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Abstract
Roguewaves, i.e.high amplitude fluctuations in randomwavefields, have been studied in several
contexts, ranging fromoptics via acoustics to the propagation of oceanwaves. Scattering by disorder,
like currentfields andwindfluctuations in the ocean, as well as nonlinearities in thewave equations
providewidely studiedmechanisms for their creation.However, the interaction of thesemechanisms
is largely unexplored.Hence, we studywave propagation under the concurrent influence of
geometrical (disorder) and nonlinear focusing in the (current-modified)nonlinear Schrödinger
equation.We showhownonlinearity shifts the onset distance of geometrical (disorder) focusing and
alters the peak intensities of the fluctuations.We find an intricate interplay of bothmechanisms that is
reflected in the observation of optimal ratios of nonlinearity and disorder strength for the generation
of roguewaves.

1. Introduction

Roguewaves are extreme fluctuations in randomwavefields withmuch higher amplitude than the averagewave
height. Their occurrence is an expression of the fact that the amplitude or intensity statistics of thewaves in the
field follow a heavy tailed distribution. Probably themost sensationalmanifestation are giant ocean freakwaves
ofmore than 20 mheight, which have been confirmed to exist bymeasurements for thefirst time only littlemore
than 20 years ago [1]. Heavy tailed intensity distributions and thus roguewaves, however, can be found in a
variety of different contexts including optics [1] andmicrowave transmissions [2, 3], as well as the propagation
of sound [4] and tsunamiwaves [5].

Several physicalmechanisms have been identified that can lead to those heavy-tailed intensity distributions
[6], two ofwhich are arguably themost prominent ones: on the one hand this is themodulation instability
occurring in nonlinear wave equationswith focusing nonlinearity. In this context, roguewaves are supposed to
bemanifestations of special, spatially and temporally localized breather solutions of thewave equation [7, 8]. On
the other hand it is the formation of branchedflowswhich has been found in the propagation of linear waves in
weakly scattering but correlated randommedia and leads to strong spatial focusing. Branched flows are closely
connected to the occurrence of random caustics [9, 10], i.e.singularities in the density of the rays approximating
thewavefield(see e.g. [11]).

Breathers have been extensively studied both theoretically and experimentally in optics andwater waves
[12–17]. Likewise have branched flows been studied in a variety of systems ranging from transport of electrons in
the two-dimensional electron gas scattered by the disorder potential of impurities [18–20], via the scattering of
wind driven oceanwaves by ocean currents [21, 22] to the focusing of tsunamis by small variations of the ocean
floor topography [5]. Not only do branched flows in general lead to heavy-tailed intensity distributions [10, 23],
but experiments onmicrowave transmissions through disordered arrays of scatterers have shown that in
combinationwithfluctuating sources they can lead to breather-like isolated rogue events [2].

Despite this progress a full quantitative theory of the statistics of roguewaves, especially on the oceans, is still
missing.One important ingredient needed to achieve this, we believe, will be a thorough understanding of the
interplay of linear and nonlinear focusingmechanisms, which are typically both present in the oceanwave
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dynamics. Especially the formation of branchedflows in the presence ofmodulation instability needs to be
understood. First numerical observations have indicated that the combination of the two effects can indeed lead
to higher roguewave probabilities than the individualmechanisms [22, 24].

With this article, wewant to contribute to the systematic study of branched flows in nonlinear wave
propagation, using the nonlinear Schrödinger equation (NLS) in the presence of weak disorder as the
paradigmaticmodel equation. Figure 1 shows an illustrative example of a branched flow created by an initially
planewave propagating over aweak disorder potential, comparing the linear to the nonlinear wave dynamics in
the same potential landscape. The precisemodel we use is described in section 2. Since in two-dimensional wave
flows themost fundamental structure is the cusp caustic, wewill then give a very brief review of branched flows
in linearwaves and its close connection to the formation of random caustics in section 3. Because of this close
connectionwe start our analysis of the nonlinear wave propagation by studying the impact of nonlinearity on a
single cusp caustic created by a curvedwave front in the absence of any potential in section 4, complementing
our numericalfindings by perturbative nonlinear ray theory. In sections 5 and 6wewill then study the
propagation of nonlinear waves inweak disorder potentials.

