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Abstract

Rogue waves, i.e. high amplitude fluctuations in random wave fields, have been studied in several
contexts, ranging from optics via acoustics to the propagation of ocean waves. Scattering by disorder,
like current fields and wind fluctuations in the ocean, as well as nonlinearities in the wave equations
provide widely studied mechanisms for their creation. However, the interaction of these mechanisms
is largely unexplored. Hence, we study wave propagation under the concurrent influence of
geometrical (disorder) and nonlinear focusing in the (current-modified) nonlinear Schrodinger
equation. We show how nonlinearity shifts the onset distance of geometrical (disorder) focusing and
alters the peak intensities of the fluctuations. We find an intricate interplay of both mechanisms that is
reflected in the observation of optimal ratios of nonlinearity and disorder strength for the generation
of rogue waves.

1. Introduction

Rogue waves are extreme fluctuations in random wave fields with much higher amplitude than the average wave
height. Their occurrence is an expression of the fact that the amplitude or intensity statistics of the waves in the
field follow a heavy tailed distribution. Probably the most sensational manifestation are giant ocean freak waves
of more than 20 m height, which have been confirmed to exist by measurements for the first time only little more
than 20 years ago [1]. Heavy tailed intensity distributions and thus rogue waves, however, can be found in a
variety of different contexts including optics [1] and microwave transmissions [2, 3], as well as the propagation
of sound [4] and tsunami waves [5].

Several physical mechanisms have been identified that can lead to those heavy-tailed intensity distributions
[6], two of which are arguably the most prominent ones: on the one hand this is the modulation instability
occurring in nonlinear wave equations with focusing nonlinearity. In this context, rogue waves are supposed to
be manifestations of special, spatially and temporally localized breather solutions of the wave equation [7, 8]. On
the other hand it is the formation of branched flows which has been found in the propagation of linear waves in
weakly scattering but correlated random media and leads to strong spatial focusing. Branched flows are closely
connected to the occurrence of random caustics [9, 10], i.e. singularities in the density of the rays approximating
the wave field (seee.g. [11]).

Breathers have been extensively studied both theoretically and experimentally in optics and water waves
[12—-17]. Likewise have branched flows been studied in a variety of systems ranging from transport of electrons in
the two-dimensional electron gas scattered by the disorder potential of impurities [ 18—20], via the scattering of
wind driven ocean waves by ocean currents [21, 22] to the focusing of tsunamis by small variations of the ocean
floor topography [5]. Not only do branched flows in general lead to heavy-tailed intensity distributions [ 10, 23],
but experiments on microwave transmissions through disordered arrays of scatterers have shown that in
combination with fluctuating sources they can lead to breather-like isolated rogue events [2].

Despite this progress a full quantitative theory of the statistics of rogue waves, especially on the oceans, is still
missing. One important ingredient needed to achieve this, we believe, will be a thorough understanding of the
interplay of linear and nonlinear focusing mechanisms, which are typically both present in the ocean wave
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Figure 1. Intensity for two realizations of a branched flow for g = 0 (bottom panel) and g = —0.1 (top panel) with k, = 207 in the
same potential Vwith e = 0.007, £, = 1. The distance to the first caustic, i.e. to the maximum of the averaged scintillation index 3_,
is shown by the golden dashed line, as well as 10 times this distance. The nonlinearity has a strong influence on the branched flow, i.e.
the onset distance is decreased through the self-focusing nonlinearity and the structures are sharpened.

dynamics. Especially the formation of branched flows in the presence of modulation instability needs to be
understood. First numerical observations have indicated that the combination of the two effects can indeed lead
to higher rogue wave probabilities than the individual mechanisms [22, 24].

With this article, we want to contribute to the systematic study of branched flows in nonlinear wave
propagation, using the nonlinear Schrédinger equation (NLS) in the presence of weak disorder as the
paradigmatic model equation. Figure 1 shows an illustrative example of abranched flow created by an initially
plane wave propagating over a weak disorder potential, comparing the linear to the nonlinear wave dynamics in
the same potential landscape. The precise model we use is described in section 2. Since in two-dimensional wave
flows the most fundamental structure is the cusp caustic, we will then give a very brief review of branched flows
in linear waves and its close connection to the formation of random caustics in section 3. Because of this close
connection we start our analysis of the nonlinear wave propagation by studying the impact of nonlinearity on a
single cusp caustic created by a curved wave front in the absence of any potential in section 4, complementing
our numerical findings by perturbative nonlinear ray theory. In sections 5 and 6 we will then study the
propagation of nonlinear waves in weak disorder potentials.

