invalid at late times (also see equation (33)).
Consequently we also expect the angle between the force and L t( ) to be determined by the shear corrections at
late times, provided thatλ is large enough for the expansion to be valid in that regime.

Thereforewe consider the angular dependence of these forces explicitly. The time-dependent unit vector

connecting the two co-moving inclusions is L t t t, , 1 2
t

x y z x y y
2 2 2y

2 * *
*

l l= + W W W + W W + W
l

W( )ˆ ( ) ˜ ( ˜ )˜ .

Thus the angle c m,0d g- ˙ between the force and the inclusions is determined by

F L tcos . 62c m,0 c m,0d =g g- -ˆ · ˆ ( ) ( )˙ ˙

For non-zero shear, the shearflow separates the inclusions along the x axis ( L etlim sgnt y x* = W¥ ˆ ( ) ( ) ). (We

note that the operations of switching off shear (l  ¥˜ ) and taking the late-time limit (t* ¥) do not
commute). As in equation (57), we expand the scalar product in equation (62) in orders of 2l-˜ , which renders

t tcos sgn 3 4 1 63c m,0 * *d = + -- ( ( ) ) ( )

and

cos cos . 64c m, s
6d d l= +g-

-( ˜ ) ( )˙

Therefore in the unsheared system, Fc m,0- is always parallel to the vector L t( ) connecting the inclusions, which
is awelcome cross check of our computations. In turn, at the expansion orders provided (compare
equation (57)), the angle between L t( ) and Fc m,g- ˙ is the same as the one between L0 and Fs.

7. Conclusions and perspectives

Wehave presented a systematicGaussian study of spatial correlation functions as they occur after a quench in a
sheared fluid. The quantity undergoing a quench could be either k T mB , i.e. the temperature and/or the
compressibility of thefluid, or the correlation length ξ, or a combination of both.We have studied the sheared
post-quench dynamics in the limit of small ξ, and as a function of the shear-induced length scale Dl g= ˙ .
The presence (modelB) or absence (modelA) of the conservation of density fluctuationsf strongly influences
correlations and forces. Ourfindings can be summarized as follows:

1. In a steady state, correlations under weak shear with dissipative dynamics decay as e 1 x- for 0x  , as it is
the case in equilibrium. In contrast, for conserved dynamics, the steady state correlation function displays
long-ranged correlationswhich vanish algebraically for 0x  . Thus shear produces quantitative and
qualitative corrections to correlation functions in systemswith conserved dynamics.

2. Regarding shearing and quenching in systems with conserved dynamics, we observe long-ranged transient
correlations,which aredistortedby shear.Time-dependent correlation functionshavebeencomputed for various
scenarios. (i)For vanishing ξ,wehaveobtained closed-formexpressions, valid for all shear rates. Sheardistorts the
fronts of diffusively relaxing correlations (seefigure1), so thatpoints canbemore stronglyormoreweakly
correlated than in anunshearedmedium,dependingon their displacement relative to the shearflow.
(ii)Correlationsbetween twopoints following anadvected trajectorydepend strongly on the initial displacement
between thepoints (seefigure2). (iii)Fornon-zerovalues of ξ, thedifferent contributions to thepost-quench
correlation functiondue toquenching k T mB or ξ, aswell as their dependenceonweak shear, havebeen
identified (seefigure3). At leadingorder, terms stemming fromquenching k T mB decaymore slowly than those
arising fromaquenchof ξ.

3.We have extended the formalism of [36] for computing post-quench fluctuation-induced forces, in order to
include shear. This description applies to both the time-dependent and the steady state forces following a
quench under shear, and can be used for a variety of geometries (e.g. parallel plates), thereby opening
perspectives for numerous future research projects. Here, the formalismwas applied to the force between
finite-sized inclusions (as sketched infigure 4), rendering a far-field force with properties resembling those
of the aforementioned correlations.

4. In contrast to a homogeneous system, transient as well as steady state post-quench forces in a sheared
medium are not parallel to the vector connecting the inclusions. Indeed, the forces depend strongly (both in
magnitude and direction) on the (initial) relative orientation of the inclusions.

5. In a steady state with weak shear, forces decay exponentially as 0x  for model A, but algebraically for
modelB. In both cases, the orientation of the inclusions relative to the flow affects themagnitude aswell as
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the direction of the force. The conservation law of the underlying dynamics therefore influences the
observed non-equilibrium steady states; this differs strongly from equilibriumphenomenawhich are
independent of the type of dynamics.