2.Model

In this article wewill study the (2+ 1)dimensional NLS [25]
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whereA is the (complex)wave envelope and the potential term Ṽ is a weakly fluctuating correlated randomfield
representing e.g.a turbulent current field in the ocean or a correlated random,weakly refractivemedium. This
equationmodels themodulation of weakly nonlinear waves in different systems [1], including the propagation
of waterwaves in the deep ocean, where it is denoted as the current-modifiedNLS. The randomfieldV k V0=˜
has zeromean and variance V 2á ñwhichwe express as V k 22 2

0
2á ñ = . The parameter ò, whichwewill use in the

remainder of this article,measures the relative disorder strength, compared to the kinetic energy of an incoming
(linear) planewavewithwave vector k0. The randompotential is further characterized by a spatial correlation
functionwhichwe choose to beGaussianwithwidthℓc, i.e.
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For example in the ocean, the parameter  is given by the ratio of the rootmean square velocity of the
background current and the speed of the incomingwave, which is on the order of 10−3 [22]. The dimensionless
nonlinearity g̃ is given by a K 20 0

2( ) , where a K0 0 is thewave steepness of the carrier wavewith typical amplitude
a0 andwavenumberK0. For deepwater oceanwaves the steepness can growup to a few times 10−1 [1].

We assume that the amplitude of the randompotential is small, which allows us to use the paraxial
approximation

Figure 1. Intensity for two realizations of a branchedflow for g=0 (bottompanel) and g=−0.1 (top panel)with k0=20π in the
same potentialVwith ò=0.007, ℓc=1. The distance to thefirst caustic, i.e. to themaximumof the averaged scintillation index å,
is shown by the golden dashed line, as well as 10 times this distance. The nonlinearity has a strong influence on the branchedflow, i.e.
the onset distance is decreased through the self-focusing nonlinearity and the structures are sharpened.
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with A x y t u x y k x t g k g, , , exp i ,0 0m= - =( ) ( ) { ( )} ˜ .
In our simulationswe solve equation (3) using a Fourier split-operatormethod following [26]with a typical

resolutionΔx=Δy�λ0/10 (λ0=2π/k0) and periodic boundary conditions in y-direction. Ourmain goal is
to study the interplay of random and nonlinear focusing. To this aim, we study initially planewaves propagating
in the randompotential landscape. For a few examples, we qualitatively compared the solutions obtained in the
paraxial approximationwithmuchmore costly simulations of the non-equilibrium steady states observable in
the full 2 1 d+( ) equation (1) in the presence of a planar wave source and absorbing boundary conditions using
themethods described in [26]. In all cases we found very good agreement. An example is shown infigure 2. In
contrast to optics, a planewave initial condition is not very realistic in the ocean.Here, one rather expects a
superposition of planewaves where the propagation direction and thewavenumber vary in a certain range. This
will affect the probability distribution of thewave intensities, and in general reduces the chance to observe rogue
waves, as described in [21, 22, 24] for geometrical and nonlinear focusingmechanisms individually. However, in
order to focus our study on the principles of the interplay of caustics and branchedflowswith nonlinear focusing
mechanisms, we limit the initial conditions to a single planewave.

Asmentioned above, branchedflows are tightly linked to the formation of random caustics [9, 10], i.e.
singularities in the ray description of thewavefield.We, therefore, willfirst study how individual caustics are
affected by a (small)nonlinearity in thewave equation beforewe turn to branched flows. Caustics are
characterized in catastrophe optics by their fundamental normal forms [11], which parameterize the variation of
the optical path length in the vicinity of the caustic. In two-dimensional wavefields, only two types of caustics
can occur: fold and cusp caustics. In a cusp point two fold caustics are spawned, therefore we can restrict our
discussion to the optical cusp catastrophe. To create a single cusp caustic we need an initial condition
u0(y)=u(0, y) in equation (3), which in the paraxial approximation captures the curvature of thewave front
that leads to the desired optical path length variation given by the normal formof the cusp. An appropriate initial
condition, which corresponds to a planewave that has just passed through a suitable phase screen, is given by3

Figure 2.Comparison of the intensity between the full (2+1) dimensional solution of equation (1)with x y 0.1D = D = , an
oscillating sourcewith frequencyμ = 15 andΔt = 0.0067 (top) and the paraxial, (1 + 1) dimensional approximation of equation (3)
(bottom) for g0.018, 0.01 = = -˜ . The intensity patterns agree verywell, though the paraxial approximation is computationally
advantageous, especially to collect statistics.