2.Model

In this article we will study the (2 + 1) dimensional NLS [25]

0A 1 0%A 1 0%A .
20— 08 9T L SAPA + Vi, p)A, 1
L 200 20y gIA| x5 ») M

where A is the (complex) wave envelope and the potential term V is a weakly fluctuating correlated random field
representing e.g. a turbulent current field in the ocean or a correlated random, weakly refractive medium. This
equation models the modulation of weakly nonlinear waves in different systems [ 1], including the propagation
of water waves in the deep ocean, where it is denoted as the current-modified NLS. The random field V=kV
has zero mean and variance (V) which we express as (V%) = ¢2k; /2. The parameter ¢, which we will use in the
remainder of this article, measures the relative disorder strength, compared to the kinetic energy of an incoming
(linear) plane wave with wave vector ky. The random potential is further characterized by a spatial correlation
function which we choose to be Gaussian with width 2, i.e.

27.2
<V(x’, y’)V(x’ + x, )’/ + )’)> :fc(ff; x, }/) — %e*(xzﬁ'}'z)/fcz_ )

For example in the ocean, the parameter € is given by the ratio of the root mean square velocity of the
background current and the speed of the incoming wave, which is on the order of 10> [22]. The dimensionless
nonlinearity § is given by (aqK)?/2, where ayKj is the wave steepness of the carrier wave with typical amplitude
ao and wavenumber K. For deep water ocean waves the steepness can grow up to a few times 10" [1].

We assume that the amplitude of the random potential is small, which allows us to use the paraxial
approximation
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Figure 2. Comparison of the intensity between the full (24-1) dimensional solution of equation (1) with Ax = Ay = 0.1,an
oscillating source with frequency p = 15 and At = 0.0067 (top) and the paraxial, (1 + 1) dimensional approximation of equation (3)
(bottom) for ¢ = 0.018, § = —0.01. The intensity patterns agree very well, though the paraxial approximation is computationally
advantageous, especially to collect statistics.

Ou 1 0%
i— = ——Z— + guffu + V(x, y)u, 3
lax 20 72 glul*u (x, Y)u 3)

with A(x, y, t) = u(x, y)exp {i(kox — pt)}, § = kog.

In our simulations we solve equation (3) using a Fourier split-operator method following [26] with a typical
resolution Ax = Ay < Ay/10 (g = 27/ky) and periodic boundary conditions in y-direction. Our main goal is
to study the interplay of random and nonlinear focusing. To this aim, we study initially plane waves propagating
in the random potential landscape. For a few examples, we qualitatively compared the solutions obtained in the
paraxial approximation with much more costly simulations of the non-equilibrium steady states observable in
the full (2 + 1)d equation (1) in the presence of a planar wave source and absorbing boundary conditions using
the methods described in [26]. In all cases we found very good agreement. An example is shown in figure 2. In
contrast to optics, a plane wave initial condition is not very realistic in the ocean. Here, one rather expects a
superposition of plane waves where the propagation direction and the wavenumber vary in a certain range. This
will affect the probability distribution of the wave intensities, and in general reduces the chance to observe rogue
waves, as described in [21, 22, 24] for geometrical and nonlinear focusing mechanisms individually. However, in
order to focus our study on the principles of the interplay of caustics and branched flows with nonlinear focusing
mechanisms, we limit the initial conditions to a single plane wave.

As mentioned above, branched flows are tightly linked to the formation of random caustics [9, 10], i.e.

singularities in the ray description of the wave field. We, therefore, will first study how individual caustics are
affected by a (small) nonlinearity in the wave equation before we turn to branched flows. Caustics are
characterized in catastrophe optics by their fundamental normal forms [11], which parameterize the variation of
the optical path length in the vicinity of the caustic. In two-dimensional wave fields, only two types of caustics
can occur: fold and cusp caustics. In a cusp point two fold caustics are spawned, therefore we can restrict our
discussion to the optical cusp catastrophe. To create a single cusp caustic we need an initial condition
ug(y) = u(0, y) in equation (3), which in the paraxial approximation captures the curvature of the wave front
thatleads to the desired optical path length variation given by the normal form of the cusp. An appropriate initial
condition, which corresponds to a plane wave that has just passed through a suitable phase screen, is given by’

3 Other initial conditions leading to cusp like structures (denoted as gradient catastrophe) in the self-focusing NLS are studied in [27].