6. Transient post-quench forces have been studied for the following cases: (i) static inclusions in a sheared
medium, (ii) inclusions advectedwith the shearflow, and (iii) inclusions following advected trajectories in
an unshearedmedium. In the absence of shear, all cases reduce to the known result for a homogeneous
system (see figure 5). All forces are long-ranged, decaying algebraically with the (initial) vector L0

connecting the inclusions, as L n n
0

7 2 2l- + - at the nth order in the shear rate ġ . Figures 6 and 7 summarize the
angular and temporal dependence of the forces.

We conclude that conservation laws play an important role in determining the character of non-equilibrium
correlations. For conserved dynamics, quenches give rise to long-ranged effects, both in the transient and in the
steady state regimes, even in the limit of small correlation lengths. If in addition themedium is sheared, strong
spatial and orientational variations offluctuation phenomena are observed. Based on this knowledge,
correlations (and the associated fluctuation-induced forces) can be selectively enhanced or diminished.

Thephenomena studiedhere are expected tohave a large variety of experimental realizations, either forpassive
fluidsunder shearwithout aquench, or for activematter forwhichquenches can easily be introduced in addition.
Indeed,non-equilibriumrheology is being explored experimentally and theoretically [64]. Inparticular, ourfindings
are an important step towardharnessing the combinationoffluctuation effects and shear inorder to engineer
interactions, e.g. between colloidal particles in correlated, quenchedfluids.As far as physical realizationsof quenches
are concerned, suspensionsof colloidal particleswith tunable interactions [50] arepromising candidates.

Future studiesmay address the role ofmomentum conservation (corresponding to the so-calledmodelH
[32]). This would facilitate a connection to [18, 29, 30]which deal withfluctuation phenomena in hydrodynamic
systems subject to shear. The above formalism can also be applied to forces in other geometries (e.g. thinfilms),
so that other experimentally relevant setups (such asfluctuatingwettingfilms) can be explored in the future.

Figure 4.Two inclusions (volumes V1,2) immersed in a correlated fluid, separated by a vector L. For inclusions held at afixed relative
position, one has L L0= . For inclusions following a co-moving (advected) trajectory in shearflow, L L L et tL y x0 0,g= º +( ) ˙ . The
separation of the inclusions is taken to bemuch larger than their radii. In this limit, L becomes independent of the choice of reference
points withinVi to be connected by L.

Figure 5.The force F L t,s
0

0( )( ) between two inclusions following a quench, but in the absence of shear. The inclusions are held atfixed
points, separated by the vector L0 (see equations (50)–(52)). Here, Lt Dt 0

2* = ∣ ∣ represents the time axis rescaled by the diffusive
time scale across the distance L0∣ ∣. The force is parallel to the separation vector L0 with unit vector e L LL 0 00 = ∣ ∣. Inset: Squared
magnitude Fs

0 2∣ ∣( ) of the force (in the absence of shear) as function of t*.
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Extending the above formalism to time-dependent (e.g. oscillatory) shear would provide a further avenue for
theoretical exploration andwould potentially allow one tomake contact with experiments [64]. Lastly, studying
the coupling between inclusions and the flowfield promises important and interesting insights; this is left to
future research.
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AppendixA. Extension of the formalism in [36] to include shear

In general, GaussianHamiltonians can be cast into the form

x x x L xH x x
1

2
d d , , , A1d dò f f= ¢ D ¢ ¢( ) ( ) ( ) ( )

so that, e.g. theHamiltonianwith inclusions (equation (41)) corresponds to the kernel

x x L x x xm, , , A2x xk d D ¢ = - + - ¢¢( ) [ · ( )] ( ) ( )

where xm( ) is given in equation (43) and L is the separation vector of the inclusions.More generally,Δmay also
incorporate boundary conditions for the surfaces of immersed objects [36]. The framework presented in [36]
can be used to compute forces between objects which can be cast in terms ofΔ. Then, as in equation (A2),

x x L, ,D ¢( ) gains a dependence on the separation vector L of the objects. In thermal equilibrium, the force
between the external objects can be computed from the partition function

F k T Zln , A3LBá ñ =  D[ ( )] ( )

with Z e x x x L xx xd d , ,d d
2ò fD = ò f f- ¢ D ¢ ¢b

( ) ( ) ( ) ( ).

Figure 6.The lowest order shear correction Fs
1( ) (equations (51)–(54)) to the forcebetween two stationary inclusions following aquench.The

inclusions are separatedby thevector L0, and Lt Dt 0
2* = ∣ ∣ . The azimuthal J( ) andpolar (j) angles describe theorientationof L0.