3
Other initial conditions leading to cusp like structures (denoted as gradient catastrophe) in the self-focusingNLS are studied in [27].
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The parameters r, a andβ jointly control the shape of the cusp and the distance of the cusp point from the
phase screen aswill become apparent in section 4.1. Themaximal phase difference along the initial condition is
βk0. Here, we keepα=1000 andβ=2πfixed.

The free, linear propagation (i.e.V(x, y)≡0 and g=0) of the initial condition(4) leads to focusing into the
desired cusp structure in the intensity u 2∣ ∣ as can be seen in the center panel of the left columnoffigure 3 (this
effect wewill denote as geometrical focusing in the following). The upper and lower panels show the impact of
weak self-focusing (g<0) and self-defocusing nonlinearities (g>0) on the cusp. The right columnoffigure 3
illustrates that equivalent structures can be seen in branchedflows.

Asmight be expected, we can observe that in both cases a self-focusing nonlinearity leads to higher peak
intensities, sharper structures, and earlier focusingwhereas a self-defocusing nonlinearity leads to decreased
peak intensities with blurred out structures and delayed focusing compared to the linear case. This effects can be
seen evenmore clearly infigure 4which shows cuts along the central horizontal line of the cusp structures of
figure 3. Themaximum intensity clearly increases for g<0 and decreases for g>0 and the distance to the first
maximumdecreases and increases respectively.

Before we study the impact of the nonlinearity on geometrical focusing and branched flows quantitatively in
the later sections wewillfirst very briefly review some statistical properties of branchedflows in linear waves in
the next section.

Figure 3. Intensity for different gwith the same curvature of the initial wavefront r = 0.8 (left) and for different realizations of a
branched flow in the same potential with ò=0.07 (right) for k0=2π. Cusp caustics are created by geometrical focusing through a
curved initial wavefront (left), but are also found in branched flows, i.e.in focusing through disorder.

4
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3. Scaling of branchedflows (linearwaves)

Branched flows showuniversal behavior for awide range of randommedia, i.e.fundamental properties of the
flow are independent of the details of the dynamics and the randommedium and only depend on very few
characteristic parameters like the variance 2 and the (integral) correlation lengthsℓc of thefluctuations in the
medium [5, 23, 28]. Similar to diffusion in randommediawhich is characterized by themean free path,
branchedflows scale with a characteristic length scale that is proportional to themean distance to the first caustic
x0c . In isotropicmedia4 this length scales as

x , 5c c
0 2 3µ -ℓ ( )

which for small ò ismuch shorter than themean free path that scales likeℓc/ò
2.

How can onemeasure the branching length in awave simulation or an experiment? Caustics are singularities
in the rayfieldwhich approximates thewave front propagation, and their position is well defined and easily
measured in numerics. Inwavefields, however, they appear asmore or less diffuse regions of increased intensity.
In the case of a single cusp caustic created by a curvedwavefront, we can use the position of the absolute
maximumof the intensity to define the relevant length scale. In the complexwavefields of branched flows, as the
ones offigure 1, we need to take another way.We have shown earlier [3, 5] that the average fluctuation strength
of thewavefield (averaged overmany realizations) quantified by its relative variance, the scintillation index (see
section 5), is a usefulmeasure. As a function of propagation distance from the source, in a branchedflow the
scintillation index shows a peak. The distance of this peak from the source defines a suitable length scale thatwe
will use as x0c in the following. In this peak region the strongest branches are visible in the individual realizations.