10P Publishing

New J. Phys. 21 (2019) 083020 G Green and R Fleischmann

—T1> 20

y/l.

10

) 20/0, 2.20/0,
T x/l,

Figure 3. Intensity for different g with the same curvature of the initial wavefront r = 0.8 (left) and for different realizations of a
branched flow in the same potential with € = 0.07 (right) for ky = 27. Cusp caustics are created by geometrical focusing through a
curved initial wavefront (left), but are also found in branched flows, i.e. in focusing through disorder.
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The parameters r, o and Bjointly control the shape of the cusp and the distance of the cusp point from the
phase screen as will become apparent in section 4.1. The maximal phase difference along the initial condition is
Bko. Here, we keep @ = 1000 and 3 = 27 fixed.

The free, linear propagation (i.e. V(x, y) = 0 and g = 0) of the initial condition (4) leads to focusing into the
desired cusp structure in the intensity |u|? as can be seen in the center panel of the left column of figure 3 (this
effect we will denote as geometrical focusing in the following). The upper and lower panels show the impact of
weak self-focusing (g < 0) and self-defocusing nonlinearities (§ > 0) on the cusp. The right column of figure 3
illustrates that equivalent structures can be seen in branched flows.

As might be expected, we can observe that in both cases a self-focusing nonlinearity leads to higher peak
intensities, sharper structures, and earlier focusing whereas a self-defocusing nonlinearity leads to decreased
peak intensities with blurred out structures and delayed focusing compared to the linear case. This effects can be
seen even more clearly in figure 4 which shows cuts along the central horizontal line of the cusp structures of
figure 3. The maximum intensity clearly increases for ¢ < 0and decreases for g > 0 and the distance to the first
maximum decreases and increases respectively.

Before we study the impact of the nonlinearity on geometrical focusing and branched flows quantitatively in
the later sections we will first very briefly review some statistical properties of branched flows in linear waves in
the next section.

®(y) = (€]

with
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Figure 4. Intensity for a cut through y = 0 for different gwith r = 0.8 for the wave fields shown in figure 3. The onset distance is
decreased and the intensity is increased for self-focusing nonlinearities, whereas the onset distance is increased and the intensity

decreased for defocusing ones.

3. Scaling of branched flows (linear waves)

Branched flows show universal behavior for a wide range of random media, i.e. fundamental properties of the
flow are independent of the details of the dynamics and the random medium and only depend on very few
characteristic parameters like the variance €2 and the (integral) correlation lengths #. of the fluctuations in the
medium [5, 23, 28]. Similar to diffusion in random media which is characterized by the mean free path,
branched flows scale with a characteristic length scale that is proportional to the mean distance to the first caustic

x2. Inisotropic media® this length scales as

xd o< e, )

which for small € is much shorter than the mean free path that scales like #,/ €.
How can one measure the branching length in a wave simulation or an experiment? Caustics are singularities

in the ray field which approximates the wave front propagation, and their position is well defined and easily
measured in numerics. In wave fields, however, they appear as more or less diffuse regions of increased intensity.
In the case of a single cusp caustic created by a curved wavefront, we can use the position of the absolute
maximum of the intensity to define the relevant length scale. In the complex wave fields of branched flows, as the
ones of figure 1, we need to take another way. We have shown earlier [3, 5] that the average fluctuation strength
of the wave field (averaged over many realizations) quantified by its relative variance, the scintillation index (see
section 5), is a useful measure. As a function of propagation distance from the source, in a branched flow the
scintillation index shows a peak. The distance of this peak from the source defines a suitable length scale that we
will use as x! in the following. In this peak region the strongest branches are visible in the individual realizations.