Figure 7.Magnitudes of thefirst- (a) and second- (b) order shear correction of the post-quench force between two co-moving
inclusions (connected by the vector L t L eL ty x0 0,g= + ( ) ) shown as functions of the rescaled time Lt Dt 0

2* = ∣ ∣ . Dashed lines
correspond to the system inwhich themedium is unsheared ( Fc m,0-∣ ∣ from equations (59) and (B2)), while solid curves represent the
case of a shearedmedium ( Fc m,g- ∣ ∣ from equations (60) and (B4)). The azimuthal J( ) and polar (j) angles describe the orientation of
the (initial) vector L0 connecting the inclusions.
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Turning to dynamics, the Langevin equationwith shear (see equation (4)) can bewritten as

x x x
x

x x x x

x x x x

t R
H

S t

R t

, , , ,

, , A4

tf
d

df
f h

f h

¶ =- ¢
¢

+ ¢ ¢ +

=- D ¢ ¢ +g

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )(˙ )

upon introducing the operator notation x x x x x xAB x A B, d , ,dò¢ º    ¢( ) ( ) ( ) (integration over repeated
coordinates is implied). HereR encodes dissipative or conserved dynamics forf (i.e.modelA orB), and can be
mapped onto equation (6) according to x x x x xR , A Bm d¢ = - ¢( ) ˆ ( ) ( ). Due to thefluctuation-dissipation
theorem,R also appears in the noise correlator:

x x x xt t k T t t R, , 2 , . A5Bh h dá ¢ ¢ ñ = - ¢ ¢( ) ( ) ( ) ( ) ( )

The operator x x x xS y, xg d¢ = ¶ - ¢( ) ˙ ( ) represents the advection term for simple shear, and R R S 1= + Dg -( ˙ ) .
For a given configuration of xf ( ), themean force can also be computed directly from theHamiltonian:

x x L x x LF t H
k T

2
, , , , , A6L L

B 1= -  = -  D ¢ D ¢-⟨ ( )⟩ ⟨ ⟩ [ ( )] ( ) ( )

due to the relation x x x x x LC k T , ,B
1f f= á ¢ ñ = D ¢-( ) ( ) ( ) ( ). Inspired by the analysis in section II A in [36], the

equivalence of equations (A3) and (A6) can be exploited for instantaneous configurations of the field x t,f ( ).
First, we note that, for a quench fromTI= 0 toT, the (temporal)Laplace transformof the correlation function

x tC ,( ) from equation (13) can bewritten as

C s
k T

s

s R k T

s2
. A7B B

s

1 1
1= D+ = D

g
g

- -
-

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

(˙ )
(˙ )

This implies that, according to equation (38), the time-dependent (non-equilibrium) forces emerging after a
quench can be computed from an effective equilibrium theory. For 0g =˙ , our results reduce exactly to those of
[36]. However, the analysis holds also for 0g ¹˙ , because equation (A4) is still a linear Langevin equation and S
has a local kernel x xdµ - ¢( ) for simple shear, i.e. g=˙ const. From sD g( ˙ ) (see below equation (38)) one infers that
the source of LRCs can be either the inherent correlationsmanifest in theHamiltonian (viaΔ), or the presence
of a conservation law (viaR).

As stated, the above arguments also apply to the force acting between two inclusions separated by a vector L.
In thermal equilibrium, inclusions induce an additional contribution k T lnB

Z

Z
H

H Hinc

D =
-

to the free energy of

the system,with the total and inclusionHamiltoniansH (equation (41)) and Hinc (equation (42)), respectively,
andwhere Z eH

Hò f= b f- [ ]. For L Vi
d1∣ ∣ , an effective potential between the inclusions can be

constructed via a cumulant expansion, which yields, after someWick contractions,

L L
k Tc c V V

0
2

. A8B 1 2 1 2 2 f f= á ñ( ) ( ) ( ) ( )

This is in linewith the arguments employed for computing equilibrium thermal Casimir forces between
quadratically coupled inclusions in a near-critical fluid (see, e.g. [65–67]). However, because Hinc is Gaussian,
too, the above Laplace transform formalism can be applied in order to compute the (time-dependent) non-
equilibrium potential after a quench. For L Vi

d1 , equation (44) is exactly recovered.

Appendix B. Shear corrections to forces between inclusions

Belowwe provide the contributions to the shear rate expansion of the forces between two inclusions, as
discussed in section 6. For stationary inclusions immersed in a sheared fluidwith post-quench correlations, Fs

2( )

in equation (51) has the following vector components:
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For inclusions following the trajectory of a shearflow, embedded in an unshearedfluidwith post-quench forces,
F n

c m,0-
( ) in equation (59) has the vector components ( x y z, ,a = )
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at zeroth andfirst order in shear, respectively, and
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at second order in shear. Lastly, for comoving inclusions embedded in the systemwith correlations subject to
shear, F n

c m,g- ˙
( ) in equation (60) has the vector components
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at zeroth andfirst order in shear, respectively, and
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at second order in shear.
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