4.Geometrical focusing

Caustics are well studied and described in geometric and linearwave optics for rays and linearwaves, whereas
there are only few studies about geometrical focusing in theNLS orwater waves, see e.g. [27, 30]. In this section,
we study how a single cusp caustic, generated by a curvedwavefront as described in section 2, shifts with the
nonlinearity in thewave equation as illustrated infigures 3 and 4.More specifically, wewant to quantify and
explain how the distance to themaximumvaries. This variation is shown in figure 5 for different curvatures of
the initial wave front as a function of the nonlinearity g. For self-focusing nonlinearities the distance decreases.
For defocusing nonlinearities itfirst increases but then surprisingly decreases again. To gain a deeper
understanding of this unexpected decrease for positive g and the functional form for the expected decrease for
negative gwe investigate the dynamic in a semiclassical approximation.

Figure 4. Intensity for a cut through y=0 for different gwith r=0.8 for thewavefields shown in figure 3. The onset distance is
decreased and the intensity is increased for self-focusing nonlinearities, whereas the onset distance is increased and the intensity
decreased for defocusing ones.

4
In anisotropicmedia the distance to thefirst caustic shows an additional angle dependence [29].

5
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4.1. Semiclassical approximations
In the linear dynamics the rays propagate from the curvedwave front through free space and reach the cusp at a
distance xc r

0
16

= a
b
. To assess the effect of the nonlinearity in a perturbativemanner, we study the propagation of

rays (or trajectories) that are followingNewtons equations ofmotion in a potential that is given by the solution
A0 of the linearwave equation times the nonlinearity, i.e.
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where the initial conditions y y0i i
0=( ) and y 0i̇ ( ) have to be chosen such that the rays are perpendicular to the

initial wave front, i.e.

y v y0 ,i y i0
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with x v t0= in the paraxial approximation.
Figure 6 shows examples of the resulting rayfields for different g. A clear qualitative difference can be seen

between focusing and defocusing nonlinearity. For focusing nonlinearity the behavior does not qualitatively
changewith g: a caustic is found along the central line.While for a small defocusing nonlinearity the rays still
form a caustic on the central line, for stronger defocusing nonlinearity the caustic splits into two, which lie off
the central line. Along the central line the rays are initially focused, but before they can cross and form the
caustic, the curvature of thewave front changes and the rays are defocused.Only later two smaller cusps form left
and right of the central line. The numerical solutions of the nonlinear wave propagation show, however, that the
wave intensitymaximum is still on the central line.We therefore suppose that the positionwhere the rays
become parallel (and thus thewave front starts to defocus) is a good approximation for the distance to the
maximumof thewavefield. In the ray dynamics the cusp point or the parallel point respectively, depending on g,
can be found numerically using the stabilitymatrix.We compare them to the position of themaximum in the
actual nonlinear wavefield infigure 7. The curves show rough qualitative agreement and follow the same trend,
but do notmatch quantitatively. However, wewill show that the turning points, i.e.the positive nonlinearities at
which the distance to themaximum starts to decrease again can bewell predicted. Furthermore, wewill show
that for self-focusing nonlinearities the shape of the curve canwell be approximated analytically.

A solution for the cusp is known and is given by the Pearcey integral [11]. Using this expression the perturbed
distance to the caustic can in principle be calculated analyzing the stabilitymatrix of the central trajectory. The
latter is simply a straight line (traversedwith varying speed), but using the full formof the integral, however, the
resulting equations still appear not to be solvable analytically. Therefore, we approximate the curvature of A0

2∣ ∣
(which enters the expression of the stabilitymatrix, see appendix A) by a constant 0 < , which simplifies the
equations sufficiently. The constant ñ implicitly depends on the initial wavefront, i.e.the parameters r,α andβ,
andwill be used as afit parameter. This allows us to determine a simple functional dependence for xc

g as a
function of the strength of the nonlinearity g. As shown in appendix A, the resulting estimate for the distance to
the caustic is

Figure 5.Distance to themaximumof A 2∣ ∣ for k0=2π together with a fit (lines) to the perturbatively found functional form
equation (8). The vertical lines indicate the distance at which rays start to separate in the perturbative ray dynamics, given by g b=∣ ∣ .
Numerical results are presented by the symbols.
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Using the same approach the distance to the parallel point can also be calculated and for g>0we find
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In this approachwemade twomajor approximations. First the distance was calculated based on ray
dynamics and secondly the expression Ay