4. Geometrical focusing

Caustics are well studied and described in geometric and linear wave optics for rays and linear waves, whereas
there are only few studies about geometrical focusing in the NLS or water waves, see e.g. [27, 30]. In this section,
we study how a single cusp caustic, generated by a curved wavefront as described in section 2, shifts with the
nonlinearity in the wave equation as illustrated in figures 3 and 4. More specifically, we want to quantify and
explain how the distance to the maximum varies. This variation is shown in figure 5 for different curvatures of
the initial wave front as a function of the nonlinearity g. For self-focusing nonlinearities the distance decreases.
For defocusing nonlinearities it first increases but then surprisingly decreases again. To gain a deeper
understanding of this unexpected decrease for positive gand the functional form for the expected decrease for

negative ¢ we investigate the dynamic in a semiclassical approximation.

In anisotropic media the distance to the first caustic shows an additional angle dependence [29].
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Figure 5. Distance to the maximum of |A|? for ko = 2 together with a fit (lines) to the perturbatively found functional form
equation (8). The vertical lines indicate the distance at which rays start to separate in the perturbative ray dynamics, given by |g| = b.
Numerical results are presented by the symbols.

4.1. Semiclassical approximations

In the linear dynamics the rays propagate from the curved wave front through free space and reach the cusp ata
distance x” = 160?. To assess the effect of the nonlinearity in a perturbative manner, we study the propagation of
rays (or trajectories) that are following Newtons equations of motion in a potential that is given by the solution

Ay of'the linear wave equation times the nonlinearity, i.e.

d%y, (1) DA,
— = vV _gl’
dr dy

where the initial conditions y,(0) = yl.o and y:(0) have to be chosen such that the rays are perpendicular to the
initial wave front, i.e.

7:(0) = —v00,®(y)),

with x = 1yt in the paraxial approximation.

Figure 6 shows examples of the resulting ray fields for different g. A clear qualitative difference can be seen
between focusing and defocusing nonlinearity. For focusing nonlinearity the behavior does not qualitatively
change with g a caustic is found along the central line. While for a small defocusing nonlinearity the rays still
form a caustic on the central line, for stronger defocusing nonlinearity the caustic splits into two, which lie off
the central line. Along the central line the rays are initially focused, but before they can cross and form the
caustic, the curvature of the wave front changes and the rays are defocused. Only later two smaller cusps form left
and right of the central line. The numerical solutions of the nonlinear wave propagation show, however, that the
wave intensity maximum is still on the central line. We therefore suppose that the position where the rays
become parallel (and thus the wave front starts to defocus) is a good approximation for the distance to the
maximum of the wave field. In the ray dynamics the cusp point or the parallel point respectively, dependingon g,
can be found numerically using the stability matrix. We compare them to the position of the maximum in the
actual nonlinear wave field in figure 7. The curves show rough qualitative agreement and follow the same trend,
but do not match quantitatively. However, we will show that the turning points, i.e. the positive nonlinearities at
which the distance to the maximum starts to decrease again can be well predicted. Furthermore, we will show
that for self-focusing nonlinearities the shape of the curve can well be approximated analytically.

A solution for the cusp is known and is given by the Pearcey integral [11]. Using this expression the perturbed
distance to the caustic can in principle be calculated analyzing the stability matrix of the central trajectory. The
latter is simply a straight line (traversed with varying speed), but using the full form of the integral, however, the
resulting equations still appear not to be solvable analytically. Therefore, we approximate the curvature of |A|?
(which enters the expression of the stability matrix, see appendix A) by a constant ¢ < 0, which simplifies the
equations sufficiently. The constant p implicitly depends on the initial wavefront, i.e. the parametersr, « and 3,
and will be used as a fit parameter. This allows us to determine a simple functional dependence for x as a
function of the strength of the nonlinearity g. As shown in appendix A, the resulting estimate for the distance to
the causticis
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Figure 6. Rays propagating ina potential V = g|A,|? for r = 0.8 and different gare superimposed in silver on |A,|?. The red dots show
the distance to the caustic on the central line and the green dot the distance, where the rays are initially parallel on the central line. The
surprising effect of the defocusing potential, i.e. preventing the crossing on the central line for g = 0.1, is clearly visible.
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Using the same approach the distance to the parallel point can also be calculated and for g > 0 we find
1
xg — % arctanh 6r—ﬁvo 7)
logl aylegl

In this approach we made two major approximations. First the distance was calculated based on ray
dynamics and secondly the expression 8?,|A0 |2 along the central ray was approximated by a constant. Note that
already in the linear case the wave intensity maximum is not at the caustic position but beyond, therefore a
constant offset was included in the fit. Thus here and later, when we analyze branched flows, we use a fitting

function of the form
x8= 9 arccot b + d. 8)
lgl \ gl
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Figure 7. Distance to the caustic (full symbols) and the parallel point (half full symbols) from ray simulations compared with the
distance to the maximum (open symbols) of the wave simulations for kg = 2.