2
0

2¶ ∣ ∣ along the central raywas approximated by a constant. Note that
already in the linear case thewave intensitymaximum is not at the caustic position but beyond, therefore a
constant offset was included in thefit. Thus here and later, whenwe analyze branchedflows, we use afitting
function of the form

x
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Figure 6.Rays propagating in a potential V g A0
2= ∣ ∣ for r=0.8 and different g are superimposed in silver on A0

2∣ ∣ . The red dots show
the distance to the caustic on the central line and the green dot the distance, where the rays are initially parallel on the central line. The
surprising effect of the defocusing potential, i.e.preventing the crossing on the central line for g=0.1, is clearly visible.
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Wehavefitted this expression (8) for g<0 to the intensitymaximumpositions obtained fromwave simulations
infigure 5.Wefind that the qualitative functional dependence is in very good agreement with the numerics. (The
fitting parameters are given in appendix B, table B1.)As shown by the vertical lines infigure 5, from thefitting
parameter bwe can furthermore verywell estimate the g-values of themaxima of the curves by the nonlinearity
at which the expressions for the cusp point xc

g and the parallel point xp
g diverge (which is of course always at

positive g-values at g b=∣ ∣ ).

5. Branchedflow

Wewill now turn our attention away form the single caustic created by a curvedwave front to the branched flow
field created by the diffraction of waves by correlated disorder. In the latter an ever increasing number of random
caustics is created.

5.1. Scintillation index
Asmentioned above, a helpful quantity to characterize thewaveflow is the scintillation index. Itmeasures the

relative strength of the intensityfluctuations and is defined as
I I

I

2 2

2å = á ñ - á ñ
á ñ

, where I x y A, 2=( ) ∣ ∣ is thewave

intensity. Here the averages are taken over realizations of the disorder. If the initial condition is a planewave
propagating in x direction, the scintillation indexΣ=Σ(x) is a function of x only, i.e. a function of the
propagation distance. Typical curves are shown infigure 8, for three different disorder strengths. In the
numerics the ensemble average is taken from1024 realizations of the randompotential (and over the y position).

In the linear case (g=0) the scintillation index initially increases strongly and reaches amaximumwhen the
strongest branches occur, then it slowly decays to one at large distances5. A scintillation index ofΣ=1 is what
you expect for a random superposition of planewaves, i.e. when the intensity is exponentially
distributed [31, 32].

Let us now examine how the scintillation index curves changewith nonlinearity. In this and the subsequent
sectionwe fix k0=20π, andℓc=1.We see infigure 8 that themaximumof the scintillation index, i.e.the
magnitude of the strongest intensityfluctuations, varies with the nonlinearity. It increases for self-focusing and
decreases for defocusing ones, consistently for the different disorder strengths (a)–(c). But there is also a
qualitative difference in the shape of the curves. After the initial peak due to the onset of branching, a second
wider peak develops with increasing self-focusing nonlinearity. The extend of this second peak, however,
strongly depends on the disorder strength. In (a) for the strongest disorder the scintillation index is still
approaching one at large distances, signaling an exponential intensity distribution as in the linear case. But in the
two topmost curves one can clearly see a secondmaximum. This behavior ismore pronounced for smaller
disorder strength in (b), where the decay to 1 ismuch slower. In the top curve the secondmaximumbecomes an
extended plateau, with nearly the samemagnitude as the first peak. In (c) the second increase of the scintillation
index is strongest and themagnitude rises above that of the initial peak.Here, even at the end of the simulation
region, the intensity distributionwill decaymuch slower than exponential. In (c) the linear case g=0 does not
show a fully developed branched flow, as can be seen by the absence of a peak in the scintillation index. The

Figure 7.Distance to the caustic (full symbols) and the parallel point (half full symbols) from ray simulations comparedwith the
distance to themaximum (open symbols) of thewave simulations for k 20 p= .

5
For the smallest disorder strength shown infigure 8 the curve g=0 does not show a peak, because in this case the caustic structures which

would be formed by the rays are very narrow and do not get resolved by thewaves anymore. A peakwould reappear, though, for smaller
wavelength, i.e. larger k0.
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nonlinearity, however, intensifies thefluctuations and sharp caustics appear. This is in accordancewith the
caustic sharpening observed in [33], which studied caustics created in a light-field passing through a phase
screen and then propagated through a (homogeneous)nonlinearmedium.