We have fitted this expression (8) for g < 0 to the intensity maximum positions obtained from wave simulations
in figure 5. We find that the qualitative functional dependence is in very good agreement with the numerics. (The
fitting parameters are given in appendix B, table B1.) As shown by the vertical lines in figure 5, from the fitting
parameter b we can furthermore very well estimate the g-values of the maxima of the curves by the nonlinearity
at which the expressions for the cusp point x and the parallel point x§ diverge (which is of course always at
positive g-values at |g| = b).

5.Branched flow

We will now turn our attention away form the single caustic created by a curved wave front to the branched flow
field created by the diffraction of waves by correlated disorder. In the latter an ever increasing number of random
caustics is created.

5.1. Scintillation index
As mentioned above, a helpful quantity to characterize the wave flow is the scintillation index. It measures the

relative strength of the intensity fluctuations and is defined as _ = %, where I'(x, y) = |AJ?is the wave

intensity. Here the averages are taken over realizations of the disorder. If the initial condition is a plane wave
propagating in x direction, the scintillation index ¥ = X(x) is a function of x only, i.e. a function of the
propagation distance. Typical curves are shown in figure 8, for three different disorder strengths. In the
numerics the ensemble average is taken from 1024 realizations of the random potential (and over the y position).

In the linear case (g = 0) the scintillation index initially increases strongly and reaches a maximum when the
strongest branches occur, then it slowly decays to one at large distances’. A scintillation index of ¥ = 1 is what
you expect for arandom superposition of plane waves, i.e. when the intensity is exponentially
distributed [31, 32].

Let us now examine how the scintillation index curves change with nonlinearity. In this and the subsequent
section we fix kg = 20w, and €. = 1. We see in figure 8 that the maximum of the scintillation index, i.e. the
magnitude of the strongest intensity fluctuations, varies with the nonlinearity. It increases for self-focusing and
decreases for defocusing ones, consistently for the different disorder strengths (a)—(c). But thereis also a
qualitative difference in the shape of the curves. After the initial peak due to the onset of branching, a second
wider peak develops with increasing self-focusing nonlinearity. The extend of this second peak, however,
strongly depends on the disorder strength. In (a) for the strongest disorder the scintillation index is still
approaching one at large distances, signaling an exponential intensity distribution as in the linear case. Butin the
two topmost curves one can clearly see a second maximum. This behavior is more pronounced for smaller
disorder strength in (b), where the decay to 1 is much slower. In the top curve the second maximum becomes an
extended plateau, with nearly the same magnitude as the first peak. In (c) the second increase of the scintillation
index is strongest and the magnitude rises above that of the initial peak. Here, even at the end of the simulation
region, the intensity distribution will decay much slower than exponential. In (c) the linear case ¢ = 0 does not
show a fully developed branched flow, as can be seen by the absence of a peak in the scintillation index. The

> For the smallest disorder strength shown in figure 8 the curve ¢ = 0 does not show a peak, because in this case the caustic structures which
would be formed by the rays are very narrow and do not get resolved by the waves anymore. A peak would reappear, though, for smaller
wavelength, i.e. larger k.
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(c) e=0.0014

z/x)

Figure 8. Scintillation index }(x) for different strength of the random potential, e = 0.014 (a), 0.007 (b), 0.0014 (c), and varying
nonlinearity g. The onset distance x? scales with € ~*/> and is adapted accordingly in (a)—(c). It can be seen that the nonlinearity
qualitatively changes the scintillation index.

nonlinearity, however, intensifies the fluctuations and sharp caustics appear. This is in accordance with the
caustic sharpening observed in [33], which studied caustics created in a light-field passing through a phase
screen and then propagated through a (homogeneous) nonlinear medium.