For veryweak disorder the self-focusing nonlinearity increases the intensityfluctuations and recovers the
peak thatwas washed out in the linear case. In contrast, for the intermediate disorder strength in figure 8(b)we
see that defocusing nonlinearities apparently leads to the disappearance of caustics. This is similar to the
behavior for a geometrically focusedwave, inwhich the defocusing prevents the crossing of the rays, at least on
the central line.

It is apparent that the influence of the nonlinearity on the shape of the scintillation index is stronger for
smaller disorder strength ò. Furthermore, one can see that the distance to themaximumdepends on the
nonlinearity.Wewill quantify this dependence in section 5.3. The qualitative differences can also be seen in the
examples of branched flowfields offigure 1. The focusing nonlinearity leads to sharper branches of higher
intensity. They aremuchmore stable and persists over longer distances. Also the branches can interact and
reflect one another. These kind of interactions are known for nonlinear waves and are a prominent feature of
soliton-solutions. This suggests that the structures present in the branched flow are some kind of realization of
these solutions. Different studies fromoptics have compared peaks appearing due to randomly perturbed phases
of the initial wave and found that the shapesmatch known solutions quite well [12, 13], though their complexity
is higher [34].

In the next two subsectionswewant to quantify the changes in the scintillation index induced by
nonlinearity.

5.2. Fluctuation strength
Let usfirst study the change influctuation strength as characterized by themaximumΣmax of the scintillation
index. The lower panel offigure 9 showsΣmax as a function of g for the same three disorder strength as in figure 8.
That themaximum in the scintillation index is indeed the consequence of the formations of caustics is strikingly
confirmed infigure 9which shows the dependence of themaximal intensity A max

2∣ ∣ of caustics generated by
curvedwave fronts as a function of g for three appropriately chosen initial curvatures of thewave front

Figure 8. Scintillation index xå( ) for different strength of the randompotential, ò=0.014 (a), 0.007 (b), 0.0014 (c), and varying
nonlinearity g. The onset distance xc

0 scales with ò−2/3 and is adapted accordingly in (a)–(c). It can be seen that the nonlinearity
qualitatively changes the scintillation index.
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parameterized by r (see equation (4)) in the upper panel and themaximumof the scintillation index for different
disorder strength in the lower panel. The correspondence of the two cases is very clear. Themaxima decrease for
positive g and initially increase for g<0 but then a turning point can be observed. For small curvatures and
correspondingly small ò one can clearly see that themaxima decrease again. The same behavior can also be seen
for larger ò only for stronger negative nonlinearities g<0 outside the shown simulation range. Thismeans that
depending on the disorder strength there is an optimal g in the sense, that the fluctuations aremost intense. This
is an interesting finding and shows that the interplay of the geometrical and nonlinear focusing is highly non-
trivial.Wewill strengthen this point of view by studying intensity and roguewave statistics in section 6. But first
wewant to conclude our examination of the scintillation index by studying the onset distance of the branching
behavior.

5.3.Onset distance
As in the linear case, we define the onset distance of the branched flow as the distance xc from the source to the
maximumof the scintillation index. The change of this distancewith nonlinearity is shown infigure 10.Herewe
can see, qualitatively, the same behavior as for the single cusp caustic. For self-focusing nonlinearities the
distance decreases and it initially increases for defocusing ones. In contrast to the geometrical focusing, we do
not observe a decrease of the distance for stronger defocusing nonlinearities, but instead the peak in the
scintillation index disappears, as can be seen infigure 8(b). This originates from the disappearance of the
caustics. This is underlined by figure 3, inwhich for g>0 one can see, that the high intensity regions are
smoothed out.

Againwe argue that the scintillationmaximum is caused by the formation of caustics and therefore we
expect that the distance xc follows the same functional g-dependence as that of the individual cusp. Infigure 10
we therefore fit expression equation (8) for self-focusing nonlinearities to the simulation results. In additionwe
mark forwhich g>0, from the results of section 4.1 and the parameters of the fit, we expect the single cusp to
disappear. Overall wefind a good correspondence.

So farwe lack a proper understanding of the second peak in the scintillation index.Onewould assume a
connection tomodulation instability, however, its position varies with disorder strength, suggesting an interplay
of the two effects.

Figure 9.Comparison of themaximalwave intensity for different curvature of thewavefront and themaximumof the averaged
scintillation index for different ò. The effect of the nonlinearity is comparable in both cases. There is an optimal combination of
geometrical and nonlinear focusing.Wehave already demonstrated infigure 3 that themost prominent structures in the branched
flow aremanifestations of random cusp caustics. The upper panel is caused by a single cusp caustic. Because of the correspondence of
the upper and lower panel we therefore conclude, that themaximum in the scintillation index, see figure 8, is caused by random
caustics.
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6. Intensity and roguewave statistics

Let usfinally come back to themost intriguing question that was already raised in the introduction: howdoes the
interplay of randomand nonlinear focusing influence the roguewave probability?

When linearwaves propagate inweakly diffracting, correlated randommedia the formation of branched
flows leads to heavy-tailed intensity distributions and therefore to a strong increase of the probability of rogue
waves compared to the expectations from a randomwavemodel with exponential intensity distribution
[2, 10, 21, 23]. A scintillation index larger than one is a consequence of this heavy-tailed distributions. At large
distances from the sourcewe have seen in section 5 that the scintillation index is approaching one fromabove
and indeed the intensity probability density function (pdf) is approaching an exponential [32]. Therefore in a
branchedflowof linear waves there is typically only a certain range of propagation distances (near the peak
distance x0c that we have discussed earlier)when roguewave probabilities are strongly increased. This behavior of
the linearwaves is confirmed in the right columnoffigure 11 for the strongest disorder strength (and can also be
found for intermediate disorder strength; not shown). Thefigure shows the intensity pdf compared to an
exponential decay at two different distances from the source: at the scintillation peak xc and 10 times this
distance.While the pdf for g=0 is clearly heavy tailed at xc it becomes exponential at 10xc. Butmore over the
figure shows the influence of the nonlinearity: positive g lead to a faster decay of the pdf, while negative g lead to
more heavy-tailed distributions and heavy-tailed intensity distributions prevail formuch longer propagation
distances.

The left columnoffigure 11 shows the same curves but for the smallest disorder we studied, where the linear
branchedflow is not fully developed (as described in section 5.2) and does not show a heavy-tailed but an
exponential intensity pdf at both distances. However, focusing nonlinearities restore the heavy-tailed
distribution.

Tomake the influence of the nonlinearity easier to grasp quantitatively, we calculated the probabilities of
freakwaves (i.e. roguewaves).We used a simplified definition andwaves of intensity larger than

I I4.4 2f
2

0= á ñ( ) [21], in which I0á ñ is themean intensity for g=0, are named freakwaves. The probability

P(I>If) as a function of the nonlinearity is shown infigure 12. In additionwe present P I I*>( ), with
I I4.4 0* = á ñ infigure 12.We show, as above, curves for the three different disorder strengths and at two different
propagation distances, i.e.at the scintillation peak and 10 times that far. In accordance towhat we saw for the
maximal intensity of the curvedwavefront and themaximumof the scintillation index there appears to be an
optimal nonlinearity for the different disorder strengths, where the roguewave probabilities are highest, clearly
observed for the smallest ò forP(I>If) at distance 10xc and for P I I*>( ). If there is amaximum for the larger ò
but at stronger nonlinearities, outside of our simulation regime, we can only suspect. It is very clear, however,
that the interplay of randomand nonlinear focusing in the formation of roguewaves is highly non-trivial.

Figure 10.Distance to themaximumof å together with afit of the theoretical expected g dependence for the geometrical focusing
(lines) equation (8). The vertical lines displace the vanishing of the caustics as expected from the semiclassicalmodel. Numerical
results are presented by the symbols. For strong defocusing themaximum in the scintillation index disappears. The fit parameters are
given in appendix B, table B2.
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7. Conclusion and outlook

In conclusion, we have studied the impact of self-defocusing and self-focusing nonlinearities in thewave
dynamics on single cusp caustics as well as branched flows in diffracting randommedia in the realmof theNLS
using numerical and perturbativemethods.We analyzed the impact on the onset position of high intensity
fluctuations and their intensity statistics.