For very weak disorder the self-focusing nonlinearity increases the intensity fluctuations and recovers the
peak that was washed out in the linear case. In contrast, for the intermediate disorder strength in figure 8(b) we
see that defocusing nonlinearities apparently leads to the disappearance of caustics. This is similar to the
behavior for a geometrically focused wave, in which the defocusing prevents the crossing of the rays, at least on
the central line.

Itis apparent that the influence of the nonlinearity on the shape of the scintillation index is stronger for
smaller disorder strength e. Furthermore, one can see that the distance to the maximum depends on the
nonlinearity. We will quantify this dependence in section 5.3. The qualitative differences can also be seen in the
examples of branched flow fields of figure 1. The focusing nonlinearity leads to sharper branches of higher
intensity. They are much more stable and persists over longer distances. Also the branches can interact and
reflect one another. These kind of interactions are known for nonlinear waves and are a prominent feature of
soliton-solutions. This suggests that the structures present in the branched flow are some kind of realization of
these solutions. Different studies from optics have compared peaks appearing due to randomly perturbed phases
of the initial wave and found that the shapes match known solutions quite well [12, 13], though their complexity
is higher [34].

In the next two subsections we want to quantify the changes in the scintillation index induced by
nonlinearity.

5.2. Fluctuation strength

Let us first study the change in fluctuation strength as characterized by the maximum ¥,,,,, of the scintillation
index. The lower panel of figure 9 shows X,,.x as a function of g for the same three disorder strength as in figure 8.
That the maximum in the scintillation index is indeed the consequence of the formations of caustics is strikingly
confirmed in figure 9 which shows the dependence of the maximal intensity |A|,, of caustics generated by
curved wave fronts as a function of g for three appropriately chosen initial curvatures of the wave front

9



10P Publishing

New J. Phys. 21 (2019) 083020 G Green and R Fleischmann

o v
wof °°868g, 7 v =02
v ° 3
o5 r=0.7
801 8 g o r=10
] S
60, ’ 5%
= v ° o q
v
401 v
v
201 YV Y
P O o
1.751 0o, ° e=oon
) 0098 ¢ = 0.007
, 150 0 ° . 0 e=0.0014
£ o
N o
1.251
0 ° 5
(e}
1.00] °o
© d
—0.10 —0.05 0.00 0.05 0.10
g

Figure 9. Comparison of the maximal wave intensity for different curvature of the wavefront and the maximum of the averaged
scintillation index for different e. The effect of the nonlinearity is comparable in both cases. There is an optimal combination of
geometrical and nonlinear focusing. We have already demonstrated in figure 3 that the most prominent structures in the branched
flow are manifestations of random cusp caustics. The upper panel is caused by a single cusp caustic. Because of the correspondence of
the upper and lower panel we therefore conclude, that the maximum in the scintillation index, see figure 8, is caused by random
caustics.

parameterized by r (see equation (4)) in the upper panel and the maximum of the scintillation index for different
disorder strength in the lower panel. The correspondence of the two cases is very clear. The maxima decrease for
positive gand initially increase for g < 0but then a turning point can be observed. For small curvatures and
correspondingly small € one can clearly see that the maxima decrease again. The same behavior can also be seen
for larger € only for stronger negative nonlinearities g < 0 outside the shown simulation range. This means that
depending on the disorder strength there is an optimal g in the sense, that the fluctuations are most intense. This
is an interesting finding and shows that the interplay of the geometrical and nonlinear focusing is highly non-
trivial. We will strengthen this point of view by studying intensity and rogue wave statistics in section 6. But first
we want to conclude our examination of the scintillation index by studying the onset distance of the branching
behavior.

5.3. Onset distance

As in the linear case, we define the onset distance of the branched flow as the distance x, from the source to the
maximum of the scintillation index. The change of this distance with nonlinearity is shown in figure 10. Here we
can see, qualitatively, the same behavior as for the single cusp caustic. For self-focusing nonlinearities the
distance decreases and it initially increases for defocusing ones. In contrast to the geometrical focusing, we do
not observe a decrease of the distance for stronger defocusing nonlinearities, but instead the peak in the
scintillation index disappears, as can be seen in figure 8(b). This originates from the disappearance of the
caustics. This is underlined by figure 3, in which for g > 0 one can see, that the high intensity regions are
smoothed out.

Again we argue that the scintillation maximum is caused by the formation of caustics and therefore we
expect that the distance x, follows the same functional g-dependence as that of the individual cusp. In figure 10
we therefore fit expression equation (8) for self-focusing nonlinearities to the simulation results. In addition we
mark for which g > 0, from the results of section 4.1 and the parameters of the fit, we expect the single cusp to
disappear. Overall we find a good correspondence.

So far we lack a proper understanding of the second peak in the scintillation index. One would assume a
connection to modulation instability, however, its position varies with disorder strength, suggesting an interplay
of the two effects.
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Figure 10. Distance to the maximum of > together with a fit of the theoretical expected g dependence for the geometrical focusing
(lines) equation (8). The vertical lines displace the vanishing of the caustics as expected from the semiclassical model. Numerical
results are presented by the symbols. For strong defocusing the maximum in the scintillation index disappears. The fit parameters are
given in appendix B, table B2.

6. Intensity and rogue wave statistics

Let us finally come back to the most intriguing question that was already raised in the introduction: how does the
interplay of random and nonlinear focusing influence the rogue wave probability?

When linear waves propagate in weakly diffracting, correlated random media the formation of branched
flows leads to heavy-tailed intensity distributions and therefore to a strong increase of the probability of rogue
waves compared to the expectations from a random wave model with exponential intensity distribution
[2,10,21,23]. Ascintillation index larger than one is a consequence of this heavy-tailed distributions. At large
distances from the source we have seen in section 5 that the scintillation index is approaching one from above
and indeed the intensity probability density function (pdf) is approaching an exponential [32]. Thereforein a
branched flow of linear waves there is typically only a certain range of propagation distances (near the peak
distance x? that we have discussed earlier) when rogue wave probabilities are strongly increased. This behavior of
the linear waves is confirmed in the right column of figure 11 for the strongest disorder strength (and can also be
found for intermediate disorder strength; not shown). The figure shows the intensity pdf compared to an
exponential decay at two different distances from the source: at the scintillation peak x. and 10 times this
distance. While the pdffor ¢ = 01is clearly heavy tailed at x, it becomes exponential at 10x,. But more over the
figure shows the influence of the nonlinearity: positive glead to a faster decay of the pdf, while negative glead to
more heavy-tailed distributions and heavy-tailed intensity distributions prevail for much longer propagation
distances.

The left column of figure 11 shows the same curves but for the smallest disorder we studied, where the linear
branched flow is not fully developed (as described in section 5.2) and does not show a heavy-tailed but an
exponential intensity pdf at both distances. However, focusing nonlinearities restore the heavy-tailed
distribution.

To make the influence of the nonlinearity easier to grasp quantitatively, we calculated the probabilities of
freak waves (i.e. rogue waves). We used a simplified definition and waves of intensity larger than
Iy = (4.4°/2)(Io) [21], in which (Iy) is the mean intensity for ¢ = 0, are named freak waves. The probability
P(I > Ipasafunction of the nonlinearity is shown in figure 12. In addition we present P (I > I*), with
I* = 4.4(I,) in figure 12. We show, as above, curves for the three different disorder strengths and at two different
propagation distances, i.e. at the scintillation peak and 10 times that far. In accordance to what we saw for the
maximal intensity of the curved wavefront and the maximum of the scintillation index there appears to be an
optimal nonlinearity for the different disorder strengths, where the rogue wave probabilities are highest, clearly
observed for the smallest e for P(I > I) at distance 10x.and for P(I > I*).If there is a maximum for the larger
but at stronger nonlinearities, outside of our simulation regime, we can only suspect. It is very clear, however,
that the interplay of random and nonlinear focusing in the formation of rogue waves is highly non-trivial.
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function of the strength of the nonlinearity g for different e. There is an optimal ratio of the strength of the nonlinearity and the
disorder strength. The observed values exceed the expectations from linear theory P(I > I*) = 0.012and P(I > I) = 6.25 x 107>,

7. Conclusion and outlook

In conclusion, we have studied the impact of self-defocusing and self-focusing nonlinearities in the wave
dynamics on single cusp caustics as well as branched flows in diffracting random media in the realm of the NLS
using numerical and perturbative methods. We analyzed the impact on the onset position of high intensity
fluctuations and their intensity statistics.