Themost interesting findings concern the intensity statistics and the formation of roguewaves in branched
flows in the presence of self-focusing nonlinearity. For small nonlinearities it is clear that the region of strong
branching, characterized by a pronounced peak in the scintillation index, is themain realm for roguewave
formation. It would thus appear that caustic formation enhanced by nonlinear focusing is the prime origin of
roguewaves. But the nonlinearity leads to amuch slower decay (in propagation distance) of the heavy-tailed
intensity distribution towards exponential behavior. For stronger nonlinearities even a second,muchwider,
scintillation peak appears to form. Its height can for very strong nonlinearities even surpass the caustic peak (see
figure 13). However, for small disorder strength of the diffracting randompotential it became very clear that
there is an ideal balance of disorder and nonlinearity for the creation of roguewaves.Whether this is true for
stronger disorder we can not conclude fromour numerical results so far, butwe see indications.More and

Figure 11.Probability density of the intensity for different g in potentials with ò=0.0014 (left) and ò=0.014 (right) at a distance
L=xc (top panel) and L x10 c= . As a reference an exponential distribution is shown in purple. Self-focusing nonlinearities enhance
the tails of the pdf, while defocusing nonlinearities suppress them.

Figure 12.Probability that the intensity exceeds I* (left) and If (right) at a distance L=xc (top panel) and L x10 c= (bottompanel) as a
function of the strength of the nonlinearity g for different ò. There is an optimal ratio of the strength of the nonlinearity and the
disorder strength. The observed values exceed the expectations from linear theory P I I 0.012*> =( ) andP(I>If)=6.25×10−5.
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longer simulations for even higher nonlinearities would be needed to answer this questions. If for such strong
nonlinearities the paraxial approximation is still reasonable is another question future workwill have to answer.
Ourmain conclusion, however, is very clear: to understand the statistics of roguewaves in the presence of
disorder (which for example is always there in the ocean in the formof currentfields andwindfluctuations) one
imperatively needs to understand the interplay of random andnonlinear focusing in detail.
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AppendixA.Onset distance

Herewe outline the derivation of equations (6) and (7). To obtain the onset distancewemake use of the stability
matrixM(t) [35]

M
m m
m m ,11 12

21 22
= ( )

which can be applied to describe the stability ofHamiltonian systemswithout periodic orbits. It describes the
time evolution of displacements from a reference trajectory x t x t x t0d = -

  ( ) ( ) ( ), which are initially nearby
and is given by

x t M t x

M t
x x
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We study the evolution of theHamiltonian p V t y2 ,2 = + ( ), whereV t y g A t y A, , ,0
2

0=( ) ∣ ∣ ( ) is the
solution for g=0, and x v t0= . Here forK(t) one has

K t
0 1

0 .V

y

2

2

= -¶
¶

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

Weare only interested in y= 0 since thefirst caustic is on the central line, due to the symmetry of thewavefront
and the potential. To obtain an analytically solvable equationwemake the approximation that the curvature

A t y, 0 0y
2

0
2 ¶ = » <∣ ∣ ( ) is constant. Note that ñ is an unspecified constant and depends implicitly on the

initial wavefront, i.e. the parameters r,α andβ. In themanuscript it is left as afitting parameter. For g<0 the
stabilitymatrix is given by

Figure 13. Scintillation index for different ò for strong nonlinearities. For stronger g the increase after the first peak in the scintillation
index is also present for larger ò.
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we get equation (6). In the sameway xp
g , see equation (7), is derived from 0

p

y0

=d
d

.

This derivation gives a simple functional formof xc
g, but does not give quantitative predictions. This is a result of

the approximation A t y, 0 const.y
2

0
2¶ = =∣ ∣ ( ) , which is utilized in thederivation.Weadditionally solve the above

equations numericallywithA0 obtained from thenumerical solutionof the Schrödinger equation,whichuses the
full, x-dependent formof A t y, 0y

2
0

2¶ =∣ ∣ ( ) and results in a better quantitative agreement, seefigure 7.
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