The most interesting findings concern the intensity statistics and the formation of rogue waves in branched
flows in the presence of self-focusing nonlinearity. For small nonlinearities it is clear that the region of strong
branching, characterized by a pronounced peak in the scintillation index, is the main realm for rogue wave
formation. It would thus appear that caustic formation enhanced by nonlinear focusing is the prime origin of
rogue waves. But the nonlinearity leads to a much slower decay (in propagation distance) of the heavy-tailed
intensity distribution towards exponential behavior. For stronger nonlinearities even a second, much wider,
scintillation peak appears to form. Its height can for very strong nonlinearities even surpass the caustic peak (see
figure 13). However, for small disorder strength of the diffracting random potential it became very clear that
there is an ideal balance of disorder and nonlinearity for the creation of rogue waves. Whether this is true for
stronger disorder we can not conclude from our numerical results so far, but we see indications. More and
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Figure 13. Scintillation index for different e for strong nonlinearities. For stronger g the increase after the first peak in the scintillation
index is also present for larger e.

longer simulations for even higher nonlinearities would be needed to answer this questions. If for such strong
nonlinearities the paraxial approximation is still reasonable is another question future work will have to answer.
Our main conclusion, however, is very clear: to understand the statistics of rogue waves in the presence of
disorder (which for example is always there in the ocean in the form of current fields and wind fluctuations) one
imperatively needs to understand the interplay of random and nonlinear focusing in detail.

Acknowledgments

We thank Jakob ] Metzger for proofreading the manuscript and fruitful discussions.

Appendix A. Onset distance

Here we outline the derivation of equations (6) and (7). To obtain the onset distance we make use of the stability
matrix M(t) [35]

nyp My
M = S
My My

which can be applied to describe the stability of Hamiltonian systems without periodic orbits. It describes the
time evolution of displacements from a reference trajectory 6x (t) = ¥ (t) — X (t), which are initially nearby
and is given by

§%(t) = M(£)6%(0)

2
M) = (_01 é)[%)M(t) — K(OM ()
M(0) = 1.

We study the evolution of the Hamiltonian H = p?/2 + V (¢, y), where V (t, y) = glAol(t, y), Agisthe
solution for g = 0, and x = vyt. Here for K(¢) one has

0 1
K@) = Y% .
—5 0

We are only interested in y = 0 since the first caustic is on the central line, due to the symmetry of the wavefront
and the potential. To obtain an analytically solvable equation we make the approximation that the curvature
a§| Aol (t, y = 0) ~ o < 0is constant. Note that g is an unspecified constant and depends implicitly on the
initial wavefront, i.e. the parameters r, « and (. In the manuscript it is left as a fitting parameter. For g < 0the
stability matrix is given by

13



10P Publishing

New J. Phys. 21 (2019) 083020 G Green and R Fleischmann

sin_[ogt
cos  Jogt Nz

M) =
—Jogsin Jogt cos [ogt
andforg > 0
cosh /—ogt sinh /= og*
M(t) = o8 |
[—og sinh [—ogt cosh /—ogt
Finally we find
6 1
( }’) — M@ Yo
op 6p,
1 6
L~ () + m12(t)ﬁ
oy, %,
19 167
Po 020,y = v, s
7 e
From 2 = 0we get equation (6). In the same way x$, see equation (7), is derived from L—

o o
This0 derivation gives a simple functional form of x¢, but does not give quantitative predicotions. This is a result of
the approximation 8§| Aol*(t, y = 0) = const., which is utilized in the derivation. We additionally solve the above
equations numerically with A, obtained from the numerical solution of the Schrédinger equation, which uses the
full, x-dependent form of 8f,| Ao (t, y = 0) and results in a better quantitative agreement, see figure 7.

Appendix B. Fit parameter

Table B1. Fit parameters corresponding to figure 5.

r a b d

0.1 7.3 0.0086 40.8
0.2 4.9 0.0156 21.2
0.3 4.2 0.0253 13.6
0.4 4.0 0.0372 9.4
0.5 3.9 0.0510 6.8
0.6 3.9 0.0678 4.8

Table B2. Fit parameters corresponding to figure 10.

€ a b d
0.014 7.7 0.100 0
0.007 35.8 0.132 0
0.0014 11.0 4 x 107" -13
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